Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies
Open Access

Extensive Synergy Between Recombinant Methioninase and Eribulin Against Fibrosarcoma Cells But Not Normal Fibroblasts

SEI MORINAGA, QINGHONG HAN, YUTARO KUBOTA, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA and ROBERT M. HOFFMAN
Anticancer Research March 2024, 44 (3) 921-928; DOI: https://doi.org/10.21873/anticanres.16886
SEI MORINAGA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
QINGHONG HAN
1AntiCancer Inc., San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
YUTARO KUBOTA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KOHEI MIZUTA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BYUNG MO KANG
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MOTOKAZU SATO
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MICHAEL BOUVET
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NORIO YAMAMOTO
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KATSUHIRO HAYASHI
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROAKI KIMURA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SHINJI MIWA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KENTARO IGARASHI
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TAKASHI HIGUCHI
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROYUKI TSUCHIYA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROBERT M. HOFFMAN
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: The aim of the present study was to determine the synergy of recombinant methioninase (rMETase) and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison to normal fibroblasts, in vitro. Materials and Methods: HT1080 human fibrosarcoma cells and HS27 human fibroblasts were used for in vitro experiments. Four groups were analyzed in vitro: No-treatment control; eribulin; rMETase; eribulin plus rMETase. Dual-color HT1080 cells which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize cytoplasmic and nuclear dynamics during treatment. Results: Eribulin combined with rMETase greatly decreased the viability of HT 1080 cells. In contrast, eribulin combined with rMETase did not show synergy on Hs27 normal fibroblasts. Eribulin combined with rMETase also caused more fragmentation of the nucleus than all other treatments. Conclusion: The combination treatment of eribulin plus rMETase demonstrated efficacy on fibrosarcoma cells in vitro. In contrast, normal fibroblasts were resistant to this combination, indicating the potential clinical applicability of the treatment.

Key Words:
  • Methioninase
  • eribulin
  • combination
  • synergy
  • fibrosarcoma
  • normal fibroblasts
  • in vitro
  • methionine addiction
  • Hoffman effect
  • methionine restriction

Soft tissue sarcomas (STSs) are uncommon tumors that account for 1% of all cancer cases (1). The World Health Organization (WHO) has currently divided this heterogeneous collection of tumors into more than 100 histological subgroups (2).

Eribulin is an anti-tubulin agent that can block mitosis. Eribulin was approved for patients with unresectable or metastatic STSs who had previously received anthracycline-containing therapy (3).

In our laboratory, the Pseudomonas putida methioninase gene was cloned and over-expressed in Escherichia coli, yielding high amounts of recombinant methioninase (rMETase) (4). Numerous studies of rMETase or methionine-free medium or a methionine-depleted diet combined with chemotherapy have demonstrated synergistic efficacy (5-37). The aim of the present study was to determine the synergy of rMETase and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison with normal fibroblasts in vitro.

Materials and Methods

Cell culture. HT1080 and Hs27 cells were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (10-013-CV; Corning, Corning, NY, USA) with 10% fetal bovine serum (FBS) and 1 IU/ml penicillin/streptomycin.

Regents. Eribulin was obtained from Eisai Inc. (Nutley, NJ, USA). Recombinant methioninase (rMETase) was produced in AntiCancer Inc. (San Diego, CA, USA). The method for producing rMETase has been previously reported (4).

Drug sensitivity assay 1: IC50. Cell viability was assessed using the WST-8 reagent (Dojindo Laboratory, Kumamoto, Japan). Cells (HT1080 or Hs27) were cultured in 96-well plates (3,000 cells/well) in DMEM (100 μl/well) and incubated at 37°C overnight. Cells were treated with increasing concentrations of eribulin, between 0.5 nM and 8 nM; or rMETase, between 0.5 U/ml and 8 U/ml for 72 h. At the end of the culture period, 10 μl of the WST-8 solution were added to each well and the plate was additionally incubated for 1 h at 37°C. Absorption was measured with a microplate reader (SUNRISE: TECAN, Mannedorf, Switzerland) at 450 nm. Drug sensitivity curves were obtained with Microsoft Excel for Mac 2016 ver. 15.52 (Microsoft, Redmond, WA, USA) and half-maximal inhibitory concentration (IC50) values were calculated using ImageJ ver. 1.53k (National Institutes of Health, Bethesda, MD, USA). Experiments were performed twice, each in triplicate.

Drug sensitivity assay 2: Synergy. Cells (HT1080 or Hs27) were seeded at 3,000 cells/well in 96-well plates. Twenty-four hours later, four treatment groups were established [1: Control (DMEM); 2: eribulin (IC50); 3: rMETase (IC50); 4: eribulin (IC50) plus rMETase (IC50)]. Seventy-two hours later, cell viability was measured in triplicate as described above.

Nuclear fragmentation assay. To visualize nuclear and cytoplasm dynamics, dual-color HT1080 cells, which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nucleus, were generated as previously described (38-43). These cells were observed with an IX71 microscope (Olympus, Tokyo, Japan) at ×200 magnification. The cells were seeded at 300,000 cells/well in 6-well plates. Treatment Groups were as follows: 1: control (DMEM); 2: eribulin (0.15 nM); 3: rMETase (0.75 U/ml); 4: eribulin (0.15 nM) plus rMETase (0.75 U/ml). Forty-eight hours later, the number of fragmented nuclei was counted per field of view in six fields.

All statistical analyses were conducted using EZR software (Saitama Medical Center, Jichi Medical University, Saitama, Japan). Associations between variables were tested using a Tukey-Kramer analysis. p-Values ≤0.05 were considered statistically significant.

Results

Drug sensitivity assay 1: IC50 of eribulin and rMETase on HT1080 and Hs27 cells. The IC50 value of eribulin for HT1080 cells was 0.15 nM. The IC50 of rMETase for HT1080 cells was 0.75 U/ml. The IC50 of eribulin for Hs27 was 0.43 nM. The IC50 of rMETase for Hs27 cells was 0.93 U/ml (Figure 1).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Eribulin and recombinant methioninase (rMETase) sensitivity of HT1080 and Hs27 cells (mean±SD, n=3). A) Sensitivity to eribulin of HT1080 cells. B) Sensitivity to rMETase of HT1080 cells. C) Sensitivity to eribulin of Hs27 cells. D) Sensitivity to rMETase of Hs27 cells.

Drug sensitivity assay 2: Synergy of eribulin and rMETase on HTT1080 and Hs27 cells. The combination of eribulin (0.15 nM) plus rMETase (0.75 U/ml) was the most effective on HT1080 cells (p<0.05). In contrast, eribulin (0.43 nM) plus rMETase (0.93 U/ml) did not show synergy in Hs27 cells (Figure 2A and B).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Efficacy of eribulin and recombinant methioninase (rMETase) and their combination on cancer and normal cells. A) HT1080 cells. 1: Control (DMEM); 2: eribulin (0.15 nM); 3: rMETase (0.75 U/ml); 4: eribulin (0.15 nM) plus rMETase (0.75 U/ml). B) Hs27 fibroblasts. 1: Control (DMEM); 2: Eribulin (0.43 nM); 3: rMETase (0.93 U/ml); 4: Eribulin (0.43 nM) plus rMETase (0.93 U/ml).

Nuclear fragmentation assay. The combination of eribulin (0.15 nM) plus rMETase (0.75 U/ml) caused more fragmentation of the nucleus in HT1080 cells than all other treatment groups (p<0.05) (Figure 3A-C).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Efficacy of eribulin, recombinant methioninase (rMETase) and their combination on nuclear fragmentation in HT 1080 cells. A) Images of nuclei expressing GFP 1: Control (DMEM); 2: eribulin (0.15 nM); 3: rMETase (0.75 U/ml); 4: eribulin (0.15 nM) plus rMETase (0.75 U/ml). Scale bars: 100 μm. B) Nuclear fragmentation quantitation. 1: Control (DMEM); 2: eribulin (0.15 nM); 3: rMETase (0.75 U/ml); 4: eribulin (0.15 nM) plus rMETase (0.75 U/ml).

Discussion

Patients with advanced soft tissue sarcoma have a poor prognosis, with a median overall survival of little under 19 months (44). Patients with metastatic and irresectable soft tissue sarcoma who were treated with eribulin had a median overall survival of 13.2-13.5 months and progression-free survival of 2.6-4.1 months according to the Phase 2 and 3 clinical studies (3, 45). Eribulin is a second-line chemotherapy for soft tissue sarcoma, however, its efficacy is limited.

In 1976, our laboratory first identified methionine addiction as a fundamental hallmark of cancer (46-51). To limit methionine and target methionine addiction, our group developed rMETase. We later discovered that rMETase may be administrated orally (o-rMETase), making it a very practical and safe therapeutic (25, 51).

In 1986 our laboratory discovered synergy of methionine restriction and chemotherapy (5, 50). Many different combinations of rMETase and chemotherapy have shown synergy when used together (6-36). In the present study, we showed the extensive synergy between rMETase and eribulin in HT1080 cells. The mechanism of synergy of tubulin-targeting agents with rMETase is that they kill cancer cells as they enter the G2/M phase after they escape the S/G2 cell-cycle block caused by methionine restriction (50, 52, 53). In contrast, eribulin plus rMETase did not show synergy in Hs27 cells because normal cells are not arrested by rMETase at the IC50 for cancer cells. The methionine addiction of cancer cells causes them to arrest for S/G2 when methionine is restricted (50, 52, 53).

Eribulin targets tubulin and reduces the dynamic stability of microtubules (55). Sampson et al. (56) showed the instability and fragmentation of the nucleus by eribulin. Our group showed that staurosporine caused numerous nuclear fragments on dual-color HT1080 cells (43). Eribulin combined with rMETase caused higher nuclear fragmentation than either agent alone (Figure 3). rMETase may enhance eribulin-induced destabilization of the nucleus by affecting its binding to tubulin.

Oral rMETase is showing promise in the clinic, especially in combination with chemotherapy (15, 22, 52, 69-74)

In conclusion, the synergy of rMETase with eribulin on fibrosarcoma cells has therapeutic potential for soft tissue sarcoma because it targets the fundamental hallmark of cancer in methionine addiction (46-49, 51, 54, 57-68).

Acknowledgements

This article is dedicated to the memory of A.R. Moossa, MD, Sun Lee, MD, Gordon H. Sato, Ph.D, Professor Li Jiaxi, Masaki Kitajima, MD, Joseph R. Bertino, MD, Shigeo Yagi, PhD, and J.A.R Mead, Ph.D. The Robert M. Hoffman Foundation for Cancer Research provided funds for the present study.

Footnotes

  • Authors’ Contributions

    SM, HQ, YK, KM, BMK, MS, MB, NY, KH, HK, SM, KI, TH, HT and RMH designed the study. SM performed experiments. SM was a major contributor to writing the manuscript and RMH revised the paper. All Authors read and approved the final manuscript.

  • Conflicts of Interest

    The Authors declare no competing interests in relation to this study.

  • Received October 26, 2023.
  • Revision received November 20, 2023.
  • Accepted November 21, 2023.
  • Copyright © 2024 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Kneisl JS,
    2. Coleman MM,
    3. Raut CP
    : Outcomes in the management of adult soft tissue sarcomas. J Surg Oncol 110(5): 527-538, 2014. DOI: 10.1002/jso.23685
    OpenUrlCrossRefPubMed
  2. ↵
    1. WHO Classification of Tumours Editorial Board
    : WHO Classification of Tumours: Soft Tissue and Bone tumours 5th ed. Lyon, France, IARC Publications, 2020.
  3. ↵
    1. Schöffski P,
    2. Chawla S,
    3. Maki RG,
    4. Italiano A,
    5. Gelderblom H,
    6. Choy E,
    7. Grignani G,
    8. Camargo V,
    9. Bauer S,
    10. Rha SY,
    11. Blay JY,
    12. Hohenberger P,
    13. D’Adamo D,
    14. Guo M,
    15. Chmielowski B,
    16. Le Cesne A,
    17. Demetri GD,
    18. Patel SR
    : Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet 387(10028): 1629-1637, 2016. DOI: 10.1016/S0140-6736(15)01283-0
    OpenUrlCrossRefPubMed
  4. ↵
    1. Tan Y,
    2. Xu M,
    3. Tan X,
    4. Tan X,
    5. Wang X,
    6. Saikawa Y,
    7. Nagahama T,
    8. Sun X,
    9. Lenz M,
    10. Hoffman RM
    : Overexpression and large-scale production of recombinantl-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9(2): 233-245, 1997. DOI: 10.1006/prep.1996.0700
    OpenUrlCrossRefPubMed
  5. ↵
    1. Stern PH,
    2. Hoffman RM
    : Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76(4): 629-639, 1986. DOI: 10.1093/jnci/76.4.629
    OpenUrlCrossRefPubMed
  6. ↵
    1. Sugisawa N,
    2. Yamamoto J,
    3. Han Q,
    4. Tan Y,
    5. Tashiro Y,
    6. Nishino H,
    7. Inubushi S,
    8. Hamada K,
    9. Kawaguchi K,
    10. Unno M,
    11. Bouvet M,
    12. Hoffman RM
    : Triple-methyl blockade with recombinant methioninase, cycloleucine, and azacitidine arrests a pancreatic cancer patient-derived orthotopic xenograft model. Pancreas 50(1): 93-98, 2021. DOI: 10.1097/MPA.0000000000001709
    OpenUrlCrossRefPubMed
    1. Higuchi T,
    2. Sugisawa N,
    3. Yamamoto J,
    4. Oshiro H,
    5. Han Q,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Tan Y,
    12. Kuchipudi S,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H,
    16. Hoffman RM
    : The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85(2): 285-291, 2020. DOI: 10.1007/s00280-019-03986-0
    OpenUrlCrossRefPubMed
    1. Masaki N,
    2. Han Q,
    3. Wu NF,
    4. Samonte C,
    5. Wu J,
    6. Hozumi C,
    7. Obara K,
    8. Kubota Y,
    9. Aoki Y,
    10. Miyazaki J,
    11. Hoffman RM
    : Oral-recombinant methioninase lowers the effective dose and eliminates toxicity of cisplatinum for primary osteosarcoma of the mammary gland in a patient-derived orthotopic xenograft mouse model. In Vivo 36(6): 2598-2603, 2022. DOI: 10.21873/invivo.12994
    OpenUrlAbstract/FREE Full Text
    1. Masaki N,
    2. Han Q,
    3. Samonte C,
    4. Wu NF,
    5. Hozumi C,
    6. Wu J,
    7. Obara K,
    8. Kubota Y,
    9. Aoki Y,
    10. Bouvet M,
    11. Hoffman RM
    : Oral-recombinant methioninase in combination with rapamycin eradicates osteosarcoma of the breast in a patient-derived orthotopic xenograft mouse model. Anticancer Res 42(11): 5217-5222, 2022. DOI: 10.21873/anticanres.16028
    OpenUrlAbstract/FREE Full Text
    1. Sun Y,
    2. Nishino H,
    3. Sugisawa N,
    4. Yamamoto J,
    5. Hamada K,
    6. Zhu G,
    7. Lim HI,
    8. Hoffman RM
    : Oral recombinant methioninase sensitizes a bladder cancer orthotopic xenograft mouse model to low-dose cisplatinum and prevents metastasis. Anticancer Res 40(11): 6083-6091, 2020. DOI: 10.21873/anticanres.14629
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Kubota Y,
    8. Bouvet M,
    9. Nishida K,
    10. Hoffman RM
    : Oral-recombinant methioninase converts an osteosarcoma from methotrexate-resistant to -sensitive in a patient-derived orthotopic-xenograft (PDOX) mouse model. Anticancer Res 42(2): 731-737, 2022. DOI: 10.21873/anticanres.15531
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Wu NF,
    4. Yamamoto J,
    5. Hamada K,
    6. Han Q,
    7. Bouvet M,
    8. Nishida K,
    9. Hoffman RM
    : Oral-recombinant methioninase converts an osteosarcoma from docetaxel-resistant to -sensitive in a clinically-relevant patient-derived orthotopic-xenograft (PDOX) mouse model. Anticancer Res 41(4): 1745-1751, 2021. DOI: 10.21873/anticanres.14939
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto J,
    2. Miyake K,
    3. Han Q,
    4. Tan Y,
    5. Inubushi S,
    6. Sugisawa N,
    7. Higuchi T,
    8. Tashiro Y,
    9. Nishino H,
    10. Homma Y,
    11. Matsuyama R,
    12. Chawla SP,
    13. Bouvet M,
    14. Singh SR,
    15. Endo I,
    16. Hoffman RM
    : Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 492: 174-184, 2020. DOI: 10.1016/j.canlet.2020.07.034
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Kawaguchi K,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Li Y,
    10. Nelson SD,
    11. Dry SM,
    12. Singh AS,
    13. Elliott IA,
    14. Russell TA,
    15. Eckardt MA,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Eilber FC,
    22. Hoffman RM
    : Growth of doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119(4): 3537-3544, 2018. DOI: 10.1002/jcb.26527
    OpenUrlCrossRefPubMed
  7. ↵
    1. Kubota Y,
    2. Han Q,
    3. Masaki N,
    4. Hozumi C,
    5. Hamada K,
    6. Aoki Y,
    7. Obara K,
    8. Tsunoda T,
    9. Hoffman RM
    : Elimination of axillary-lymph-node metastases in a patient with invasive lobular breast cancer treated by first-line neo-adjuvant chemotherapy combined with methionine restriction. Anticancer Res 42(12): 5819-5823, 2022. DOI: 10.21873/anticanres.16089
    OpenUrlAbstract/FREE Full Text
    1. Lim HI,
    2. Sun YU,
    3. Han Q,
    4. Yamamoto J,
    5. Hoffman RM
    : Efficacy of oral recombinant methioninase and eribulin on a PDOX model of triple-negative breast cancer (TNBC) liver metastasis. In Vivo 35(5): 2531-2534, 2021. DOI: 10.21873/invivo.12534
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Han Q,
    3. Miyake K,
    4. Oshiro H,
    5. Sugisawa N,
    6. Tan Y,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Bouvet M,
    13. Singh SR,
    14. Tsuchiya H,
    15. Hoffman RM
    : Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 523(1): 135-139, 2020. DOI: 10.1016/j.bbrc.2019.12.024
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Li S,
    7. Han Q,
    8. Tan Y,
    9. Zhao M,
    10. Li Y,
    11. Nelson SD,
    12. Dry SM,
    13. Singh AS,
    14. Elliott IA,
    15. Russell TA,
    16. Eckardt MA,
    17. Yamamoto N,
    18. Hayashi K,
    19. Kimura H,
    20. Miwa S,
    21. Tsuchiya H,
    22. Eilber FC,
    23. Hoffman RM
    : Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17(6): 801-809, 2018. DOI: 10.1080/15384101.2018.1431596
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Singh AS,
    11. Eckardt MA,
    12. Nelson SD,
    13. Russell TA,
    14. Dry SM,
    15. Li Y,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Singh SR,
    22. Eilber FC,
    23. Hoffman RM
    : Recombinant methioninase in combination with doxorubicin (DOX) overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417: 168-173, 2018. DOI: 10.1016/j.canlet.2017.12.028
    OpenUrlCrossRefPubMed
    1. Miyake M,
    2. Miyake K,
    3. Han Q,
    4. Igarashi K,
    5. Kawaguchi K,
    6. Barangi M,
    7. Kiyuna T,
    8. Sugisawa N,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Bouvet M,
    14. Endo I,
    15. Hoffman RM
    : Synergy of oral recombinant methioninase (rMETase) and 5-fluorouracil on poorly differentiated gastric cancer. Biochem Biophys Res Commun 643: 48-54, 2023. DOI: 10.1016/j.bbrc.2022.12.062
    OpenUrlCrossRefPubMed
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Lwin TM,
    8. Higuchi T,
    9. Kiyuna T,
    10. Miyake M,
    11. Oshiro H,
    12. Bouvet M,
    13. Unno M,
    14. Hoffman RM
    : Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 17(7): 868-873, 2018. DOI: 10.1080/15384101.2018.1445907
    OpenUrlCrossRefPubMed
  8. ↵
    1. Kubota Y,
    2. Han Q,
    3. Hozumi C,
    4. Masaki N,
    5. Yamamoto J,
    6. Aoki Y,
    7. Tsunoda T,
    8. Hoffman RM
    : Stage IV pancreatic cancer patient treated with FOLFIRINOX combined with oral methioninase: a highly-rare case with long-term stable disease. Anticancer Res 42(5): 2567-2572, 2022. DOI: 10.21873/anticanres.15734
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Oshiro H,
    3. Miyake K,
    4. Sugisawa N,
    5. Han Q,
    6. Tan Y,
    7. Park J,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Bouvet M,
    16. Chawla SP,
    17. Singh SR,
    18. Tsuchiya H,
    19. Hoffman RM
    : Oral recombinant methioninase, combined with oral caffeine and injected cisplatinum, overcome cisplatinum-resistance and regresses patient-derived orthotopic xenograft model of osteosarcoma. Anticancer Res 39(9): 4653-4657, 2019. DOI: 10.21873/anticanres.13646
    OpenUrlAbstract/FREE Full Text
    1. Sugisawa N,
    2. Higuchi T,
    3. Han Q,
    4. Hozumi C,
    5. Yamamoto J,
    6. Tashiro Y,
    7. Nishino H,
    8. Kawaguchi K,
    9. Bouvet M,
    10. Murata T,
    11. Unno M,
    12. Hoffman RM
    : Oral recombinant methioninase combined with paclitaxel arrests recalcitrant ovarian clear cell carcinoma growth in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Cancer Chemother Pharmacol 88(1): 61-67, 2021. DOI: 10.1007/s00280-021-04261-x
    OpenUrlCrossRefPubMed
  9. ↵
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Kiyuna T,
    8. Miyake M,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Wangsiricharoen S,
    14. Bouvet M,
    15. Singh SR,
    16. Unno M,
    17. Hoffman RM
    : Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432: 251-259, 2018. DOI: 10.1016/j.canlet.2018.06.016
    OpenUrlCrossRefPubMed
    1. Oshiro H,
    2. Tome Y,
    3. Kiyuna T,
    4. Yoon SN,
    5. Lwin TM,
    6. Han Q,
    7. Tan Y,
    8. Miyake K,
    9. Higuchi T,
    10. Sugisawa N,
    11. Katsuya Y,
    12. Park JH,
    13. Zang Z,
    14. Razmjooei S,
    15. Bouvet M,
    16. Clary B,
    17. Singh SR,
    18. Kanaya F,
    19. Nishida K,
    20. Hoffman RM
    : Oral recombinant methioninase overcomes colorectal-cancer liver metastasis resistance to the combination of 5-fluorouracil and oxaliplatinum in a patient-derived orthotopic xenograft mouse model. Anticancer Res 39(9): 4667-4671, 2019. DOI: 10.21873/anticanres.13648
    OpenUrlAbstract/FREE Full Text
    1. Sugisawa N,
    2. Higuchi T,
    3. Han Q,
    4. Hozumi C,
    5. Yamamoto J,
    6. Tashiro Y,
    7. Nishino H,
    8. Kawaguchi K,
    9. Bouvet M,
    10. Murata T,
    11. Unno M,
    12. Hoffman RM
    : Oral recombinant methioninase combined with paclitaxel arrests recalcitrant ovarian clear cell carcinoma growth in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Cancer Chemother Pharmacol 88(1): 61-67, 2021. DOI: 10.1007/s00280-021-04261-x
    OpenUrlCrossRefPubMed
    1. Strekalova E,
    2. Malin D,
    3. Good DM,
    4. Cryns VL
    : Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21(12): 2780-2791, 2015. DOI: 10.1158/1078-0432.CCR-14-2792
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyaki M,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Higuchi T,
    11. Singh AS,
    12. Chmielowski B,
    13. Nelson SD,
    14. Russell TA,
    15. Eckardt MA,
    16. Dry SM,
    17. Li Y,
    18. Singh SR,
    19. Chawla SP,
    20. Eilber FC,
    21. Tsuchiya H,
    22. Hoffman RM
    : Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506(4): 912-917, 2018. DOI: 10.1016/j.bbrc.2018.10.119
    OpenUrlCrossRefPubMed
    1. Higuchi T,
    2. Kawaguchi K,
    3. Miyake K,
    4. Han Q,
    5. Tan Y,
    6. Oshiro H,
    7. Sugisawa N,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Chawla SP,
    16. Singh AS,
    17. Eilber FC,
    18. Singh SR,
    19. Tsuchiya H,
    20. Hoffman RM
    : Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10): 5639-5644, 2018. DOI: 10.21873/anticanres.12899
    OpenUrlAbstract/FREE Full Text
    1. Kim MJ,
    2. Han Q,
    3. Bouvet M,
    4. Hoffman RM,
    5. Park JH
    : Recombinant oral methioninase (o-rMETase) combined with oxaliplatinum plus 5-fluorouracil improves survival of mice with massive colon-cancer peritoneal carcinomatosis. Anticancer Res 43(1): 19-24, 2023. DOI: 10.21873/anticanres.16129
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Gainor E,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Higuchi T,
    11. Oshiro H,
    12. Singh AS,
    13. Eckardt MA,
    14. Nelson SD,
    15. Russell TA,
    16. Dry SM,
    17. Li Y,
    18. Yamamoto N,
    19. Hayashi K,
    20. Kimura H,
    21. Miwa S,
    22. Tsuchiya H,
    23. Eilber FC,
    24. Hoffman RM
    : Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 9(27): 19263-19272, 2018. DOI: 10.18632/oncotarget.24996
    OpenUrlCrossRefPubMed
    1. Tan Y,
    2. Sun X,
    3. Xu M,
    4. Tan X,
    5. Sasson A,
    6. Rashidi B,
    7. Han Q,
    8. Tan X,
    9. Wang X,
    10. An Z,
    11. Sun FX,
    12. Hoffman RM
    : Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5: 2157-2163, 1999.
    OpenUrlAbstract/FREE Full Text
    1. Yoshioka T,
    2. Wada T,
    3. Uchida N,
    4. Maki H,
    5. Yoshida H,
    6. Ide N,
    7. Kasai H,
    8. Hojo K,
    9. Shono K,
    10. Maekawa R,
    11. Yagi S,
    12. Hoffman RM,
    13. Sugita K
    : Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58: 2583-2587, 1998.
    OpenUrlAbstract/FREE Full Text
    1. Machover D,
    2. Zittoun J,
    3. Broët P,
    4. Metzger G,
    5. Orrico M,
    6. Goldschmidt E,
    7. Schilf A,
    8. Tonetti C,
    9. Tan Y,
    10. Delmas-Marsalet B,
    11. Luccioni C,
    12. Falissard B,
    13. Hoffman RM
    : Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem Pharmacol 61(7): 867-876, 2001. DOI: 10.1016/s0006-2952(01)00560-3
    OpenUrlCrossRefPubMed
  10. ↵
    1. Kokkinakis DM,
    2. Hoffman RM,
    3. Frenkel EP,
    4. Wick JB,
    5. Han Q,
    6. Xu M,
    7. Tan Y,
    8. Schold SC
    : Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61: 4017-4023, 2001.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Choobin BB,
    2. Kubota Y,
    3. Han Q,
    4. Ardjmand D,
    5. Morinaga S,
    6. Mizuta K,
    7. Bouvet M,
    8. Tsunoda T,
    9. Hoffman RM
    : Recombinant methioninase lowers the effective dose of regorafenib against colon-cancer cells: A strategy for widespread clinical use of a toxic drug. Cancer Diagn Progn 3(6): 655-659, 2023. DOI: 10.21873/cdp.10268
    OpenUrlCrossRefPubMed
  12. ↵
    1. Suetsugu A,
    2. Jiang P,
    3. Yang M,
    4. Yamamoto N,
    5. Moriwaki H,
    6. Saji S,
    7. Hoffman RM
    : The use of living cancer cells expressing green fluorescent protein in the nucleus and red fluorescence protein in the cytoplasm for real-time confocal imaging of chromosome and cytoplasmic dynamics during mitosis. Anticancer Res 35: 2553-2557, 2015.
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Yang M
    : Whole-body imaging with fluorescent proteins. Nat Protoc 1(3): 1429-1438, 2006. DOI: 10.1038/nprot.2006.223
    OpenUrlCrossRefPubMed
    1. Hoffman RM,
    2. Yang M
    : Subcellular imaging in the live mouse. Nat Protoc 1(2): 775-782, 2006. DOI: 10.1038/nprot.2006.109
    OpenUrlCrossRefPubMed
    1. Jiang P,
    2. Yamauchi K,
    3. Yang M,
    4. Tsuji K,
    5. Xu M,
    6. Maitra A,
    7. Bouvet M,
    8. Hoffman RM
    : Tumor cells genetically labeled with GFP in the nucleus and RFP in the cytoplasm for imaging cellular dynamics. Cell Cycle 5(11): 1198-1201, 2006. DOI: 10.4161/cc.5.11.2795
    OpenUrlCrossRefPubMed
    1. Hoffman RM,
    2. Yang M
    : Color-coded fluorescence imaging of tumor-host interactions. Nat Protoc 1(2): 928-935, 2006. DOI: 10.1038/nprot.2006.119
    OpenUrlCrossRefPubMed
  13. ↵
    1. Yamamoto N,
    2. Jiang P,
    3. Yang M,
    4. Xu M,
    5. Yamauchi K,
    6. Tsuchiya H,
    7. Tomita K,
    8. Wahl GM,
    9. Moossa AR,
    10. Hoffman RM
    : Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 64(12): 4251-4256, 2004. DOI: 10.1158/0008-5472.CAN-04-0643
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Tap WD,
    2. Wagner AJ,
    3. Schöffski P,
    4. Martin-Broto J,
    5. Krarup-Hansen A,
    6. Ganjoo KN,
    7. Yen CC,
    8. Abdul Razak AR,
    9. Spira A,
    10. Kawai A,
    11. Le Cesne A,
    12. Van Tine BA,
    13. Naito Y,
    14. Park SH,
    15. Fedenko A,
    16. Pápai Z,
    17. Soldatenkova V,
    18. Shahir A,
    19. Mo G,
    20. Wright J,
    21. Jones RL, ANNOUNCE Investigators
    : Effect of doxorubicin plus olaratumab vs. doxorubicin plus placebo on survival in patients with advanced soft tissue sarcomas: the ANNOUNCE randomized clinical trial. JAMA 323(13): 1266-1276, 2020. DOI: 10.1001/jama.2020.1707
    OpenUrlCrossRefPubMed
  15. ↵
    1. Kawai A,
    2. Araki N,
    3. Naito Y,
    4. Ozaki T,
    5. Sugiura H,
    6. Yazawa Y,
    7. Morioka H,
    8. Matsumine A,
    9. Saito K,
    10. Asami S,
    11. Isu K
    : Phase 2 study of eribulin in patients with previously treated advanced or metastatic soft tissue sarcoma. Jpn J Clin Oncol 47(2): 137-144, 2017. DOI: 10.1093/jjco/hyw175
    OpenUrlCrossRefPubMed
  16. ↵
    1. Hoffman RM
    : Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15(1): 21-31, 2015. DOI: 10.1517/14712598.2015.963050
    OpenUrlCrossRefPubMed
    1. Hoffman RM,
    2. Erbe RW
    : High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U.S.A. 73(5): 1523-1527, 1976. DOI: 10.1073/pnas.73.5.1523
    OpenUrlAbstract/FREE Full Text
    1. Wang Z,
    2. Yip LY,
    3. Lee JHJ,
    4. Wu Z,
    5. Chew HY,
    6. Chong PKW,
    7. Teo CC,
    8. Ang HY,
    9. Peh KLE,
    10. Yuan J,
    11. Ma S,
    12. Choo LSK,
    13. Basri N,
    14. Jiang X,
    15. Yu Q,
    16. Hillmer AM,
    17. Lim WT,
    18. Lim TKH,
    19. Takano A,
    20. Tan EH,
    21. Tan DSW,
    22. Ho YS,
    23. Lim B,
    24. Tam WL
    : Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 25(5): 825-837, 2019. DOI: 10.1038/s41591-019-0423-5
    OpenUrlCrossRefPubMed
  17. ↵
    1. Kaiser P
    : Methionine Dependence of Cancer. Biomolecules 10(4): 568, 2020. DOI: 10.3390/biom10040568
    OpenUrlCrossRefPubMed
  18. ↵
    1. Yano S,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Bouvet M,
    6. Fujiwara T,
    7. Hoffman RM
    : Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18): 8729-8736, 2014. DOI: 10.18632/oncotarget.2369
    OpenUrlCrossRefPubMed
  19. ↵
    1. Pokrovsky VS,
    2. Qoura LA,
    3. Demidova EA,
    4. Han Q,
    5. Hoffman RM
    : Targeting methionine addiction of cancer cells with methioninase. Biochemistry (Mosc) 88(7): 944-952, 2023. DOI: 10.1134/S0006297923070076
    OpenUrlCrossRefPubMed
  20. ↵
    1. Kubota Y,
    2. Han Q,
    3. Aoki Y,
    4. Masaki N,
    5. Obara K,
    6. Hamada K,
    7. Hozumi C,
    8. Wong ACW,
    9. Bouvet M,
    10. Tsunoda T,
    11. Hoffman RM
    : Synergy of combining methionine restriction and chemotherapy: the disruptive next generation of cancer treatment. Cancer Diagn Progn 3(3): 272-281, 2023. DOI: 10.21873/cdp.10212
    OpenUrlCrossRefPubMed
  21. ↵
    1. Hoffman RM,
    2. Jacobsen SJ
    : Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12): 7306-7310, 1980. DOI: 10.1073/pnas.77.12.7306
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Yamamoto J,
    2. Han Q,
    3. Inubushi S,
    4. Sugisawa N,
    5. Hamada K,
    6. Nishino H,
    7. Miyake K,
    8. Kumamoto T,
    9. Matsuyama R,
    10. Bouvet M,
    11. Endo I,
    12. Hoffman RM
    : Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochem Biophys Res Commun 533(4): 1034-1038, 2020. DOI: 10.1016/j.bbrc.2020.09.108
    OpenUrlCrossRefPubMed
  23. ↵
    1. Jain S,
    2. Vahdat LT
    : Eribulin mesylate. Clin Cancer Res 17(21): 6615-6622, 2011. DOI: 10.1158/1078-0432.CCR-11-1807
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Sampson VB,
    2. Vetter NS,
    3. Zhang W,
    4. Patil PU,
    5. Mason RW,
    6. George E,
    7. Gorlick R,
    8. Kolb EA
    : Integrating mechanisms of response and resistance against the tubulin binding agent Eribulin in preclinical models of osteosarcoma. Oncotarget 7(52): 86594-86607, 2016. DOI: 10.18632/oncotarget.13358
    OpenUrlCrossRefPubMed
  25. ↵
    1. Coalson DW,
    2. Mecham JO,
    3. Stern PH,
    4. Hoffman RM
    : Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci U S A 79(14): 4248-4251, 1982. DOI: 10.1073/pnas.79.14.4248
    OpenUrlAbstract/FREE Full Text
    1. Stern PH,
    2. Mecham JO,
    3. Wallace CD,
    4. Hoffman RM
    : Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine. J Cell Physiol 117(1): 9-14, 1983. DOI: 10.1002/jcp.1041170103
    OpenUrlCrossRefPubMed
    1. Stern PH,
    2. Hoffman RM
    : Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20(8): 663-670, 1984. DOI: 10.1007/BF02619617
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Han Q,
    3. Tome Y,
    4. Yamamoto J,
    5. Kubota Y,
    6. Masaki N,
    7. Obara K,
    8. Hamada K,
    9. Wang JD,
    10. Inubushi S,
    11. Bouvet M,
    12. Clarke SG,
    13. Nishida K,
    14. Hoffman RM
    : Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Front Oncol 12: 1009548, 2022. DOI: 10.3389/fonc.2022.1009548
    OpenUrlCrossRefPubMed
    1. Yamamoto J,
    2. Inubushi S,
    3. Han Q,
    4. Tashiro Y,
    5. Sugisawa N,
    6. Hamada K,
    7. Aoki Y,
    8. Miyake K,
    9. Matsuyama R,
    10. Bouvet M,
    11. Clarke SG,
    12. Endo I,
    13. Hoffman RM
    : Linkage of methionine addiction, histone lysine hypermethylation, and malignancy. iScience 25(4): 104162, 2022. DOI: 10.1016/j.isci.2022.104162
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Kubota Y,
    8. Bouvet M,
    9. Nishida K,
    10. Hoffman RM
    : Deletion of MTAP highly sensitizes osteosarcoma cells to methionine restriction with recombinant methioninase. Cancer Genomics Proteomics 19(3): 299-304, 2022. DOI: 10.21873/cgp.20321
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto J,
    2. Aoki Y,
    3. Inubushi S,
    4. Han Q,
    5. Hamada K,
    6. Tashiro Y,
    7. Miyake K,
    8. Matsuyama R,
    9. Bouvet M,
    10. Clarke SG,
    11. Endo I,
    12. Hoffman RM
    : Extent and instability of trimethylation of histone H3 lysine increases with degree of malignancy and methionine addiction. Cancer Genomics Proteomics 19(1): 12-18, 2022. DOI: 10.21873/cgp.20299
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Bouvet M,
    8. Nishida K,
    9. Hoffman RM
    : Histone H3 lysine-trimethylation markers are decreased by recombinant methioninase and increased by methotrexate at concentrations which inhibit methionine-addicted osteosarcoma cell proliferation. Biochem Biophys Rep 28: 101177, 2021. DOI: 10.1016/j.bbrep.2021.101177
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Yamamoto J,
    3. Tome Y,
    4. Hamada K,
    5. Masaki N,
    6. Inubushi S,
    7. Tashiro Y,
    8. Bouvet M,
    9. Endo I,
    10. Nishida K,
    11. Hoffman RM
    : Over-methylation of histone H3 lysines is a common molecular change among the three major types of soft-tissue sarcoma in patient-derived xenograft (PDX) mouse models. Cancer Genomics Proteomics 18(6): 715-721, 2021. DOI: 10.21873/cgp.20292
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Jacobsen SJ,
    3. Erbe RW
    : Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A 76(3): 1313-1317, 1979. DOI: 10.1073/pnas.76.3.1313
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Jacobsen SJ,
    3. Erbe RW
    : Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82(1): 228-234, 1978. DOI: 10.1016/0006-291x(78)90600-9
    OpenUrlCrossRefPubMed
  26. ↵
    1. Yamamoto J,
    2. Aoki Y,
    3. Han Q,
    4. Sugisawa N,
    5. Sun YU,
    6. Hamada K,
    7. Nishino H,
    8. Inubushi S,
    9. Miyake K,
    10. Matsuyama R,
    11. Bouvet M,
    12. Endo I,
    13. Hoffman RM
    : Reversion from methionine addiction to methionine independence results in loss of tumorigenic potential of highly-malignant lung-cancer cells. Anticancer Res 41(2): 641-643, 2021. DOI: 10.21873/anticanres.14815
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Kubota Y,
    2. Han Q,
    3. Morinaga S,
    4. Tsunoda T,
    5. Hoffman RM
    : Rapid reduction of CEA and stable metastasis in an NRAS-mutant rectal-cancer patient treated with FOLFIRI and bevacizumab combined with oral recombinant methioninase and a low-methionine diet upon metastatic recurrence after FOLFIRI and bevacizumab treatment alone. In Vivo 37(5): 2134-2138, 2023. DOI: 10.21873/invivo.13310
    OpenUrlAbstract/FREE Full Text
    1. Han Q,
    2. Hoffman RM
    : Chronic treatment of an advanced prostate-cancer patient with oral methioninase resulted in longterm stabilization of rapidly rising PSA levels. In Vivo 35(4): 2171-2176, 2021. DOI: 10.21873/invivo.12488
    OpenUrlAbstract/FREE Full Text
    1. Han Q,
    2. Hoffman RM
    : Lowering and stabilizing PSA levels in advanced-prostate cancer patients with oral methioninase. Anticancer Res 41(4): 1921-1926, 2021. DOI: 10.21873/anticanres.14958
    OpenUrlAbstract/FREE Full Text
    1. Han Q,
    2. Tan Y,
    3. Hoffman RM
    : Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res 40(5): 2813-2819, 2020. DOI: 10.21873/anticanres.14254
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto J,
    2. Han Q,
    3. Simon M,
    4. Thomas D,
    5. Hoffman RM
    : Methionine restriction: Ready for prime time in the cancer clinic? Anticancer Res 42(2): 641-644, 2022. DOI: 10.21873/anticanres.15521
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Kubota Y,
    2. Han Q,
    3. Hamada K,
    4. Aoki Y,
    5. Masaki N,
    6. Obara K,
    7. Tsunoda T,
    8. Hoffman RM
    : Long-term Stable Disease in a Rectal-cancer Patient Treated by Methionine Restriction With Oral Recombinant Methioninase and a Low-methionine Diet. Anticancer Res 42(8): 3857-3861, 2022. DOI: 10.21873/anticanres.15877
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Anticancer Research: 44 (3)
Anticancer Research
Vol. 44, Issue 3
March 2024
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Extensive Synergy Between Recombinant Methioninase and Eribulin Against Fibrosarcoma Cells But Not Normal Fibroblasts
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Extensive Synergy Between Recombinant Methioninase and Eribulin Against Fibrosarcoma Cells But Not Normal Fibroblasts
SEI MORINAGA, QINGHONG HAN, YUTARO KUBOTA, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, ROBERT M. HOFFMAN
Anticancer Research Mar 2024, 44 (3) 921-928; DOI: 10.21873/anticanres.16886

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Extensive Synergy Between Recombinant Methioninase and Eribulin Against Fibrosarcoma Cells But Not Normal Fibroblasts
SEI MORINAGA, QINGHONG HAN, YUTARO KUBOTA, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, ROBERT M. HOFFMAN
Anticancer Research Mar 2024, 44 (3) 921-928; DOI: 10.21873/anticanres.16886
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • HT1080 Human Fibrosarcoma Cells Selected for Super-eribulin Resistance In Vitro Become More Malignant and Are Arrested Synergistically by Methionine Restriction in Combination With Eribulin in Nude Mice
  • Synergistic Eradication of Fibrosarcoma With Acquired Ifosfamide Resistance Using Methionine Restriction Combined With Ifosfamide in Nude-mouse Models
  • Ivermectin Combined With Recombinant Methioninase (rMETase) Synergistically Eradicates MiaPaCa-2 Pancreatic Cancer Cells
  • Selective Synergy of Recombinant Methioninase Plus Docetaxel Against Docetaxel-resistant and -sensitive Fibrosarcoma Cells Compared to Normal Fibroblasts
  • Extensive DNA Damage and Loss of Cell Viability Occur Synergistically With the Combination of Recombinant Methioninase and Paclitaxel on Pancreatic Cancer Cells which Report DNA-Damage Response in Real Time
  • Recombinant Methioninase Synergistically Reverses High-docetaxel Resistance Developed in Osteosarcoma Cells
  • Recombinant Methioninase Increases Eribulin Efficacy 16-fold in Highly Eribulin-resistant HT1080 Fibrosarcoma Cells, Demonstrating Potential to Overcome the Clinical Challenge of Drug-resistant Soft-tissue Sarcoma
  • Overcoming High Trabectedin Resistance of Soft-tissue Sarcoma With Recombinant Methioninase: A Potential Solution of a Recalcitrant Clinical Problem
  • Recombinant Methioninase Is Selectively Synergistic With Doxorubicin Against Wild-type Fibrosarcoma Cells Compared to Normal Cells and Overcomes Highly-Doxorubicin-resistant Fibrosarcoma
  • DNA-Binding Agent Trabectedin Combined With Recombinant Methioninase Is Synergistic to Decrease Fibrosarcoma Cell Viability and Induce Nuclear Fragmentation But Not Synergistic on Normal Fibroblasts
  • Google Scholar

More in this TOC Section

  • Role of Platelet Interactions in Promoting Melanoma Malignancy With Insights into Proliferation, Cyclin D1 Expression, and Migration
  • Recombinant Methioninase and Cisplatinum Act Synergistically to Inhibit Lewis Lung Carcinoma Cells But Not Normal Fibroblasts
  • Light Bladder Net: Non-invasive Bladder Cancer Prediction by Weighted Deep Learning Approaches and Graphical Data Transformation
Show more Experimental Studies

Similar Articles

Keywords

  • Methioninase
  • eribulin
  • combination
  • synergy
  • fibrosarcoma
  • normal fibroblasts
  • in vitro
  • methionine addiction
  • Hoffman effect
  • methionine restriction
Anticancer Research

© 2025 Anticancer Research

Powered by HighWire