Abstract
Background/Aim: Oral squamous cell carcinoma (OSCC) is one of the most common tumors of the head and neck region. The tumor suppressor gene p53 (TP53) is the most frequently mutated gene in OSCC and TP53 mutations are associated with decreased survival and resistance to chemotherapy in patients with OSCC. Therefore, therapeutic strategies targeting TP53 reactivation are required to effectively treat OSCC. In this study, we investigated the effect of various p53-reactivating small molecules (RITA, PRIMA-1, and CP-31398) on the proliferation of human OSCC cell lines (Ca9-22, HSC-2, HSC-3, and HSC-4) derived from human oral tissues bearing a mutant TP53 gene. Materials and Methods: Apoptosis induction by RITA was assessed by measuring Annexin V and propidium iodide (PI)-positive cells using flow cytometry. p53 and murine double minute 2 (MDM2) phosphorylation and Bax expression were detected in the lysates of RITA-treated Ca9-22 cells using western blotting. Results: RITA markedly inhibited the growth of Ca9-22, HSC-2, HSC-3, and HSC-4 cells. In Ca9-22 cells, RITA induced apoptosis and inhibited cell proliferation while increasing p53 phosphorylation and Bax expression; however, RITA did not induce MDM2 phosphorylation. Conclusion: The inhibitory effect of RITA on human OSCC cell proliferation is mediated by apoptosis induction through p53 and Bax.
- Received April 20, 2022.
- Revision received May 12, 2022.
- Accepted May 13, 2022.
- Copyright © 2022 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.