
Abstract. Esophageal cancer is of two subtypes: Esophageal
adenocarcinoma and esophageal squamous cell carcinoma
(ESCC). Both are associated with a dismal prognosis.
Therefore, the identification of new targets and treatment
modalities is an issue of paramount importance. In this review,
we focus on long non-coding RNAs (lncRNAs) which have been
shown to mediate efficacy in preclinical in vivo models of ESCC
by sponging microRNAs. Searching the literature, we identified
four lncRNAs which were down-regulated and 23 which were
up-regulated in comparison to corresponding normal tissues.
The down-regulated lncRNAs lead to up-regulation of
oncogenic pathways and down-regulation of tumor suppressors.
The up-regulated lncRNAs target transcription factors,
transmembrane receptors, cell-cycle related proteins, actin-
binding proteins, signaling pathways, enzymes including
epigenetic modification factors, cellular transport proteins and
other categories. We describe reconstitution and inhibition of
function of the corresponding lncRNAs and comment on
validation and druggability of the identified targets.

Esophageal cancer is the seventh most common cancer with 
570,000 new cases worldwide (1). Two major subtypes have
been identified: esophageal squamous cell carcinoma (ESCC),
esophageal adeno-carcinoma (EAC). Gastroesophageal cancer

at the junction between esophagus and stomach is a special
cancer entity (2). ESCC originates from esophageal squamous
epithelium, whilst EAC is derived from glandular cells of the
esophagus (2). ESCC is the predominant subtype in Southern
Asia and Africa, whereas EAC is the most frequent subtype in
Europe and Northern America (3). Esophageal cancer is treated
by endoscopic resection, surgery, chemotherapy, radiotherapy,
and chemo-radiotherapy (4-6). Nevertheless, the overall 5-year
survival rate only reaches from 15 to 25% (7). In addition to 5-
fluorouracil, capecitabine (Xeloda) and irinotecan, pembro-
lizumab (anti-programmed death 1) and nivolumab (anti-
cytotoxic T-lymphocyte-associated protein 4) have been
approved for treatment of esophageal cancer (8, 9). In addition,
drugs interfering with the epidermal growth factor (EGFR),
vascular endothelial growth factor/receptor (VEGF/VEGFR),
hepatocyte growth factor (HGF)/c-MET and NOTCH signaling,
histone deacetylase and histone acetyltransferases, DNA
methyltransferase, histone modification and immunotherapy-
related targets are under preclinical and clinical development
for treatment of ESCC (3, 10) indicating that identification of
new targets and treatment modalities is a high priority issue for
patients with esophageal cancer.

In this review, we describe long non-coding RNAs
(lncRNA) which sponge micro-RNAs (miRs) as targets for
new treatment modalities of ESCC and tools for
identification of new targets of ESCC. We describe lncRNAs
with proven efficacy in ESCC-related preclinical in vivo
models as a single agent.

LncRNA

In mammals non-coding RNAs can be found as
housekeeping RNAs such as ribosomal RNA, transfer RNA,
small nuclear RNAs and small nucleolar RNAs, as well as
regulatory RNAs such as miRs, short interfering RNAs
(siRNA) and lncRNAs (11). LncRNAs are defined as
transcripts with a length of larger than 200 nucleotides (12).
It has been estimated that more than 60,000 lncRNAs exist
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in humans (13). LncRNAs can be derived from intergenic
regions, introns, overlapping protein coding regions or are
transcribed in the opposite direction to a protein-encoding
gene (14). Their functional role for life and brain
development has been established by several knockout
mouse models (15). Numerous functions have been assigned
to lncRNAs such as promoting of transcription, as decoys to
repress transcription, recruitment of chromatin modifying
enzymes, as scaffolds for proteins, organization of nuclear
architecture, translational regulation, modulators of cell
signaling pathways and protein stability, as well as regulators
of subcellular stability and sponging of miRs [reviewed in
(16, 17)]. In cancer, lncRNAs can act as tumor suppressors
and oncogenes in a context-dependent manner and they are
involved in all stages of pathogenesis including tumor
growth and metastasis as well as angiogenesis and tumor-
microenvironment interactions (18-20).

In this review, we focus on lncRNAs which sponge miRs
as a predominant mode of action and mediate in vivo
efficacy in ESCC-related preclinical models.

LncRNAs Down-regulated in ESCC

LncRNA Homo sapiens phosphoglucomutase like protein 5
antisense RNA1 (PGM5-AS1) targets phosphatase and tensin
homolog (PTEN). PGM5-AS1 (Figure 1) was down-regulated
in ESCC and correlated with poor differentiation, tumor, node,
metastasis (TNM) stage and lymph node metastasis and may
represent a potential biomarker for ESCC (21). It suppressed
proliferation, migration, and invasion of KYSE150 and
KYSE450 ESCC cells in vitro and tumor growth of KYSE150
cells as xenografts in vivo in nude mice (21). PGM5-AS1 was
found to be activated by p53 and led to up-regulation of PTEN
by sponging of miR-466 (21). The tumor-suppressive function
of PTEN is well-documented (22, 23). 

LncRNA-Krüppel-like factor 3 antisense RNA 1 (KLF3-AS1)
targets Krüppel-like factor 3 (KLF3). KLF3-AS1 (Figure 1)
was poorly expressed in patients with ESCC (24). It reduced
migration and invasion and induced apoptosis in Eca109 ESCC
cell-derived spheres in vitro and tumor growth of Eca109 cells
in vivo (24). KLF3 was up-regulated through sponging of miR-
185-5p by lncRNA-KLF3 (24). KLF3 is a zinc finger
transcription factor which predominantly represses transcription
and is highly expressed in the erythroid lineage (25, 26). It is
an important regulator of adipogenesis, erythropoiesis and B-
cell development (25, 26). KLF3 regulates cancer cell
proliferation, apoptosis, metastasis, tumor–microenvironment
interactions and cancer stem cells (CSCs) and its functions are
highly context-dependent (25, 26).

LncRNA maternally expressed gene 3 (MEG3) targets Dickkopf
homolog 2 (DKK2). LncRNA MEG3 (Figure 1) was down-

regulated in ESCC tissues and cell lines (27). MEG3 sponged
miR-4261, resulting in promotion of proliferation, migration,
and invasion of KYSE150 ESCC cells in vitro (27). MEG3
inhibited growth of KYSE150 tumors and β-catenin signaling
in vivo (27). MEG3–miR-4261 axis regulated DKK2 and
wingless integration site (WNT)/β-catenin signaling (27).
DKKs are a family of four secreted proteins (DKK-1, -2, -3, -
4) which inhibit WNT/β-catenin signaling (28, 29). DKK2 is
down-regulated in renal and colorectal cancer (30, 31).
Clinicopathological significance of WNT/β-catenin signaling
in ESSC was demonstrated (32).

LncRNA tumor suppressor candidate 7 (TUSC7) targets
differentially expressed in squamous cell carcinoma 1
(DESC1). TUSC7 (Figure 1) was down-regulated in ESCC
tissues and corresponding cell lines (33). TUSC7 acts as a
sponge of miR-224 and overexpression of TUSC7 or
inhibition of miR-224 promoted apoptosis and inhibited
chemotherapy resistance in EC9706 and KYSE30 ESCCs in
vitro and in vivo (33). 

DESC1 has been identified as a target of miR-224 (33).
DESC1 belongs to the type II transmembrane family of
serine proteases which exhibit signaling functions in cancer
(34, 35). DESC1 is down-regulated in ESCC tissues and
down-regulates EGFR- and AKT serine/threonine kinase 1
(AKT) signaling in ESCC (36, 37).

Up-regulated lncRNAs Acting 
as Sponges for MicroRNAs 

LncRNAs up-regulating transcription factors.
LncRNA FYVE, Rho GEF and PH domain containing antisense
RNA (FDG5-AS1) targets specificity protein 1 (SP1). LncRNA
FGD5-AS1 (Figure 2) was found to be overexpressed in ESCC
tissues and corresponding cell lines (38). It inhibited
proliferation, migration, and invasion of TE-1 and Eca109
ESCC cells in vitro (38). Knockdown of FGD5-AS1 in TE-1
cells reduced tumor growth in nude mice (38). FGD5 sponged
miR-383 which targeted SP1 (38). The latter is a zinc finger
protein which either stimulates or inhibits gene promoters (39).
Up-regulation of SP1 correlates with progression of ESCC (40,
41). Targeting DNA-binding protein SP1 is being pursued by
several drug-discovery approaches (42). 

LncRNA HOXA transcript at the distal tip (HOTTIP) targets
homeobox transcription factor A13 (HOXA13). LncRNA
HOTTIP (Figure 2) promoted proliferation and metastasis of
ESCC cells in vitro and in vivo (43). HOTTIP sponged miR-
30b and led to up-regulation of HOXA13 and transcription
factor SNAIL1 (43). HOXA13 promoted proliferation,
invasion, epithelial–mesenchymal transition (EMT) and
metastasis of gastric cancer cells via activation of
extracellular kinase 1 (ERK1) (44, 45). HOXA13 promoted
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Figure 1. Down-regulated long non-coding RNAs (lncRNAs) with in vivo efficacy in esophageal cancer related preclinical in vivo models. Up-
regulation is indicated by upward arrows, down-regulation by downward arrows. LncRNAs are shown in the first row, sponged microRNAs in the
second row, down-regulated targets in the third row and affected signaling pathways and physiological consequences in the fourth row. AKT1: AKT
serine/threonine kinase 1; APOP: apoptosis; CSC: cancer stem cell; DESC1: differentially expressed in squamous cell carcinoma; DKK2: Dickkopf-
related protein 2; KLF3-AS1: Krüppel-like factor 3-antisense RNA 1; MEG3: maternally expressed gene 3; MET: metastasis; PGM5-AS1:
phosphoglucomutase-like-antisense RNA 1; PROL: proliferation; PTEN: phosphatase and tensin homolog; TS: tumor suppressor; TUSC7: tumor
suppressor candidate 7; WNT: wingless integration site.

Figure 2. Up-regulated long non-coding RNAs (lncRNA) with in vivo efficacy in esophageal cancer-related preclinical in vivo models based on up-
regulation of transcription factors. Up-regulation is indicated by upward arrows, down-regulation by downward arrows. LncRNAs are shown in
the first row, sponged micro RNAs in the second row and down-regulated targets in the third row. FDG5-AS1: FYVE, RhoGEF and PH domain
containing 5 antisense RNA1; HMGA2: high motility group protein 2; HOXA13: homeobox protein A13; HOXC8: homeobox protein C8; HOTTIP:
HOXA transcript at the distal end; ROR1: RNA regulator of reprogramming; SNHG1: small nucleolar RNA host gene 1; SOX9: SRY-box
transcription factor 9; SNAIL1: zinc finger protein SNAIL1; SP1: specificity protein 1; STAT3: signal transducer and activator of transcription 3;
TUG1: taurine up-regulated gene 1; XBP1 X-box binding protein 1; ZEB1: zinc finger E-box binding homeobox 1; ZFAS1: zinc finger antisense 1.



cancer cell growth and predicted poor survival in patients
with ESCC (46). Forced expression of HOXA13 conferred
oncogenic hallmarks on esophageal keratinocytes (47). The
other up-regulated factor, SNAIL1, induces EMT, a process
associated with stemness, invasion and tumor progression
(48). It has been shown that SNAIL1 confers pro-metastatic
functions on ESCC cells (48). 

LncRNA small nuclear host gene 1 (SNHG1) targets homeobox
transcription factor C8 (HOXC8). LncRNA SNHG1 (Figure 2)
was found to be up-regulated in ESCC and its knockdown
inhibited proliferation, migration, and invasion of EC9706 and
KYSE-150 ESCC cells in vitro (49). Silencing of SNHG1
reduced growth of EC9706 xenografts in nude mice (49).
SNHG1 acted as a decoy for miR-204 which targets HOXC8
(49). The latter exhibits an oncogenic function and is
overexpressed in several types of cancer (50). In ESCC, HOXC8
is highly expressed and associated with poor prognosis (51).

LncRNA taurine up-regulated gene 1 (TUG1) targets X box-
binding protein 1 (XBP1). LncRNA TUG1 (Figure 2) was
up-regulated in ESCC tissues and cell lines (52). TUG1
knockdown inhibited proliferation, migration, and invasion,
but promoted apoptosis of ESCC cells (52). Knockdown of
TUG1 attenuated tumor growth in vivo (52). miR-498 was
sponged by TUG1 and XBP1 was identified as a target of
miR-498 (52). XBP1 is a basic region leucine zipper
transcription factor and signaling component of the unfolded
protein response which promotes proliferation, metastasis,
and drug resistance (53, 54). In ESCC, XBP1 promotes
proliferation and invasion (55, 56).

LncRNA-zinc finger E-box binding homeobox 2 (LncRNA-
ZEB2) targets high mobility group A2 (HMGA2). LncRNA-
ZEB2 (Figure 2) was up-regulated in ESCC tissues and cell
lines, promoted proliferation, migration and invasion and
reduced apoptosis in KYSE150 and KYSE300 ESCC cells
(57). Knockdown of lncRNA-ZEB2 inhibited growth of
KYSE30 xenografts in vivo (57). LncRNA-ZEB2 sponged
miR-574-3p resulting in promotion of expression of HMGA2
(57) HMGA2 is involved in altering of chromatin structure,
apoptosis, cell-cycle progression, DNA repair, senescence,
EMT and telomere restoration in cancer cells (58). HMGA2
is overexpressed in ESCC, plays a critical role in tumor
progression, and represents a novel diagnostic marker (59). 

Intergenic lncRNA regulator of programming (lincROR)
targets (sex-determining region Y)-box 9 (SOX9). LincROR
(Figure 2) promoted CSC-like properties in EC9706 ESCC
cells (60). Intra-tumoral injection of cholesterol-conjugated
lincROR siRNA inhibited growth of EC9706 xenografts in
vivo (60). LincROR sponged miRs-15b, -33a, -129, -145, and
-206 which target SOX9 (60). The SOX family comprises

more than 20 members that bind to DNA by the high-mobility
group domain and are associated with poor prognosis in many
types of cancer (61). SOX9 is a transcription factor that
regulates many developmental pathways related to stemness,
differentiation and generation of progenitors, tumor initiation,
proliferation, migration and chemoresistance (61). In breast
cancer, SOX9 has been identified as a master regulator of cell
fate (62). In ESCC, SOX9 induces stemness and drives
phosphoinositide 3-kinase/AKT signaling (63, 64).

LncRNA zinc finger antisense 1 (ZFAS1) targets signal
transducer and activator of transcription 3 (STAT3). LncRNA
ZFAS1 (Figure 2) was up-regulated in ESCC tissues and
Eca109 ESCC cells transmitted ZFAS1 to surrounding cancer
cells through exosomes (65). ZFAS1 promoted proliferation,
migration, and invasion of ESCC cells by sponging of miR-124
and up-regulation of STAT3 (65). Overexpression of ZFAS1
promoted tumor growth of Eca109 ESCC cells in vivo (65).
STAT3 is a transcription factor that regulates proliferation,
differentiation, angiogenesis, apoptosis, inflammation, and
immune response against tumor cells (66, 67). In ESCC,
STAT3 has been shown to inhibit apoptosis and to promote
EMT and metastasis (68-70).

LncRNAs Up-regulating Transmembrane Receptors

LncRNA B-RAF activated non-coding RNA (BANCR) targets
insulin-like growth factor receptor-1 (IGF1-R). High
expression of BANCR (Figure 3) correlated with poor
survival in patients with ESCC (71). In KYSE450, KYSE
510 and HET-1A ESCC cells, knockdown of BANCR
inhibited proliferation, migration, invasion and EMT (71). In
KYSE450 cells, knockdown of BANCR inhibited tumor
growth in nude mice (71). BANCR sponged miR-338-3p
which targets IGF-1R (71). BANCR regulated the rapidly
associated fibrosarcoma (RAF)/mitogen-activated protein
kinase (MEK)/ERK pathway in ESCC cells (71).
Therapeutic targeting of IGF-1R is being pursued for many
types of cancer and small molecule or monoclonal antibody-
related entities are undergoing clinical trials (72, 73). 

It has been shown that BANCR regulates cell invasion and
migration in ESCC through WNT/β-catenin signaling and
that up-regulation of BANCR correlates with progression and
poor prognosis in ESCC (74, 75). Overexpression of IGF-1R
is correlated with lymph node metastasis, differentiation, and
clinical stage in ESCC patients and its down-regulation in
EC9706 cells inhibits proliferation in vitro (76).

LncRNA MIRNA 31 host gene (MIR31HG) (miR-34a) and
lnc taurine up-regulated gene 1 (lncTUG1) (miR-144-3p)
target transmembrane tyrosine kinase c-MET. MIR31HG
(Figure 3) regulated the cell cycle and inhibited apoptosis in
KYSE30 ESCC cells and its knockdown suppressed KYSE
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30 ESCC cell proliferation and growth in nude mice (77).
MIR31HG sponged miR-34a, which targets transmembrane
tyrosine kinase receptor c-MET (77).

TUG1 (Figure 3) was up-regulated in ESCC tissues and
cell lines (78). Its knockdown inhibited proliferation,
migration, and invasion in vitro in EC9706 and KYSE30
ESCC cells and enhanced radiosensitivity (78). In vivo,
inhibition of TUG1 retarded tumor growth of KYSE30 cells
and increased radiosensitivity in nude mice (78). TUG1
sponged miR-144-3p leading to up-regulation of c-MET (78).
c-MET is up-regulated in many types of cancers, drives
multiple pathways and a subset of cancers are MET-addicted
and many small molecule- and monoclonal antibody- based
antagonists are undergoing clinical trials in cancer patients
(79-81). c-MET is expressed in 43% of ESCC and is an
independent prognostic factor in this type of cancer (82-84).

LncRNAs Up-regulating Cell-cycle-related Targets 

LncRNA X-inactive-specific transcript (XIST) targets cyclin
D1 (CCND1). LncRNA XIST (Figure 3) was up-regulated in

ESCC (85). XIST silencing repressed cell-cycle progression,
migration and invasion and promoted apoptosis in ESCC
cells (85). XIST silencing inhibited tumor growth in vivo
(85). XIST directly interacted with miR-129-5p which targets
CCND1. Overexpression of CCND1 results in deregulated
CDK activity and neoplastic growth by bypassing molecular
checkpoints (86). It has been shown that lncRNA XIST
promotes development of ESCC by regulation of CDK6 and
enhancer of zeste 2 (EZH2) expression (87, 88).
Interestingly, CCND1 G870A polymorphism contributes to
the risk of ESCC (89).

LincRNA Linc 01234 targets cyclin E1 (CCNE1). Linc RNA
01234 (Figure 3) was up-regulated in ESCC tissues and by
sponging miR-193a-5p, cyclin E1 (CCNE1) was induced
(90). Down-regulation of linc 01234 led to decrease of
CCNE1 and BCL2 apoptosis regulator, up-regulation of
caspase 3 and p21 in ESCC cells in vitro and reduced tumor
growth of ESCC cells in vivo in nude mice (90). CCNE1
promotes initiation of DNA replication by inducing
expression of S-phase-specific genes and centrosome
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Figure 3. Up-regulated long non-coding RNAs (lncRNAs) with in vivo efficacy in esophageal cancer-related preclinical in vivo models based on
up-regulation of transmembrane receptors and cell-cycle-related targets. Up-regulation is indicated by upward arrows, down-regulation by downward
arrows. LncRNAs are shown in the first row, sponged microRNAs in the second row and down-regulated targets in the third row. BANCR: BRAF-
activated non-coding RNA; BubR1: Bub1 mitotic checkpoint serine/threonine kinase B; CCAT1: colon-cancer associated transcript 1; CCNB: cyclin
B; CCND1: cyclin D1; CCNE1: cyclin E1; CDK1: cyclin-dependent kinase 1; c-MET: tyrosine kinase c-MET; IGF-1R: insulin-like growth factor
receptor-1; LINC01234: long non-coding RNA 01234; MIR31HG: miR31 host gene; PCAT1: prostate cancer-associated transcript 1; PLK1: polo-
kinase 1; TUG1: taurine up-regulated gene1; XIST: X-inactive-specific transcript.



duplication in late G1 phase of the cell-cyle (91, 92). Cyclin-
dependent kinase 2 (CDK2)–CCNE1 complexes were shown
to regulate G1/S-phase transition (93). It has been shown that
CCNE1 is dysregulated in ESCC (94).

LncRNA prostate cancer-associated transcript 1 (PCAT1)
targets cyclin B (CCNB) and cyclin-dependent kinase 1
(CDK1). LncRNA PCAT1 (Figure 3) was highly expressed in
ESCC specimen and cell lines (95). Knockdown of PCAT1 in
KYSE30 ESCCs decreased soft-agar colony formation,
whereas expression of PCAT1 in KYSE150 and KYSE450
ESCCs increased colony formation (95). Knockdown of
PCAT1 in KYSE 30 cells resulted in smaller tumors in nude
mice, whereas expression of PCAT1 in KYSR450 cells gave
rise to increased tumor growth in nude mice (95). PCAT1
acted as a sponge for miR-326 resulting in increased
expression of CCNB and CDK1. CCNB is required for S-, G2-
and M-phase progression of the cell cycle (96). CDK1–CCNA
and CDK1–CCNB complexes are necessary for S-, G2- and
M-phase progression of the cell cycle (97). 

Overexpression of CCNB in ESCC cells induces invasive
growth and metastasis and indicates a poor prognosis in
patients with ESCC (98).

LncRNA colon cancer-associated transcript 1 (CCAT1) targets
polo kinase 1 (PLK1). LncRNA CCAT1 (Figure 3) was shown
to be involved in cell proliferation and chemo-resistance of
ESCCs (99). CCAT1 knockdown suppressed tumor growth
and enhanced sensitivity to cisplatin in nude mice (99).
LncCCAT1 sponged miR-143, which regulates expression of
PLK1 and Bub1 mitotic checkpoint serine/threonine kinase B
(BubR1) (99). PLK1 plays a role in initiation, maintenance,
and completion of mitosis, and promotes transformation and
tumor progression. PLK1 inhibitors are under clinical
investigation in several types of cancer (100, 101). Most
promising activity of the PLK1 inhibitor volasertib was seen
in patients with acute myeloid leukemia (102). Silencing of
PLK1 causes inhibition of growth and induction of apoptosis
in human ESCCs (103). The other target identified, BubR1 is
involved in spindle checkpoint function and chromosome
segregation (104, 105). In ESCC cells, BubR1 induces
resistance to anti-microtubule drugs (106).

Up-regulated lncRNAs Affecting 
Cell Shape and Actin Binding

LncRNA activated by transforming growth factor 2 (ATB)
targets kindlin 2. LncRNA ATB (Figure 4) was up-regulated
in ESCC tissues and predicted an unfavorable prognosis in
patients with ESCC (107). Knockdown of lncRNA ATB
inhibited proliferation and induced cell-cycle arrest in
KYSE30 and Eca109 ESCC cells (107). Knockdown of
lncRNA ATB suppressed migration, growth, and metastasis

of Eca109 xenografts in nude mice (107). LncRNA ATB
sponged miR-200b and up-regulated kindlin 2. The latter
belongs to the 4.1-ezrin-ridixin-moesin (FERM) domain
family and interacts with the cytoplasmic tails of β-integrin
subunits. This interaction mediates proliferation, migration
and invasion of tumor cells, CSC maintenance via
transforming growth factor β, WNT/β-catenin, p53 and
hedgehog pathways (108, 109). In ESCC, it has been shown
that miR-200b promotes invasion by activating the kindlin
2/integrin β1/AKT pathway (110). miR-200b also suppresses
invasiveness and modulates the cytoskeletal and adhesive
machinery in ESCC cells (111). Kindlin 2 is associated with
poor outcome in patients with ESCC (112).

LncRNA plasmacytoma variant translocation 1 (PVT1)
targets LIM and SH3 domain protein 1 (LASP1). LncRNA
PVT1 (Figure 4) predicted adverse prognosis in patients with
ESCC (113). PVT1 promoted proliferation and migration of
Eca109 and KYSE150 ESCC cells in vitro (113).
Knockdown of PVT1 by small hairpin RNA inhibited growth
of Eca109 xenografts in nude mice (113). PVT1 sponged
miR-203 and led to up-regulation of LASP1. The latter is an
actin-binding protein which is involved in actin assembly,
focal contacts, and focal adhesion formation (114-116). It has
been shown that PVT1 promotes viability, invasion,
migration and EMT of ESCC cells (117).

LncRNA PVT1 also targets FASCIN 1 (FSCN1). LncRNA
PVT1 (Figure 4) also sponged miR-145 which targets FSCN1
(118). Down-regulation of PVT1 inhibited viability and
promoted apoptosis and G1 arrest of KYSE-30, KYSE-70,
Eca109 and TE-1 ESCC cells in vitro and inhibited growth of
ESCC cells in vivo (118). FSCN1 was identified as an actin-
bundling protein implicated in cancer metastasis and
recurrence (119). FSCN1 has been shown to promote
expression of cluster of differentiation 147 (CD147), VEGFR2
and metastasis-associated protein 1 (MTA1), which are
correlated with ESCC progression (120, 121). It has been
demonstrated that tumor suppressor miR-145 can reduce
cancer cell migration through regulation of FSCN1 (122, 123). 

Up-regulated lncRNAs Targeting Enzymes,
Signaling and Epigenetic Modification

LncRNA 440173 (LOC440173) targets histone deactylase 9
(HDAC9). LOC440173 (Figure 4) expression was
significantly enhanced in ESCC tissues and corresponding
cell lines, and expression correlated with tumor invasion
depth, lymph node metastasis and TNM stage (124). In vitro,
LOC440173 promoted proliferation, migration, invasion and
EMT of ESCC cells and in vivo, it promoted tumor growth
of ESCC xenografts in nude mice (124). LOC440173
sponged miR-30d-5p leading to up-regulation of HDAC9
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Figure 4. Up-regulated long non-coding RNAs (lncRNA) with in vivo efficacy in esophageal cancer-related preclinical in vivo models based on up-
regulation of components involved in actin binding, cell shape, enzymes, enzymatic activities, and epigenetic modification. Up-regulation is indicated
by upward arrows, down-regulation by downward arrows. LncRNAs are shown in the first row, sponged microRNAs in the second row and down-
regulated targets in the third row. AKT1: AKT serine-threonine kinase 1; ATB: activated by transforming growth factor β; EIF3J-AS1: eukaryotic
translation initiation factor 3, subunit 7 antisense RNA1; EZH2: enhancer of zeste homolog 2; FSCN1: fascin actin-bundling protein; HDAC9:
histone deacetylase 9; LASP1: LIM and SH3 domain protein 1; Linc00473: long non-coding RNA Linc00473; LOC440173: lnc RNA LOC440173;
PVT1: plasmacytoma variant translocation 1; XIST: X-inactive specific transcript. 

Figure 5. Up-regulated long non-coding RNAs (lncRNAs) with in vivo efficacy in esophageal cancer-related preclinical in vivo models based on up-
regulation of components involved in transport and covering additional categories of targets. Up-regulation is indicated by upward arrows, down-
regulation by downward arrows. LncRNAs are shown in the first row, sponged microRNAs in the second row and down-regulated targets in the third
row. FAM225A: LncRNA FAM225A; HAGLR: HOXD antisense growth-associated lncRNA; KPNA2: karyopherin α2; MDM2: mouse double minute 2
homolog; LAMP3: lysosome-associated membrane glycoprotein 3; LINC00963: lncRNA LINC00963; NEAT1: nuclear enriched abundant transcript
1; NONO: non-POU domain-containing octamer-binding protein; RAB14: ras-related protein RAB14; SNHG8: small nuclear RNA host gene 8.



(124). By removing acetyl groups, HDACs reverse
chromatin acetylation and alter transcription of oncogenes
and tumor-suppressor genes. HDAC inhibitors are being
evaluated in clinical studies in many types of cancer
[reviewed in (125)]. Overexpression of HDAC9 is correlated
with poor prognosis of breast and gastric cancer,
hepatocellular carcinoma and pancreatic adenocarcinoma and
may be a target for therapeutic intervention for these types
of tumors (126-129).

LncRNA XIST targets EZH2. LncRNA XIST (Figure 4) was
up-regulated in patients with ESCC and predicted poor
prognosis (88). Knockdown of XIST inhibited proliferation,
migration, and invasion of KYSE30 and KYSE150 ESCCs
cells in vitro and tumor growth of KYSE150 in nude mice
in vivo (88). XIST sponged miR-101 leading to up-regulation
of EZH2. The latter is a histone methyltransferase subunit of
the polycomb repressor complex (130, 131). EZH2 functions
as a master regulator of transcription, is highly expressed in
several types of cancer and is mutated in some types of
tumors (130, 131). It was shown that miR-101 suppresses
proliferation and migration and induces apoptosis by
targeting EZH2 in ESCC cells (132). Overexpression of
EZH2 in ESCC was correlated with poor prognosis in
patients with ESCC (133).

LncRNA eukaryotic translation initiation factor 3 subunit J-
antisense 1 (EIF3J-AS1) targets AKT1. LncRNA EIF3J-AS1
(Figure 4) was increased in tissues of patients with ESCC
and correlated with clinicopathological features and poor
survival (134). Knockdown of EIF3J-AS1 in TE-1 and TE-8
ESCC cells impaired proliferation, migration, and invasion
in vitro and reduced lung metastasis after tail vein injection
in nude mice (134). It was shown that EIF3J sponged miR-
373-3p, resulting in up-regulation of AKT1 (134). The latter
is involved in PI3K/mechanistic target of rapamycin
signaling and consists of three paralogs AKT1, -2 and -3
(135, 136). The AKT1/mechanistic target of rapamycin
kinase pathway is activated in ESCC and activated AKT1
correlates with poor prognosis in ESCC (137, 138). 

Up-regulated lncRNAs Involved 
in Cellular Transport

Long non-coding RNA LINC00963 targets RAB family 14
(RAB 14). LncRNA LINC00963 (Figure 5) was found to be
up-regulated in ESCC in comparison to adjacent non-tumor
tissues and high expression correlated with poor overall
survival (139). Down-regulation of LIN00963 reduced
proliferation of KYSE150 and TE-1 ESCC cell in vitro and
reduced tumor growth and weight in vivo in nude mice
(139). It sponged miR-214-5p leading to up-regulation of
RAB14, a member of the RAS oncogene family (139).

RAB14 is involved in intracellular membrane trafficking
(140). RAB14 activates mitogen-activated protein kinase
signaling to promote bladder carcinogenesis (141) and
proliferation of non-small cell lung carcinoma and invasion
through YES-associated protein signaling (142).

LncRNA small nucleolar RNA host gene 8 (SNHG8) targets
karyopherin α2 (KPNA2). LncRNA SNHG8 (Figure 5) was
highly expressed in ESCC tissues and correlated with poor
survival (143). Silencing of SNHG8 inhibited proliferation,
migration and invasion and promoted apoptosis of Eca109 and
TE-1 ESCC cells in vitro and exerted tumor-suppressive and
anti-metastatic effects in vivo in nude mice (143). LncRNA
SNHG8 acted as a sponge for miR-411, which inhibited
importin subunit KPNA2 (143). KPNA2 is a member of the
importin family with key functions in nucleocytoplasmic
transport (144). KPNA2 is overexpressed in several types of
cancer and is correlated with poor prognosis (145, 146).
KPNA2 inhibitor selinexor has been approved for treatment
of multiple myeloma and large B-cell lymphoma (147, 148).
In ESCC, KPNA2 induces cell proliferation, invasion and is
associated with poor differentiation (149, 150). 

LncRNAs Targeting Additional 
Categories of Proteins or RNA

LncRNA homeobox D gene cluster antisense growth-
associated long non-coding RNA (HAGLR) targets lysosome-
associated membrane protein 3 (LAMP3). HAGLR (Figure
5) was shown to be highly expressed in ESCC and sponged
miR-143-3p, which suppressed=LAMP3 (151). In vitro,
down-regulation of HAGLR or up-regulation of miR-143-3p
inhibited proliferation, migration, and invasion and EMT in
EC9706 and Eca109 ESCC cells and growth of ESCC
xenografts in nude mice (151). The target of miR-143-3p,
LAMP3, is a member of the family of LAMP proteins which
are located in the membrane of lysosomes (152). Lysosomes
can change composition as well as localization during
transformation and can release enzymes which promote
transformation and metastasis (152). LAMPs are involved in
autophagy, phagocytosis, lipid transport and can support
tumor growth and metastasis (153). LAMP3 has been
identified as a novel biomarker for ESCC and is correlated
with poor prognosis (154). 

LncRNA family with sequence similarity 225 member A
(FAM225A) targets DNA and RNA binding protein non-POU
domain-containing octamer-binding protein (NONO).
FM225A (Figure 5) was found to be highly expressed in
ESCC tissues and correlated with poor prognosis (155).
Knockdown of FM225A in KYSE30 and KYSE510 ESCC
cells suppressed cell proliferation, migration, and invasion
in vitro (155). Knockdown of FM225 inhibited tumor growth
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in vivo in nude mice (156). FM225A sponged miR-197-5p,
which negatively regulated NONO (156). The latter is
involved in mRNA splicing, DNA unwinding, proliferation,
apoptosis, migration, and DNA-damage repair (157-159).
Down-regulation of NONO induces apoptosis and suppresses
growth and invasion of ESCC cells (159).

LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1)
targets mouse double minute homolog 2 (MDM2). LncRNA
NEAT1 (Figure 5) was highly expressed in ESCC tissues and
correlated with lymph node metastasis and distant metastasis
(160). NEAT1 promoted proliferation, invasion, migration,
and angiogenesis in Eca109 and TE13 ESCC cells and
human umbilical vein endothelial cells in vitro (161).
Knockdown of NEAT1 inhibited growth of Eca 109
xenografts in vivo in nude mice (160). NEAT1 sponged miR-
590-3p resulting in up-regulation of MDM2 (160). MDM2 is
a proto-oncogene which promotes tumor formation by
targeting p53 for degradation and is amplified in several
types of tumors (161, 162). Several MDM2 inhibitors have
entered clinical trials in patients with cancer (163). The
MDM2 gene is amplified in ESCC, and copy number
increase correlates with poor prognosis (164, 165).

Technical Issues Regarding 
Therapeutic Intervention

We have identified down-regulated and up-regulated lncRNAs
deregulated in ESCC tissue specimens, in comparison to
corresponding normal tissues, which are able to sponge miRs
and mediate efficacy in preclinical in vivo models.

Underexpressed lncRNAs are candidates for substitution
therapy by forced expression of the corresponding lncRNAs in
tumors cells with plasmid- or viral-based expression vectors
(18, 166). However, delivery of these vectors to esophageal
tumor cells is one of the main issues to be tackled. The
identified targets need to be up-regulated with small molecules.
However, this approach is seriously limited by specificity issues
and therefore has to be ranked as a low-priority approach.

The vast majority of identified lncRNAs sponging miRs are
up-regulated in ESSC tissues in comparison to corresponding
normal tissues. They are candidates for inhibition with
antisense oligonucleotides (ASO) or siRNAs (167, 168).
Several RNA-targeted oligonucleotides have received
regulatory approval for rare diseases, none is approved yet for
cancer (169). Basically, ASO form DNA–RNA structures with
a target triggering RNAse H-mediated degradation (170).
siRNAs are short 20-24 bps double-stranded RNAs with
phosphorylated -5´ ends and hydroxylated -3´ ends with two
overhanging nucleotides (170). siRNA-mediated RNA–RNA
duplexes are degraded by a pathway dependent on
endoribonuclease DICER and Argonaute family members and
the corresponding siRNAs can be introduced into cells by

transfection (170). shRNAs are artificial RNAs with a tight
hairpin loop mediating RNA silencing after transfection with
expression vectors into cancer cells (171). ASO-based
therapies have witnessed several technological improvements
based on medicinal chemistry such as introduction of
phosphorothioate linkages, -2´ sugar modifications and
conjugation of ligands such as N-acetylgalactosamine for
delivery to the liver (172). Locked nucleic acids and gapmers
are further improvements of stability and function of ASOs
(173, 174). Despite these encouraging improvements, several
aspects are open to further improvement, especially issues
such as delivery, toxicity, and efficacy (175-178). A detailed
discussion of these topics is not in the focus of this review.

Conclusion

As shown in Figure 1, we identified four lncRNAs which are
down-regulated in ESSC tissues in comparison to
corresponding normal tissues. They cover targets PTEN,
KLF3, DKK2 and DESC1. The corresponding lncRNAs are
potential candidates for replacement therapy.

The lncRNAs up-regulated in ESCC tissues mediate up-
regulation of transcription factors (Figure 2), transmembrane
receptors and cell-cycle related targets (Figure 3), actin-
binding proteins, enzymes, signaling components and
epigenetic modifiers (Figure 4), proteins involved in cellular
transport and further proteins or RNAs representing other
categories (Figure 5). We covered the feasibility of inhibition
of these lncRNAs in the previous section.

Inhibition of transcription factors is feasible as
demonstrated for drugs inhibiting the estrogen receptor and
androgen receptor (179, 180). However, the transcription
factors outlined in Figure 2 are difficult to target (181, 182).
Proteolysis targeting chimeras might become game changers
in this field. They are heterobifunctional structures consisting
of a ligand binding to a protein to be degraded and a ligand
for E3 ubiquitin ligase, resulting in proteasomal degradation
of the target protein (183-186). In 2021 at least 15 targeted
degraders will undergo clinical trials (187).

c-MET and IGF-1R (Figure 3) were identified as ESCC-
related targets to be further validated with antagonizing
monoclonal antibodies and small molecule tyrosine kinase
inhibitors (188, 189). Up-regulated CCN B, D1 and E (Figure
3) function as activators of CDKs 1, 2, 4 and 6, which
mediate critical mitotic functions (Figure 3) which also holds
true for PLK1 (190-192). These targets are under further
preclinical and clinical validation. The identified actin-
binding proteins kindlin 2, LASP1 and FSCN1 (Figure 4) are
associated with druggability issues. Further targets emerging
from our search for further validation in ESCC are HDAC9,
EZH2, KPNA2 and MDM2 (Figure 4 and Figure 5).

ESCC-specific targets were not identified by our search.
Since we have focused on xenograft models for lncRNA and
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target identification, immune-therapy related targets could
not be identified. For further validation of the proposed
therapeutic approaches proof-of-concept studies in patient-
derived xenograft models and combination studies of
inhibition of lncRNAS and chemotherapy and immune-
related therapies would be helpful.
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