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Abstract. The growing incidence of prostate cancer has
prompted a great investment in basic biology and translational
studies to develop new therapies. Multiple animal models have

been established to study etiological factors, cancer-preventive
strategies and the molecular determinants of aggressiveness
and metastases. The rat model of prostate cancer induced by
chemical carcinogen N-methyl-N-nitrosourea (MNU) and
testosterone exposure has become an important tool to study
prostatic carcinogenesis and chemopreventive approaches.
Over prolonged treatment, this model develops prostatic
lesions that closely mimic those observed in human patients.
By modifying the experimental conditions, different research
groups have been able to induce a vast spectrum of lesions,
ranging from early prostatic intraepithelial neoplasia to
metastatic cancer. These carefully tuned experimental settings
allowed researchers to test lifestyle interventions, and different
pharmacological and chemopreventive strategies. However,
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this model's great flexibility requires careful planning to
ensure that the experimental conditions are adequate to obtain
the spectrum of lesions intended. The present review addresses
such issues, highlighting the value of the rat prostate cancer
model and the multiple challenges and opportunities it offers
to researchers worldwide.

Prostate cancer (PCa) is among the most prevalent cancers
worldwide. In 2020, it was estimated to affect 1.4 million men
and to have caused 375,304 deaths worldwide, according to the
latest World Health Organization report (1). To understand the
complex biopathology of PCa, and therefore be able to
rationally develop preventive and therapeutic strategies, it is
necessary to use animal models as well as alternative non-
animal models (e.g., in vitro). There are several in vivo models
available for the study of PCa, as previously reviewed by our
group and others (2-8). However, these models have to be
validated, considering that some of them may be more useful
to evaluate specific aspects of the disease while other models
may be suited for other purposes. 
Among the animal models available for the study of PCa,

chemically and/or hormonally-induced rat models are
widely used in chemopreventive studies (4, 7, 9). However,
before choosing the model, it is important to take into
consideration that the rat prostate is composed for four lobes
with different histological characteristics and physiological
functions. These lobes are named according to their relative
position to the urinary bladder: ventral, dorsal, lateral, and
anterior (also classified as the coagulating gland) (5, 6, 10).
The human prostate is anatomically different from its rat
counterpart, consisting of a compact encapsulated gland,
pyramid-shaped, with a fibromuscular stroma, located
between the urinary bladder and the rectum (11). Therefore,
these anatomical differences must be taken into
consideration when using rats to study PCa (4), particularly
at the time of sample collection, after the animals’ sacrifice.
Although some authors consider dorsal and lateral prostate
lobes homologous to human prostate, it remains a
controversial issue (12).
N-nitrosobis-(2-oxopropyl)-amine (BOP), 3,2-dimethyl-4-

aminobiphenyl (DMAB), 2-amino-1-methyl-6-phenylimidazol
[4,5-b]pyridine (PhiP) and N-Methyl-N-nitrosourea (MNU) are
the four chemical compounds described in literature to induce
PCa in laboratory rats (4). BOP belongs to the family of
nitrosamines and induces tumors not only in the prostate, but
also in the nasal cavity, colorectum and urothelium in rats
(13-15). Due to this, BOP is not the most suitable to promote
PCa, because inducing tumors in so many organs will create
confusion in the interpretation of the results, particularly in
those from body fluids analysis. Testosterone treatment may
be used in combination with BOP and has been reported to
induce the development of adenocarcinomas and squamous
cell carcinomas in the dorsolateral and ventral prostate in

MRC rats (16). The aforementioned problems associated
with BOP are not overcome with the use of this carcinogen.
The DMAB is classified as a polycyclic aromatic
hydrocarbon with multi-organ tropism, inducing tumors in
the colon, urinary bladder, pancreas, prostate, mammary
glands, preputial glands, seminal vesicles, and Zymbal
glands (6, 17). Chronic administration of high doses of
testosterone through subcutaneous implants in combination
with DMAB may be used to promote tumor development
(16). This combination was reported to produce a high
incidence of invasive adenocarcinomas in the dorsolateral
and anterior prostate lobes, but not in the ventral prostate in
F344 rats (18). The tumors developed by the administration
of DMBA plus testosterone are histologically and
biologically indistinguishable from those induced by MNU
in combination with testosterone (6). PhIP is a heterocyclic
amine and may be metabolized to biologically active
metabolites (N-hydroxy-PhIP and N-acetoxy-PhIP) that form
DNA adducts (19). Shirai and colleagues exposed F344 rats
to PhIP, at a dose of 400 ppm mixed in the diet, for 52 weeks
(20) and reported the development of adenocarcinomas in the
ventral prostatic lobe, histopathologically identical to those
induced by DMAB. MNU does not require metabolic
activation, being a direct-acting alkylating agent that
methylates guanines. This carcinogenic agent may induce
tumors in various organs, such as the breast, colon, urinary
bladder, retina, and prostate (4, 21), but organ specificity
depends on the animals’ age and sex, and the dose and route
of administration. Pollard and colleagues developed a
method to induced prostate cancer in Lobund-Wistar rats
through the administration of MNU associated with
hormonal treatment (22, 23). This protocol induced
adenocarcinomas and atypical hyperplastic lesions in the
ventral, dorsolateral, and anterior prostate. Later, Marteen C.
Bosland developed a chemical carcinogen plus testosterone
rat model of prostate carcinogenesis that resembles human
PCa in several aspects and became the most widely used
animal model (7, 24). First, rats are treated daily with an
antiandrogen, such as flutamide or cyproterone acetate, to
inhibit prostate epithelial cell proliferation, followed by the
administration of testosterone propionate to induce a
synchronous cell proliferation peak. Following this step, a
single intraperitoneal MNU injection is given, targeting the
proliferating cell population. Finally, the rats receive low-
dose testosterone via slow-release silastic implants until the
end of experiment to sustain tumor development. This long
multistep protocol was reported to induce a high incidence
of adenocarcinomas in the rat dorsolateral prostate, 12-13
months after MNU administration (24-26). Considering the
wide use of the Bosland rat model for PCa chemoprevention
studies, the present work aimed to critically evaluate this
animal model of cancer, appraising tumor incidence, location,
and histological characteristics.
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The Follow up of the Boslands’ 
Prostate Cancer Model 

As mentioned above, careful modulation of the experimental
conditions allows researchers to study a different spectrum
of prostatic lesions using variations of the Boslands’ rat
model. Our group performed an experimental animal
protocol with two different timepoints of animals’ sacrifice:
4.5 or 10.6 months after MNU administration to understand
the spectrum of dorsolateral prostate lesions induced. To
achieve this goal, we used male Wistar Unilever rats (Rattus
norvegicus) at 12 weeks of age, based on the original
Bosland protocol (7, 25)  (Figure 1). 
Shortly, the anti-androgenic drug flutamide (50 mg/kg;

TCI Chemicals, Portland, OR, USA) was administered
subcutaneously for 21 consecutive days. Twenty-four hours
after the last flutamide administration, testosterone
propionate (TCI Chemicals) was dissolved in corn oil and
administered subcutaneously (100 mg/kg). Two days later,
the rats were intraperitoneally injected with MNU (30
mg/kg; Isopac®, Sigma Chemical Co., Madrid, Spain). Two
weeks later, testosterone implants were subcutaneously
implanted in the interscapular region of animals and
maintained until the end of the experimental protocol. For
testosterone implantation, the animals were anesthetized
with ketamine (75 mg/kg, Imalgene® 1000, Merial S.A.S.,
Lyon, France) and xylazine (10 mg/kg, Rompun® 2%,
Bayer Healthcare S.A., Kiel, Germany). The testosterone
implants were made from silastic tubing, sealed with G.E.
RTV-108 adhesive sealant, filled with 3 cm tightly packed
crystalline testosterone (Sigma Chemical, Madrid, Spain)
with the aid of a small spatula and sealed with a clip
previously sterilized in an autoclave. The implants were
weighed to ensure that all tubes had the same amount of
testosterone. The tubes were always kept upright, and the
sealant was placed on the tube ends after they were
completely filled. These silastic tubes remained in the
induced animals until the end of the experimental protocol.
The biggest difficulty associated with this induction
protocol was the preparation of the flutamide, because it
precipitates after preparation, even in the needle, thus it is
necessary to be in constant agitation, not only during the
preparation but also in the syringe. 

Using this experimental protocol, no macroscopic prostate
lesions nor metastases were observed in any experimental
group in either the first or the second timepoint. Prostatic
lesions were observed in the first sacrifice, including: low-
grade dysplastic lesions (40% of animals), prostatic
intraepithelial neoplasia (PIN) (20% of animals), and
microinvasive carcinomas (10% of animals) in the
dorsolateral prostate. As expected, a significantly higher
number of dorsolateral prostate lesions were observed at 61
weeks of age, with dysplasia occurring in 85.7% of animals,
and PIN and microinvasive carcinomas in 64.3% of animals.
The animals of the second sacrifice were exposed to the
implants for 44 weeks whereas the animals sacrificed first
were only exposed for 18 weeks. This is in agreement with
other studies and demonstrated that the longer the exposure
to testosterone by slow-release implants, the greater the
number of lesions (24, 26). It is worth noting that control rats
sacrificed at 61 weeks-old also developed lesions, although
at a much lower frequency than those observed in treated
rats. These spontaneous lesions observed in the control group
may be explained by the animals’ advanced age and seemed
to mimic what happens in older men (27, 28), who are more
susceptible to alterations and prostate lesions development.
Therefore, age matters in both men and rats.  
However, contrary to what is described in other studies

(24, 29-31), our animals did not develop macroscopic lesions
in the dorsolateral prostate lobes, nor metastases. In a
detailed review about this chemical and hormonally rat
model of PCa, Bosland et al. reported that neoplastic
development requires at least eight to nine months (and more
commonly, 12-13 months) after the MNU injection (24). In
our first sacrifice, animals were sacrificed 4.5 months after
the MNU injection, what was probably an insufficient period
for the development of large malignant lesions and
metastases. In the second experiment, animals were
euthanized 10.6 months after MNU injection, logically
increasing the incidence of microinvasive lesions.  
The dorsolateral prostate also showed acute inflammation

of the acini, focal necrosis, and reactive hyperplasia, with
small focal areas of chronic stromal inflammation. Focal
chronic inflammation with stromal fibrosis and mononucleated
cell infiltration was identified in all groups. Inflammation was
also frequently reported by other studies (32, 33) and reported
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Figure 1. Prostate cancer induction protocol.



as more common and severe in the dorsolateral prostate as
observed by our research team. All groups also developed
acute serous or purulent inflammation in the dorsolateral
prostate acini. The most extensive and severe inflammation
foci were observed at the second timepoint. These findings
highlight the usefulness of this model to study the role of
chronic inflammation in prostatic carcinogenesis. Curiously,
no changes in the levels of circulating inflammatory markers
(e.g., C-reactive protein, albumin, interleukin-6) were
observed in this model, which may be justified by the anti-
inflammatory role of testosterone. Indeed, the serum levels of
testosterone and 17beta-estradiol were approximately 30 times
higher in PCa rats compared to control ones.
Liver histological analysis did not reveal significant

alterations promoted by the administration of flutamide,
testosterone and MNU, and these data were corroborated by
serum biochemistry results, with no significant changes in the
levels of hepatic functions parameters, such as alanine
aminotransferase. However, as this model was dependent on
testosterone, the serum levels of this hormone were high in PCa
animals, compared to the control animals (as mentioned above).

Appraising Animal Welfare in the Rat 
Model of Prostate Cancer

Animal models of cancer are prone to develop severe pain,
weight loss and other distressing conditions. These
conditions must be adequately monitored and controlled by
the research team, potentially imposing a premature animals’
sacrifice to avoid further suffering, or in some cases, to avoid
biasing results (34). It is therefore important to appraise rats’
health status, especially due to the long time course of the
experiments. 
During our protocols, we observed that rats displayed a

normal mental status, normal eyes aspect, ears and whiskers
position, response to handling, breathing and hydration
status. Despite this, we noted that rats with PCa were less
active when compared with matched controls, especially
towards the end of the experimental protocol. No animals
died during the experiment and there was no need to
sacrifice any rat before the end of the protocol. Thus,
contrary to what is observed in other cancer models, this
model does not induce animals’ suffering. 

Discussion

Presently, there is a growing amount of animal models to
study PCa. However, most of these are mouse models,
including xenografts carrying PCa cell lines (35) or tissues
transplanted from PCa patients (36), syngeneic cell-based
models (37), or genetically-modified mouse strains [e.g.,
employing the probasin gene promoter to target oncogene
expression to the prostate (38)]. The rat model of prostate

cancer presents considerable advantages to study the multi-
step development of prostate cancer induced by factors
known to be involved in human prostatic carcinogenesis,
such as androgen stimulation, chemical carcinogens
exposition, and to evaluate the effects of chemopreventive
agents and lifestyle interventions. Furthermore, this model
may be very promising to study the role of chronic prostatic
inflammation in tumorigenesis and tumor progression.
Inflammation is one of the hallmarks of cancer, and several
studies have implicated chronic inflammation in the
occurrence and progression of PCa  (39, 40). However,
downsides of this model include the long time required to
induce cancer and the limited molecular data available,
compared with other PCa rodents' models (36). 
The rat model of PCa has been mainly used to identify

substances that could prevent PCa development and test their
chemopreventive properties (29, 41-50). In most  published
studies concerning the model of PCa induced by MNU and
testosterone, animal body weight variation and the incidence
of histological prostatic lesions are the most analyzed
variables (29, 41-50). However, other variables must be
collected and analyzed to draw more information from
induced rats, namely, water and food consumption, relative
organs’ weight, blood serum concentration (hematological
and biochemical), and histopathological analysis. Our group
also performed the first follow-up study of the rat's prostatic
dimensions using ultrasonography (51). This monitorization
allowed a detailed study of the rat prostate and the
monitoring of prostate size during PCa induction or normal
animal growth (51). The follow-up of aspects related to
animal welfare are of paramount importance for in vivo
experiments. While this has been attempted by our team, a
more systematic characterization, especially at more
prolonged timepoints, remains missing. Taken together, these
approaches will contribute to the addition of layers of
complexity to this valuable research tool and direct future
investigations.

Conclusion

The Boslands’ rat model of PCa is robust, reproducible and
allows researchers to study multi-step prostate lesions over
time. This has been particularly useful for testing potential
chemopreventive approaches. We suggest that further
refinement will require a more detailed knowledge of the
timeline of prostate lesions development at earlier
timepoints and establishing the genomic, transcriptomic, and
DNA methylation profile of each kind of lesion. This
approach may potentially help elucidating the molecular
determinants that underpin highly aggressive metastatic,
castration-resistant PCa and the development of prostate
small-cell carcinomas. This rat model is also useful for
elucidating the role of prostate inflammation at the various
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stages of prostatic carcinogenesis. Finally, this model holds
promise for the development of liquid biopsies from blood
and urine to try to validate markers of prostatic lesions at
an early stage.
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