Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Review ArticleReview
Open Access

Role of the Hippo-YAP/TAZ Pathway in Epithelioid Hemangioendothelioma and its Potential as a Therapeutic Target

HIROTAKA SUTO
Anticancer Research October 2024, 44 (10) 4147-4153; DOI: https://doi.org/10.21873/anticanres.17245
HIROTAKA SUTO
Department of Medical Oncology, Hyogo Cancer Center, Hyogo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hirotaka.suto{at}hyogo-cc.jp
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Epithelioid hemangioendothelioma (EHE) is a rare malignant vascular tumor arising from vascular endothelial cells. This study delves into the molecular mechanisms underlying EHE, with a specific focus on the Hippo-YAP/TAZ pathway. EHE is characterized molecularly by transcriptional co-activator with a PDZ-motif (TAZ)-calmodulin binding transcription activator 1 (CAMTA1) or Yes-associated protein (YAP)-transcription factor E3 (TFE3) fusions. YAP/TAZ, a transcription co-activator, binds to transcription factors and regulates gene expression. The YAP/TAZ and its upstream Hippo pathway are involved in cell proliferation and cell contact inhibition, regulating organ size and carcinogenesis. In addition to oncogenic effects, dysfunction or gene duplication of the Hippo pathway results in a poor prognosis due to epithelial-mesenchymal transformation of epithelial cells, stem cell transformation, and increased drug resistance. Notably, the TAZ-CAMTA1 fusion is specific to EHE, and genetic alterations in the Hippo pathway other than this fusion gene are absent in EHE. The TAZ-CAMTA1 fusion is a promising therapeutic target. This review summarizes recent advances in EHE, focusing on the role of the Hippo-YAP/TAZ pathway in EHE and its potential as a therapeutic target for drug development.

Key Words:
  • Hippo-YAP/TAZ pathway
  • epithelioid hemangioendothelioma
  • therapeutic target
  • TEAD inhibitor
  • review

Epithelioid hemangioendothelioma (EHE) is a rare malignant vascular tumor arising from vascular endothelial cells (1). Weiss and Enzinger named it “epithelioid hemangioendothelioma” in 1982 due to its similarities with hemangiomas and angiosarcomas (2). EHE is a low-grade sarcoma that can occur anywhere in the body and metastasizes to the liver and lungs in more than 50% of cases (3, 4).

This unique sarcoma is characterized molecularly by transcriptional co-activator with a PDZ-motif (TAZ)-calmodulin binding transcription activator 1 (CAMTA1) or Yes-associated protein (YAP)-transcription factor E3 (TFE3) fusions (5, 6) (Figure 1 and Figure 2). YAP/TAZ, a transcription co-activator, binds to transcription factors and regulates gene expression. YAP/TAZ is phosphorylated and inactivated by the upstream Hippo pathway (7). The Hippo-YAP/TAZ pathway is involved in cell proliferation and cell contact inhibition and regulates organ size and carcinogenesis (8-10).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Schematic representation of wild-type TAZ, YAP, CAMTA1, and TFE3. TAZ: Transcriptional co-activator with a PDZ-motif; YAP: Yes-associated protein; CAMTA1: calmodulin binding transcription activator 1; TFE3: transcription factor E3; TEAD: transcriptional enhanced associated domain; WW: WW domain; TAD: transactivation domain; PDZ: postsynaptic density-95/Discs large/Zonula occludens 1; TIG: transcription-factor immunoglobulin domain; ANK: ankyrin repeats; IQ: IQ calmodulin-binding motifs; NLS: nuclear-localization signal; bHLH: basic helix–loop–helix domain; LZ: leucine-zipper domain.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Schematic of TAZ-CAMTA1 and YAP-TFE3 fusions. TAZ: Transcriptional co-activator with a PDZ-motif; CAMTA1: calmodulin binding transcription activator 1; YAP: Yes-associated protein; TFE3: transcription factor E3; TEAD: transcriptional enhanced associated domain; WW: WW domain; TAD: transactivation domain; TIG: transcription-factor immunoglobulin domain; ANK: ankyrin repeats; IQ: IQ calmodulin-binding motifs; NLS: nuclear-localization signal; bHLH: basic helix–loop–helix domain; LZ: leucine-zipper domain.

Nuclear translocation of YAP and its paralog, TAZ, occurs when the Hippo signal is disabled. YAP/TAZ interacts with the transcriptional enhanced associated domain (TEAD) family of transcription factors in the nucleus and functions as a transcriptional co-activator of TEAD, inducing TEAD-dependent genes involved in cellular survival and repair programs. Increased cell density activates a serine/threonine kinase cascade involving mammalian Ste20-like kinases (MST) 1/2 and large tumor suppressor kinases (LATS) 1/2, leading to YAP/TAZ activation (11-13).

In human cancers, Hippo pathway dysfunction or gene duplication results in increased activity, leading to poor prognosis due to increased epithelial-mesenchymal transition, stem cell transformation, and drug resistance, making it a novel therapeutic target (14-18). Loss of Hippo pathway activity or forced activation of YAP or TAZ has been shown to promote the formation and progression of sarcomas other than EHE (19, 20). Notably, the TAZ-CAMTA1 fusion is specific to EHE, and EHE lacks other genetic alterations in the Hippo pathway frequently observed in other malignancies.

In this review, we summarize recent advances, focusing on the role of the Hippo-YAP/TAZ pathway in EHE and drug development as a therapeutic target.

Etiology and Clinicopathological Features of EHE

Etiology. The incidence of EHE is extremely rare, at 0.038 per million persons per year (21). EHE occurs more frequently in women than in men, generally reaching its peak incidence around the age of 40 years (22).

Clinical features. The clinical course of EHE is less aggressive than angiosarcoma but more aggressive than hemangiomas. EHE is a malignant endothelioma that can occur anywhere in the body, with approximately 30% of cases occurring as pulmonary EHE (1, 22). Other reported sites of involvement include the liver (21%), liver and lung (18%), lung alone (12%), and bone alone (14%) (1). The clinical presentation and prognosis of EHE depend on the primary site. Primary lung and liver EHE often present as multifocal lesions, with two or more sites in the same organ. Common symptoms of pulmonary EHE include chest pain (29%), shortness of breath (16%), hemoptysis (13%), and cough (12%) (23). As hepatic EHE progresses, it may result in right upper quadrant pain, Budd-Chiari syndrome, portal hypertension, jaundice, or liver failure (24). Approximately 80% of hepatic EHE occurs as a multifocal disease (25). In contrast, soft-tissue EHEs metastasize at a rate of approximately 20% and are responsible for 17% of patient deaths (26).

Prognosis. The prognosis of EHE is variable, with some cases having an indolent clinical course and others being prone to metastasis. Risk factors for a worse prognosis include increased mitotic activity and tumor size. The 5-year disease-specific survival rate for 49 patients with EHE was 81%, while it was 59% for high-risk patients (>3 mitotic figures/50 high-power fields, and a size >3 cm) (27).

Morphology. EHE has a distinctive mucous-watery stroma with occasional hemorrhagic foci and epithelial cells arranged in chains, cords, or rigid nests, often with vitreous-like acidophilic cytoplasm with cytoplasmic vacuoles. Rarely, in EHE, tumor cells may form a cribriform pattern similar to invasive carcinoma, but typically, low mitotic activity and mild nuclear atypia are observed (1, 28). EHE associated with YAP1-TFE3 fusion consists of epithelioid tumor cells with more abundant bright eosinophilic cytoplasm, often forming a robust growth pattern. In contrast, EHE associated with TAZ-CAMTA1 fusion does not exhibit these features (6).

Immunohistochemistry. EHE consistently displays endothelial differentiation markers, such as CD31, ERG, CD34, and FLI-1 when examined using immunohistochemistry (29, 30). CD34 is expressed in more than 90% of vascular tumors and is relatively sensitive but not very specific for EHE. In contrast, CD31 is a more specific vascular tumor marker than CD34 (31). Therefore, CD31 is considered diagnostic for EHE. Approximately 30-50% of patients with EHE show focally positive epithelial markers (27, 32).

Hippo-YAP/TAZ Pathway

The primary function of the Hippo pathway is to limit organ growth by inhibiting proliferation and promoting apoptosis (9). In the mammalian Hippo pathway, MST1/2 regulates LATS1/2 via phosphorylation (33). Activated LATS1/2 then interacts with the transcriptional cofactors YAP or TAZ through their PPxY motif in the WW domain (34). This physical contact allows LATS1/2 to repress YAP and TAZ by phosphorylating multiple HXRXXS amino acid motifs (12, 35). Phosphorylation of these motifs promotes the inactivation of YAP and TAZ through translocation and degradation from the nucleus to the cytoplasm (Figure 3).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Schematic representation of the Hippo pathway. The left panel illustrates the activation of the Hippo pathway by phosphorylated MST1/2 and LATS1/2. Phosphorylated YAP/TAZ remains in the cytoplasm after binding to 14-3-3 proteins and/or undergoing polyubiquitination and proteolysis. The right panel represents the inactivation of the Hippo pathway, where YAP/TAZ translocates to the nucleus, allowing it to bind to transcriptional enhanced associated domain (TEAD) cofactors and activate transcription. The red X denotes that cell proliferation is inhibited when the Hippo signal is ‘ON’ and apoptosis is inhibited when the Hippo signal is ‘OFF’. MST: Mammalian Ste20-like kinases; LATS: larger tumor suppressor; SAV1: Sav family containing protein 1; MOB1: MOB kinase activator 1; P: phosphorylation; U: ubiquitin.

The nuclear active form of YAP, first discovered by Marius Sudol (36), and its paralog, TAZ, are thought to exert their tumorigenic function primarily through the TEAD transcription factor (37). Specifically, YAP and TAZ recruit transcriptional repressors by derepressing and activating TEAD transcription factors (38). In addition, YAP and TAZ can coordinately regulate other transcription factors, including the Smad family and Tbx5 (39, 40).

Studies in mammals have demonstrated that upstream growth suppressor Hippo proteins and growth-promoting Hippo transcriptional regulators act as potential tumor suppressors and oncogenes, respectively. TAZ is crucial in early embryonic development, organogenesis, determining organ size, and tissue repair (7, 10, 41). CAMTA1 encodes a transcription factor that acts as a tumor suppressor in neuroblastoma (42). This gene is primarily expressed in the human brain, with its functions largely remaining unclear. Research indicates CAMTA1’s involvement in memory and behavior (43, 44).

Aberrant activation of TAZ transcription and loss of the Hippo pathway contribute to the development and progression of many cancer types (10, 15, 45). Studies have shown that loss of Hippo pathway activity or aberrant activation of YAP or TAZ is also observed in sarcomas, promoting sarcoma formation and progression (20). However, among the genetic alterations in the Hippo-YAP/TAZ pathway, only EHE shows the WWTR1-CAMTA1 fusion. This indicates that EHE is more specific than other cancers and has the potential to be a valid therapeutic target.

Development of Targeted Therapies

As a promising therapeutic strategy, the precise targeting and inhibition of disease-specific fusion genes such as WWTR1-CAMTA1 and YAP-TFE3 are conceivable. However, this approach has not yet become feasible. Currently, the main method focuses on targeting the YAP/TAZ-TEAD interaction. The TAZ-CAMTA1 fusion protein acts as a transcriptional co-activator that interacts with the TEAD family of transcription factors, altering transcription dependent on TEAD activity. Thus, designing small molecules to inhibit the interaction between the TAZ-CAMTA1 fusion protein and TEAD can strongly suppress the transcriptional activity of the entire complex. Since the TAZ-CAMTA1 fusion protein largely mimics the action mechanism of YAP/TAZ, it can be inhibited using TEAD inhibitors or YAP/TAZ-TEAD inhibitors (46, 47).

TEAD Inhibitors

Their palmitoylation is necessary for the interaction between TEAD proteins and YAP or TAZ (48, 49). VT3989 is one of many small molecules designed to block the palmitoylation of TEAD, thereby inhibiting the interaction between YAP and TEAD necessary for transcriptional regulation. In a phase I trial (ClinicalTrials.gov ID: NCT04665206), the orally administered YAP-TEAD inhibitor VT3989 demonstrated safety, tolerability, and sustained antitumor effects in patients with advanced malignant mesothelioma and solid tumors harboring neurofibromatosis type 2 (NF2) mutations. These results were reported by Yap et al. from the MD Anderson Cancer Center at the American Association for Cancer Research Annual Meeting 2023, marking the first clinical trial results using small molecules targeting post-translational modifications necessary for YAP/TAZ-TEAD interaction. Additionally, Shen et al. reported that BPI-460372, which irreversibly inhibits TEAD palmitoylation through covalent binding, suppresses the expression of major YAP/TAZ-TEAD target genes such as CTGF and CYR61, as well as the TEAD reporter gene (ClinicalTrials.gov ID: NCT05789602). Similarly, clinical trials for the pan-TEAD inhibitor SW-682 are ongoing (ClinicalTrials.gov ID: NCT06251310). Ikena Oncology (Boston, MA, USA) developed IK-930, a tailor-made molecule specific to TEAD that is expected to enhance antitumor activity (ClinicalTrials.gov ID: NCT05228015). The orally administered YAP/TEAD inhibitor IAG933 inhibits the interaction of YAP and TEAD (50). Clinical trials are underway for tumors with dysregulated Hippo-YAP/TAZ-TEAD pathways, including mesothelioma, NF2, LATS1/2 mutant tumors, and functional YAP/TAZ fusion tumors (ClinicalTrials.gov ID: NCT04857372) (Table I).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

Current transcriptional enhanced associated domain (TEAD) inhibitors in clinical trials.

Conclusion

YAP/TAZ plays a crucial role as an oncogenic driver in tumor formation, including EHE. Generally, YAP/TAZ is considered challenging to target with drugs; therefore, therapeutic approaches focus on its cofactor TEAD, advancing drug development. Drugs targeting upstream factors, such as LATS1/2, as well as combination therapies, are expected to be further developed.

Acknowledgements

The Author would like to thank Editage (www.editage.com) for English language editing.

Footnotes

  • Conflicts of Interest

    The Author declares no conflicts of interest in relation to this study.

  • Funding

    This research received no external funding.

  • Received July 13, 2024.
  • Revision received July 31, 2024.
  • Accepted August 1, 2024.
  • Copyright © 2024 The Author(s). Published by the International Institute of Anticancer Research.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Sardaro A,
    2. Bardoscia L,
    3. Petruzzelli MF,
    4. Portaluri M
    : Epithelioid hemangioendothelioma: an overview and update on a rare vascular tumor. Oncol Rev 8(2): 259, 2014. DOI: 10.4081/oncol.2014.259
    OpenUrlCrossRefPubMed
  2. ↵
    1. Weiss SW,
    2. Enzinger FM
    : Epithelioid hemangioendothelioma a vascular tumor often mistaken for a carcinoma. Cancer 50(5): 970-981, 1982. DOI: 10.1002/1097-0142(19820901)50:5<970::aid-cncr2820500527>3.0.co;2-z
    OpenUrlCrossRefPubMed
  3. ↵
    1. Shiba S,
    2. Imaoka H,
    3. Shioji K,
    4. Suzuki E,
    5. Horiguchi S,
    6. Terashima T,
    7. Kojima Y,
    8. Okuno T,
    9. Sukawa Y,
    10. Tsuji K,
    11. Umemoto K,
    12. Asagi A,
    13. Todaka A,
    14. Ueno M,
    15. Ikeda M,
    16. Morizane C,
    17. Furuse J
    : Clinical characteristics of Japanese patients with epithelioid hemangioendothelioma: a multicenter retrospective study. BMC Cancer 18(1): 993, 2018. DOI: 10.1186/s12885-018-4934-0
    OpenUrlCrossRefPubMed
  4. ↵
    1. Rosenbaum E,
    2. Jadeja B,
    3. Xu B,
    4. Zhang L,
    5. Agaram NP,
    6. Travis W,
    7. Singer S,
    8. Tap WD,
    9. Antonescu CR
    : Prognostic stratification of clinical and molecular epithelioid hemangioendothelioma subsets. Mod Pathol 33(4): 591-602, 2020. DOI: 10.1038/s41379-019-0368-8
    OpenUrlCrossRefPubMed
  5. ↵
    1. Antonescu CR,
    2. Le Loarer F,
    3. Mosquera JM,
    4. Sboner A,
    5. Zhang L,
    6. Chen CL,
    7. Chen HW,
    8. Pathan N,
    9. Krausz T,
    10. Dickson BC,
    11. Weinreb I,
    12. Rubin MA,
    13. Hameed M,
    14. Fletcher CD
    : Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 52(8): 775-784, 2013. DOI: 10.1002/gcc.22073
    OpenUrlCrossRefPubMed
  6. ↵
    1. Errani C,
    2. Zhang L,
    3. Sung YS,
    4. Hajdu M,
    5. Singer S,
    6. Maki RG,
    7. Healey JH,
    8. Antonescu CR
    : A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 50(8): 644-653, 2011. DOI: 10.1002/gcc.20886
    OpenUrlCrossRefPubMed
  7. ↵
    1. Piccolo S,
    2. Dupont S,
    3. Cordenonsi M
    : The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev 94(4): 1287-1312, 2014. DOI: 10.1152/physrev.00005.2014
    OpenUrlCrossRefPubMed
  8. ↵
    1. Guo L,
    2. Teng L
    : YAP/TAZ for cancer therapy: Opportunities and challenges (Review). Int J Oncol 46(4): 1444-1452, 2015. DOI: 10.3892/ijo.2015.2877
    OpenUrlCrossRefPubMed
  9. ↵
    1. Harvey K,
    2. Tapon N
    : The Salvador–Warts–Hippo pathway – an emerging tumour-suppressor network. Nat Rev Cancer 7(3): 182-191, 2007. DOI: 10.1038/nrc2070
    OpenUrlCrossRefPubMed
  10. ↵
    1. Yu FX,
    2. Zhao B,
    3. Guan KL
    : Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4): 811-828, 2015. DOI: 10.1016/j.cell.2015.10.044
    OpenUrlCrossRefPubMed
  11. ↵
    1. Zhao B,
    2. Wei X,
    3. Li W,
    4. Udan RS,
    5. Yang Q,
    6. Kim J,
    7. Xie J,
    8. Ikenoue T,
    9. Yu J,
    10. Li L,
    11. Zheng P,
    12. Ye K,
    13. Chinnaiyan A,
    14. Halder G,
    15. Lai ZC,
    16. Guan KL
    : Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21): 2747-2761, 2007. DOI: 10.1101/gad.1602907
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Lei QY,
    2. Zhang H,
    3. Zhao B,
    4. Zha ZY,
    5. Bai F,
    6. Pei XH,
    7. Zhao S,
    8. Xiong Y,
    9. Guan KL
    : TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28(7): 2426-2436, 2008. DOI: 10.1128/MCB.01874-07
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Pan D
    : The hippo signaling pathway in development and cancer. Dev Cell 19(4): 491-505, 2010. DOI: 10.1016/j.devcel.2010.09.011
    OpenUrlCrossRefPubMed
  14. ↵
    1. Nishio M,
    2. Otsubo K,
    3. Maehama T,
    4. Mimori K,
    5. Suzuki A
    : Capturing the mammalian Hippo: elucidating its role in cancer. Cancer Sci 104(10): 1271-1277, 2013. DOI: 10.1111/cas.12227
    OpenUrlCrossRefPubMed
  15. ↵
    1. Zanconato F,
    2. Cordenonsi M,
    3. Piccolo S
    : YAP/TAZ at the roots of cancer. Cancer Cell 29(6): 783-803, 2016. DOI: 10.1016/j.ccell.2016.05.005
    OpenUrlCrossRefPubMed
    1. Kapoor A,
    2. Yao W,
    3. Ying H,
    4. Hua S,
    5. Liewen A,
    6. Wang Q,
    7. Zhong Y,
    8. Wu CJ,
    9. Sadanandam A,
    10. Hu B,
    11. Chang Q,
    12. Chu GC,
    13. Al-Khalil R,
    14. Jiang S,
    15. Xia H,
    16. Fletcher-Sananikone E,
    17. Lim C,
    18. Horwitz GI,
    19. Viale A,
    20. Pettazzoni P,
    21. Sanchez N,
    22. Wang H,
    23. Protopopov A,
    24. Zhang J,
    25. Heffernan T,
    26. Johnson RL,
    27. Chin L,
    28. Wang YA,
    29. Draetta G,
    30. DePinho RA
    : Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158(1): 185-197, 2014. DOI: 10.1016/j.cell.2014.06.003
    OpenUrlCrossRefPubMed
    1. Shao DD,
    2. Xue W,
    3. Krall EB,
    4. Bhutkar A,
    5. Piccioni F,
    6. Wang X,
    7. Schinzel AC,
    8. Sood S,
    9. Rosenbluh J,
    10. Kim JW,
    11. Zwang Y,
    12. Roberts TM,
    13. Root DE,
    14. Jacks T,
    15. Hahn WC
    : KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158(1): 171-184, 2014. DOI: 10.1016/j.cell.2014.06.004
    OpenUrlCrossRefPubMed
  16. ↵
    1. Lin L,
    2. Sabnis AJ,
    3. Chan E,
    4. Olivas V,
    5. Cade L,
    6. Pazarentzos E,
    7. Asthana S,
    8. Neel D,
    9. Yan JJ,
    10. Lu X,
    11. Pham L,
    12. Wang MM,
    13. Karachaliou N,
    14. Cao MG,
    15. Manzano JL,
    16. Ramirez JL,
    17. Torres JM,
    18. Buttitta F,
    19. Rudin CM,
    20. Collisson EA,
    21. Algazi A,
    22. Robinson E,
    23. Osman I,
    24. Muñoz-Couselo E,
    25. Cortes J,
    26. Frederick DT,
    27. Cooper ZA,
    28. McMahon M,
    29. Marchetti A,
    30. Rosell R,
    31. Flaherty KT,
    32. Wargo JA,
    33. Bivona TG
    : The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet 47(3): 250-256, 2015. DOI: 10.1038/ng.3218
    OpenUrlCrossRefPubMed
  17. ↵
    1. Ye S,
    2. Eisinger-Mathason TS
    : Targeting the Hippo pathway: Clinical implications and therapeutics. Pharmacol Res 103: 270-278, 2016. DOI: 10.1016/j.phrs.2015.11.025
    OpenUrlCrossRefPubMed
  18. ↵
    1. Mohamed AD,
    2. Tremblay AM,
    3. Murray GI,
    4. Wackerhage H
    : The Hippo signal transduction pathway in soft tissue sarcomas. Biochim Biophys Acta 1856(1): 121-129, 2015. DOI: 10.1016/j.bbcan.2015.05.006
    OpenUrlCrossRef
  19. ↵
    1. de Pinieux G,
    2. Karanian M,
    3. Le Loarer F,
    4. Le Guellec S,
    5. Chabaud S,
    6. Terrier P,
    7. Bouvier C,
    8. Batistella M,
    9. Neuville A,
    10. Robin YM,
    11. Emile JF,
    12. Moreau A,
    13. Larousserie F,
    14. Leroux A,
    15. Stock N,
    16. Lae M,
    17. Collin F,
    18. Weinbreck N,
    19. Aubert S,
    20. Mishellany F,
    21. Charon-Barra C,
    22. Croce S,
    23. Doucet L,
    24. Quintin-Rouet I,
    25. Chateau MC,
    26. Bazille C,
    27. Valo I,
    28. Chetaille B,
    29. Ortonne N,
    30. Brouchet A,
    31. Rochaix P,
    32. Demuret A,
    33. Ghnassia JP,
    34. Mescam L,
    35. Macagno N,
    36. Birtwisle-Peyrottes I,
    37. Delfour C,
    38. Angot E,
    39. Pommepuy I,
    40. Ranchere D,
    41. Chemin-Airiau C,
    42. Jean-Denis M,
    43. Fayet Y,
    44. Courrèges JB,
    45. Mesli N,
    46. Berchoud J,
    47. Toulmonde M,
    48. Italiano A,
    49. Le Cesne A,
    50. Penel N,
    51. Ducimetiere F,
    52. Gouin F,
    53. Coindre JM,
    54. Blay JY, NetSarc/RePPS/ResSos and French Sarcoma Group- Groupe d’Etude des Tumeurs Osseuses (GSF-GETO) networks
    : Nationwide incidence of sarcomas and connective tissue tumors of intermediate malignancy over four years using an expert pathology review network. PLoS One 16(2): e0246958, 2021. DOI: 10.1371/journal.pone.0246958
    OpenUrlCrossRefPubMed
  20. ↵
    1. Lau K,
    2. Massad M,
    3. Pollak C,
    4. Rubin C,
    5. Yeh J,
    6. Wang J,
    7. Edelman G,
    8. Yeh J,
    9. Prasad S,
    10. Weinberg G
    : Clinical patterns and outcome in epithelioid hemangioendothelioma with or without pulmonary involvement. Chest 140(5): 1312-1318, 2011. DOI: 10.1378/chest.11-0039
    OpenUrlCrossRefPubMed
  21. ↵
    1. Anderson T,
    2. Zhang L,
    3. Hameed M,
    4. Rusch V,
    5. Travis WD,
    6. Antonescu CR
    : Thoracic epithelioid malignant vascular tumors: a clinicopathologic study of 52 cases with emphasis on pathologic grading and molecular studies of WWTR1-CAMTA1 fusions. Am J Surg Pathol 39(1): 132-139, 2015. DOI: 10.1097/PAS.0000000000000346
    OpenUrlCrossRefPubMed
  22. ↵
    1. Makhlouf HR,
    2. Ishak KG,
    3. Goodman ZD
    : Epithelioid hemangioendothelioma of the liver: a clinicopathologic study of 137 cases. Cancer 85(3): 562-582, 1999. DOI: 10.1002/(sici)1097-0142(19990201)85:3<562::aid-cncr7>3.0.co;2-t
    OpenUrlCrossRefPubMed
  23. ↵
    1. Gan LU,
    2. Chang R,
    3. Jin H,
    4. Yang LI
    : Typical CT and MRI signs of hepatic epithelioid hemangioendothelioma. Oncol Lett 11(3): 1699-1706, 2016. DOI: 10.3892/ol.2016.4149
    OpenUrlCrossRefPubMed
  24. ↵
    1. Mentzel T,
    2. Beham A,
    3. Calonje E,
    4. Katenkamp D,
    5. Fletcher CD
    : Epithelioid hemangioendothelioma of skin and soft tissues: Clinicopathologic and immunohistochemical study of 30 cases. Am J Surg Pathol 21(4): 363-374, 1997. DOI: 10.1097/00000478-199704000-00001
    OpenUrlCrossRefPubMed
  25. ↵
    1. Deyrup AT,
    2. Tighiouart M,
    3. Montag AG,
    4. Weiss SW
    : Epithelioid hemangioendothelioma of soft tissue: a proposal for risk stratification based on 49 cases. Am J Surg Pathol 32(6): 924-927, 2008. DOI: 10.1097/pas.0b013e31815bf8e6
    OpenUrlCrossRefPubMed
  26. ↵
    1. Flucke U,
    2. Vogels RJ,
    3. de Saint Aubain Somerhausen N,
    4. Creytens DH,
    5. Riedl RG,
    6. van Gorp JM,
    7. Milne AN,
    8. Huysentruyt CJ,
    9. Verdijk MA,
    10. van Asseldonk MM,
    11. Suurmeijer AJ,
    12. Bras J,
    13. Palmedo G,
    14. Groenen PJ,
    15. Mentzel T
    : Epithelioid Hemangioendothelioma: clinicopathologic, immunhistochemical, and molecular genetic analysis of 39 cases. Diagn Pathol 9: 131, 2014. DOI: 10.1186/1746-1596-9-131
    OpenUrlCrossRefPubMed
  27. ↵
    1. Folpe AL,
    2. Chand EM,
    3. Goldblum JR,
    4. Weiss SW
    : Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol 25(8): 1061-1066, 2001. DOI: 10.1097/00000478-200108000-00011
    OpenUrlCrossRefPubMed
  28. ↵
    1. Rossi S,
    2. Orvieto E,
    3. Furlanetto A,
    4. Laurino L,
    5. Ninfo V,
    6. Dei Tos AP
    : Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol 17(5): 547-552, 2004. DOI: 10.1038/modpathol.3800065
    OpenUrlCrossRefPubMed
  29. ↵
    1. Gill R,
    2. O’Donnell RJ,
    3. Horvai A
    : Utility of immunohistochemistry for endothelial markers in distinguishing epithelioid hemangioendothelioma from carcinoma metastatic to bone. Arch Pathol Lab Med 133(6): 967-972, 2009. DOI: 10.5858/133.6.967
    OpenUrlCrossRefPubMed
  30. ↵
    1. Miettinen M,
    2. Fetsch JF
    : Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: Implications in tumor diagnosis. Hum Pathol 31(9): 1062-1067, 2000. DOI: 10.1053/hupa.2000.9843
    OpenUrlCrossRefPubMed
  31. ↵
    1. Avruch J,
    2. Zhou D,
    3. Fitamant J,
    4. Bardeesy N,
    5. Mou F,
    6. Barrufet LR
    : Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23(7): 770-784, 2012. DOI: 10.1016/j.semcdb.2012.07.002
    OpenUrlCrossRefPubMed
  32. ↵
    1. Oka T,
    2. Mazack V,
    3. Sudol M
    : Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem 283(41): 27534-27546, 2008. DOI: 10.1074/jbc.M804380200
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Zhao B,
    2. Li L,
    3. Tumaneng K,
    4. Wang CY,
    5. Guan KL
    : A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24(1): 72-85, 2010. DOI: 10.1101/gad.1843810
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Sudol M,
    2. Bork P,
    3. Einbond A,
    4. Kastury K,
    5. Druck T,
    6. Negrini M,
    7. Huebner K,
    8. Lehman D
    : Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem 270(24): 14733-14741, 1995. DOI: 10.1074/jbc.270.24.14733
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Zhao B,
    2. Ye X,
    3. Yu J,
    4. Li L,
    5. Li W,
    6. Li S,
    7. Yu J,
    8. Lin JD,
    9. Wang CY,
    10. Chinnaiyan AM,
    11. Lai ZC,
    12. Guan KL
    : TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14): 1962-1971, 2008. DOI: 10.1101/gad.1664408
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Koontz LM,
    2. Liu-Chittenden Y,
    3. Yin F,
    4. Zheng Y,
    5. Yu J,
    6. Huang B,
    7. Chen Q,
    8. Wu S,
    9. Pan D
    : The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 25(4): 388-401, 2013. DOI: 10.1016/j.devcel.2013.04.021
    OpenUrlCrossRefPubMed
  37. ↵
    1. Aragón E,
    2. Goerner N,
    3. Zaromytidou AI,
    4. Xi Q,
    5. Escobedo A,
    6. Massagué J,
    7. Macias MJ
    : A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev 25(12): 1275-1288, 2011. DOI: 10.1101/gad.2060811
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Murakami M,
    2. Nakagawa M,
    3. Olson EN,
    4. Nakagawa O
    : A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA 102(50): 18034-18039, 2005. DOI: 10.1073/pnas.0509109102
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Varelas X
    : The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141(8): 1614-1626, 2014. DOI: 10.1242/dev.102376
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Henrich KO,
    2. Fischer M,
    3. Mertens D,
    4. Benner A,
    5. Wiedemeyer R,
    6. Brors B,
    7. Oberthuer A,
    8. Berthold F,
    9. Wei JS,
    10. Khan J,
    11. Schwab M,
    12. Westermann F
    : Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 12(1): 131-138, 2006. DOI: 10.1158/1078-0432.CCR-05-1431
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Huentelman MJ,
    2. Papassotiropoulos A,
    3. Craig DW,
    4. Hoerndli FJ,
    5. Pearson JV,
    6. Huynh KD,
    7. Corneveaux J,
    8. Hänggi J,
    9. Mondadori CR,
    10. Buchmann A,
    11. Reiman EM,
    12. Henke K,
    13. de Quervain DJ,
    14. Stephan DA
    : Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum Mol Genet 16(12): 1469-1477, 2007. DOI: 10.1093/hmg/ddm097
    OpenUrlCrossRefPubMed
  42. ↵
    1. Shinawi M,
    2. Coorg R,
    3. Shimony JS,
    4. Grange DK,
    5. Al-Kateb H
    : Intragenic CAMTA1 deletions are associated with a spectrum of neurobehavioral phenotypes. Clin Genet 87(5): 478-482, 2015. DOI: 10.1111/cge.12407
    OpenUrlCrossRefPubMed
  43. ↵
    1. Warren JSA,
    2. Xiao Y,
    3. Lamar JM
    : YAP/TAZ activation as a target for treating metastatic cancer. Cancers (Basel) 10(4): 115, 2018. DOI: 10.3390/cancers10040115
    OpenUrlCrossRefPubMed
  44. ↵
    1. Merritt N,
    2. Garcia K,
    3. Rajendran D,
    4. Lin ZY,
    5. Zhang X,
    6. Mitchell KA,
    7. Borcherding N,
    8. Fullenkamp C,
    9. Chimenti MS,
    10. Gingras AC,
    11. Harvey KF,
    12. Tanas MR
    : TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. Elife 10: e62857, 2021. DOI: 10.7554/eLife.62857
    OpenUrlCrossRefPubMed
  45. ↵
    1. Seavey CN,
    2. Pobbati AV,
    3. Hallett A,
    4. Ma S,
    5. Reynolds JP,
    6. Kanai R,
    7. Lamar JM,
    8. Rubin BP
    : WWTR1(TAZ)-CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev 35(7-8): 512-527, 2021. DOI: 10.1101/gad.348220.120
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Noland CL,
    2. Gierke S,
    3. Schnier PD,
    4. Murray J,
    5. Sandoval WN,
    6. Sagolla M,
    7. Dey A,
    8. Hannoush RN,
    9. Fairbrother WJ,
    10. Cunningham CN
    : Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24(1): 179-186, 2016. DOI: 10.1016/j.str.2015.11.005
    OpenUrlCrossRefPubMed
  47. ↵
    1. Chan P,
    2. Han X,
    3. Zheng B,
    4. DeRan M,
    5. Yu J,
    6. Jarugumilli GK,
    7. Deng H,
    8. Pan D,
    9. Luo X,
    10. Wu X
    : Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat Chem Biol 12(4): 282-289, 2016. DOI: 10.1038/nchembio.2036
    OpenUrlCrossRefPubMed
  48. ↵
    1. Chapeau EA,
    2. Sansregret L,
    3. Galli GG,
    4. Chène P,
    5. Wartmann M,
    6. Mourikis TP,
    7. Jaaks P,
    8. Baltschukat S,
    9. Barbosa IAM,
    10. Bauer D,
    11. Brachmann SM,
    12. Delaunay C,
    13. Estadieu C,
    14. Faris JE,
    15. Furet P,
    16. Harlfinger S,
    17. Hueber A,
    18. Jiménez Núñez E,
    19. Kodack DP,
    20. Mandon E,
    21. Martin T,
    22. Mesrouze Y,
    23. Romanet V,
    24. Scheufler C,
    25. Sellner H,
    26. Stamm C,
    27. Sterker D,
    28. Tordella L,
    29. Hofmann F,
    30. Soldermann N,
    31. Schmelzle T
    : Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. Nat Cancer 5(7): 1102-1120, 2024. DOI: 10.1038/s43018-024-00754-9
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Anticancer Research: 44 (10)
Anticancer Research
Vol. 44, Issue 10
October 2024
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Role of the Hippo-YAP/TAZ Pathway in Epithelioid Hemangioendothelioma and its Potential as a Therapeutic Target
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 17 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Role of the Hippo-YAP/TAZ Pathway in Epithelioid Hemangioendothelioma and its Potential as a Therapeutic Target
HIROTAKA SUTO
Anticancer Research Oct 2024, 44 (10) 4147-4153; DOI: 10.21873/anticanres.17245

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Role of the Hippo-YAP/TAZ Pathway in Epithelioid Hemangioendothelioma and its Potential as a Therapeutic Target
HIROTAKA SUTO
Anticancer Research Oct 2024, 44 (10) 4147-4153; DOI: 10.21873/anticanres.17245
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Etiology and Clinicopathological Features of EHE
    • Hippo-YAP/TAZ Pathway
    • Development of Targeted Therapies
    • TEAD Inhibitors
    • Conclusion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Effects of YAP Inhibitors and Activators on the Growth of Leukemia Cells
  • Google Scholar

More in this TOC Section

  • Management of Bladder Cancer During Pregnancy: A Narrative Review
  • Mendelian Randomization Studies on Actinic Keratosis
  • Clinical Applications of Artificial Intelligence in Uveal Melanoma
Show more Review

Similar Articles

Keywords

  • Hippo-YAP/TAZ pathway
  • epithelioid hemangioendothelioma
  • therapeutic target
  • TEAD inhibitor
  • review
Anticancer Research

© 2025 Anticancer Research

Powered by HighWire