
Abstract. Background/Aim: Vitamin D receptor (VDR),
activated upon binding of 1,25(OH)2D3, was described as a
tumor suppressor in the skin. New biological functions of non-
classical vitamin D derivatives were recently identified, that are
mediated via binding to alternate receptors, including the aryl
hydrocarbon receptor (AHR) and that indicate functional
interaction between AHR and VDR signaling in various human
tissues. We aimed to gain further insights into the cross-talk of
VDR and AHR signaling in skin photo-carcinogenesis.
Materials and Methods: Using real-time quantitative PCR, we
analyzed in vitro effects of the complete carcinogen UVB and
of 1,25(OH)2D3 on the expression of members of the AHR and
VDR pathways in human keratinocytes revealing characteristics
of different stages of skin photo-carcinogenesis. Results: In
precancerous HaCaT keratinocytes, induction of a target gene
of AHR-mediated transcription (CYP1A1) was markedly
stronger after treatment with UVB, as compared to treatment
with 1,25(OH)2D3. In contrast, in SCL-1 cells (that reveal the
complete phenotype of malignant transformation), expression of

CYP1A1 was higher after treatment with 1,25(OH)2D3 as
compared to treatment with UVB. The classical VDR target
CYP24A1 was up-regulated by 1,25(OH)2D3, but not by UVB,
in both cell lines. However, the combined treatment with UVB
strongly enhanced the 1,25(OH)2D3-mediated up-regulation of
CYP24A1 exclusively in SCL-1, but not in HaCaT cells.
Conclusion: There is a differential regulation of VDR and AHR
target genes by UVB and 1,25(OH)2D3 in HaCaT and SCL-1
cells, that points to a complex and highly orchestrated network
of vitamin D derivatives (and other photoproducts) and its
relevance for photo-carcinogenesis.

As the frontier of the human body to the environment, the
human skin represents an important defense line against many
different hazards, including infections, intoxications, and
exposure to UV- and other types of radiation. It is well known
that ultraviolet B radiation (UVB; wavelength range: 290-320
nm), found in solar radiation, is a potentially toxic and
carcinogenic environmental factor. Whereas acute effects of
skin exposure to UVB radiation are dose-dependent and include
sunburns or immune modulation (1), long-term exposure is
known to be a main risk factor for developing non-melanoma
skin cancer including cutaneous squamous cell carcinoma
(cSCC) (2, 3) and its precancerous skin lesion actinic keratosis
(AK) (4, 5). The UVB-induced stress response in the human
skin is called UV response (6-8). An important mechanism
involved in this process is the activation of the Aryl
hydrocarbon receptor (AHR) (9). This ligand-dependent receptor
belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS)
family (10) and is located in the cell cytoplasm, bound to a
chaperone complex (Hsp90/XAP2/p23) (11, 12). It is known for
its role in the detoxification of harmful substances like 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD) (12), polycyclic aromatic
hydrocarbons (PAHs) (13-16), and natural flavonoids (17, 18)
and is highly expressed in barrier organs like the skin (19, 20).
The AHR activation caused by UVB activates two signaling
pathways, one located in the nucleus and one in the membrane
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of the cell. In the nuclear pathway, UVB radiation triggers AHR
translocation into the nucleus and causes induction of
cytochrome P450 1A1 (CYP1A1) gene expression in a ligand-
dependent manner (9). The xenobiotic metabolizing enzyme
CYP1A1 is one of the most widely studied AHR target genes
(14, 21) and is linked to various cutaneous immunologic
processes (19), chemical carcinogenesis (22-24), and the
development of non-melanoma skin cancer (25-27). Moreover,
the DNA is able to absorb UVB, which results in formation of
DNA photoproducts (28-32). In the cell membrane pathway,
AHR activation causes internalization of the EGFR and
activation of its downstream target MAP kinases ERK1 and
ERK2. As a result, cyclooxygenase-2 (COX2) mRNA
expression is up-regulated (9), which is linked with photo-
carcinogenesis and skin inflammation (33-39). 

The hormonally active form of vitamin D3 [1,25(OH)2D3;
calcitriol] is produced in keratinocytes of the epidermis in a
UVB-dependent, 3-step process (40). It modulates important
physiological and pharmacological processes like
immunomodulation and bone metabolism (41, 42). In the skin
specifically, it plays a vital role in the epidermal proliferation and
differentiation (43, 44), apoptosis (45, 46), and barrier function
(47-49). It also exhibits a protective effect against inflammatory
skin diseases including psoriasis (50) and atopic dermatitis (51)
and inhibits the growth of skin cancer such as melanoma (52,
53), basal cell carcinoma (BCC) (54, 55), and squamous cell
carcinoma (SCC) (56). 1,25(OH)2D3 unfolds its biological
function through binding to the vitamin D receptor (VDR;
NR1I1) (57), a member of the nuclear receptor superfamily of
transcription factors highly expressed in keratinocytes (58, 59).
The VDR regulates gene expression by forming a heterodimeric
complex with retinoid X receptors (RXRs), translocating to the
nucleus and interacting with vitamin D responsive elements
(VDREs) in the promoter of target genes (57, 60, 61). A major
target gene of the VDR is cytochrome P450 24A1 (CYP24A1)
(62, 63), which encodes for the 25-hydroxyvitamin D3 24-
hydroxylase. By this enzyme, inactivation of 1,25(OH)2D3
through hydroxylation and termination of its biological activity
is induced (64, 65). In some forms of cancer, it has been
suggested to represent an oncogene (66).

Recent scientific findings indicate a functional interaction
between AHR and VDR signaling in various human tissues.
In this regard, new biological functions of non-classical
vitamin D derivatives have recently been identified, that are
at least in part mediated via binding to alternate receptors,
including the AHR. In human naïve CD4+ T-cells, a
suppressive effect of 1,25(OH)2D3 on AHR expression was
found (67). In human oral keratinocytes (OKF6/TERT-2
cells) however, 1,25(OH)2D3 increased LPS-induced AHR
and CYP1A1 expression (68). In human epidermal
keratinocytes (HEKn and HaCaT cells), AHR was the major
receptor target for vitamin D derivative 20,23(OH)2D3, (with
VDR being the second signaling pathway identified) whereas

weaker AHR activation was observed by 1,25(OH)2D3,
20(OH)D3 and 17,20,23(OH)2D3 (69). Matsunawa et al. (70,
71) demonstrated that combined activation of AHR and VDR
enhanced CYP1A1 and CYP24A1 expression in breast cancer
(MCF-7) and macrophage-derived (THP-1) cells. In the
present study, we aimed to gain further insights into the
cross-talk of 1,25(OH)2D3-induced VDR and UVB-induced
AHR signaling in skin photo-carcinogenesis. We here found
a differential regulation of VDR and AHR target genes by
UVB and 1,25(OH)2D3 in precancerous HaCaT and
malignant SCL-1 cells, which points to a complex and highly
orchestrated network of vitamin D derivatives (and other
photoproducts) and its relevance for photo-carcinogenesis.

Materials and Methods

Cell culture. Spontaneous immortalized human HaCaT (Human adult
low Calcium, high Temperature) keratinocytes were purchased from
CLS Cell Lines Service GmbH (Eppelheim, Germany) and cultivated
in Dulbecco’s modified eagle’s medium (DMEM) (Gibco, Thermo
Fisher Scientific, Dreieich, Germany). They exhibit a p53 mutation
(p53mut) and represent initiated keratinocytes that express elements
of early stage non-melanoma skin carcinogenesis (72, 73). In vivo
animal studies have shown that HaCaT cells exhibit characteristic
features of precancerous skin lesions (e.g., AK), including
development of a stratified epithelium with dysplastic morphologic
properties but no tendency to invasive or metastatic growth (74). SCC
cell lines (SCL-1) were maintained in RPMI 1640 medium (Gibco).
They represent malignant human keratinocytes that lack expression
of the p53 protein (p53null) (75-79) and exhibit characteristic features
of the non-melanoma skin cancer phenotype, including invasive and
metastatic growth tendency (80). Both cell lines were supplemented
with 1% L-glutamine (Thermo Fisher Scientific) and 10% fetal calf
serum (Gibco). They were seeded in culture dishes (10 cm in
diameter) and grown in a humidified atmosphere of 5% CO2 at 37˚C.
Cell culture medium was changed twice a week.

UVB irradiation. After the culture medium has been aspirated from
the cell culture dishes, cells were washed with phosphate-buffered
saline (PBS) and irradiated with UVB (50 J/cm2, midrange
wavelength 302 nm) using Crosslinker CL-1000M (Ultra-violet
products Ltd, purchased by Analytik Jena, Jena, Germany).
Following irradiation, cells were provided with fresh medium and
treatment substances.

Cell treatment. Cells were treated with 1,25(OH)2D3 (Sigma,
Taufkirchen, Germany) in a final concentration of 10-7 M [5 μl of
the 1,25(OH)2D3 of (10-4 M) stock solution solved in ethanol (EtOH)
were added per 5 ml medium per culture dish]. Bovine serum
albumin (BSA, 1%) was added to the medium when treating cells
with 1,25(OH)2D3 to reduce unspecific binding of 1,25(OH)2D3 to
the culture dish. Control samples were treated with EtOH (5 μl EtOH
per 5 ml medium per culture dish) and BSA (1%, Sigma). In
preliminary experiments, we first demonstrated that EtOH had no
effect on gene expression, because cells treated with BSA alone
showed similar results as compared to cells treated with BSA and
EtOH. Cells were treated with AHR-Antagonist CH223191 (stock
solution 10-4 M, solved in EtOH; final concentration 10-7 M, Sigma)
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and partly VDR-Inhibitor 25-Hydroxyvitamin D3 (25(OH)2D3, stock
solution 10-4 M, solved in EtOH; final concentration 10-7 M, Sigma).
Previous studies (81-83) confirmed that CH223191 and 25(OH)D3
in a final concentration of 10-7 M effectively block their
corresponding receptors, AHR and VDR, respectively. 

Cell harvesting. HaCaT-keratinocytes and SCL-1 cells were harvested
(6 h intervals over 24 h) after irradiation and/or substance treatment.

RNA isolation. RNA isolation was performed with RNeasy Kit and
QIA shredder (Qiagen, Hilden, Germany) according to the
manufacturers’ manual. 

Reverse transcription. Reverse transcription was performed with
Omniscript RT Kit (Qiagen) according to the manufacturers’
instructions. Oligo-dT-primers, RNase inhibitors, and 1 μg mRNA
were used in every reaction as templates.

Quantitative real-time PCR (RTqPCR) and analysis. Expression of
the target genes AHR, CYP1A1, COX2, VDR, CYP24A1 was
examined in 96-well plates using RTqPCR (120 cycles in
StepOnePlus Real-Time PCR System, Thermo Fisher Scientific).
The level of expression of each target gene was normalized against
the mean of GAPDH and β-actin gene expression and shown as
mean±standard deviation. Each sample was analyzed in duplicate.
All gene-specific primers were purchased from Qiagen (Table I).
The relative quantification method (RQ=2–ΔΔCt) was used in order
to calculate the relative fold gene expression of the target genes
(84). First, the relative amount of the target gene to each reference
gene was determined for each sample (∆Ct). Then, the
target/reference ratio of the treated sample was divided by the
target/reference ratio of the control sample (∆∆Ct). To find out the
N-fold target gene expression in treated samples relative to the
control sample (final values), we calculated 2 to the power of the
negative ∆∆Ct (2–∆∆Ct). 

Statistical analysis. All data are represented as a mean±standard
deviation (SD) of three experiments per cell line. The two-tailed,
unpaired Student’s t-test was used to assess statistical significance
and performed with the Microsoft Excel software (Microsoft
Corporation, Redmond, WA, USA). Mean differences were
considered to be significant when p≤0.05 (*), decisive (very
significant) when p<0.005 (**) and conclusive (extremely
significant) when p<0.0005 (***).

Results

Gene expression of AHR and CYP1A1 is elevated in
untreated HaCaT and of COX2, VDR and CYP24A1 in SCL-
1 cells. In untreated spontaneously immortalized HaCaT
keratinocytes we observed higher AHR (p<0.0005) and
CYP1A1 mRNA levels as compared to those in untreated
SCL-1 cells (Figure 1A-D). In contrast, in untreated
cancerous SCL-1 cells, mRNA expression of COX2, VDR,
and CYP24A1 was higher than HaCaT (Figure 1E-J). 

1,25(OH)2D3 and UVB radiation exert differential effects on
the expression of key elements of the AHR signaling pathway

in HaCaT-keratinocytes and SCL-1 cells. In non-malignant
HaCaT keratinocytes, UVB radiation induced a strong
increase in CYP1A1 mRNA (7.7-fold increase), that was
markedly stronger as compared to treatment with
1,25(OH)2D3 (2.8-fold increase) (Figure 2C). Combined
treatment increased CYP1A1 mRNA stronger than treatment
with 1,25(OH)2D3 alone (3.7-fold increase, p≤0.05). In
contrast, in malignant SCL-1 cells, expression of CYP1A1
was markedly higher after treatment with 1,25(OH)2D3 (6.9-
fold increase, p<0.0005) as compared to treatment with UVB
(2.4-fold increase, p<0.005) (Figure 2D). Combined
treatment showed a synergistic effect, by conclusively up-
regulating CYP1A1 mRNA to the highest extent (9.8-fold
increase) (Figure 2D). UVB radiation up-regulated AHR
mRNA in both cell lines (HaCaT: 2.2-fold increase; SCL-1:
1.6-fold increase). In contrast, lower levels of AHR
expression were observed after treatment with 1,25(OH)2D3
(HaCaT: 17% decrease; SCL-1: 26% decrease). Combined
treatment did not show any regulatory effect as compared to
untreated controls (Figure 2A and B). 

Induction of CYP1A1 mRNA expression by 1,25(OH)2D3
depends on AHR. Treatment with AHR-antagonist CH223191
alone or in combination with 1,25(OH)2D3 strongly
suppressed expression of CYP1A1 mRNA in HaCaT and
SCL-1 cells (HaCaT after 6 h: CH223191: 94% decrease,
p<0.0005, CH223191+1,25(OH)2D3: 84% decrease,
p<0.0005; HaCaT after 24 h: CH223191: 95% decrease,
p<0.0005,  CH223191+1,25(OH)2D3: 85% decrease,
p<0.0005; SCL-1 after 6h: CH223191: 82% decrease,
p<0.0005, CH223191+1,25(OH)2D3: 62% decrease,
p<0.0005; SCL-1 after 24 h: CH223191: 88% decrease,
p<0.0005, CH223191+1,25(OH)2D3: 74% decrease,
p<0.0005) (Figure 3). In 25(OH)D3-treated cells, CYP1A1
expression was reduced (HaCaT after 6 h: 56% decrease,
p<0.0005; HaCaT after 24 h: 19% decrease; SCL-1 after 6 h:
65% decrease, p<0.0005; SCL-1 after 24 h: 36% decrease,
p<0.05). However, combined treatment with 1,25(OH)2D3
and 25(OH)D3 had a stronger induction in CYP1A1 mRNA
compared to 1,25(OH)2D3 alone (except in SCL-1 after 24 h)
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Table I. Gene-specific primers used in RTqPCR. 

Primer                                              Sequence                                Source

AHR                       QuantiTect Primer Assay (QT00031437)      Qiagen
CYP1A1                 QuantiTect Primer Assay (QT00012341)      Qiagen
PTGS2 (COX2)     QuantiTect Primer Assay (QT00040586)      Qiagen
VDR                       QuantiTect Primer Assay (QT01010170)      Qiagen
CYP24A1               QuantiTect Primer Assay (QT00015428)      Qiagen
GAPDH                  QuantiTect Primer Assay (QT00079247)      Qiagen
β-Actin                   QuantiTect Primer Assay (QT00095431)      Qiagen



(HaCaT after 6 h: 1,25(OH)2D3+25(OH)D3: 2.6-fold
increase, p<0.005, 1,25(OH)2D3: 2.1-fold increase,
p<0.0005; HaCaT after 24 h: 1,25(OH)2D3+25(OH)D3: 1.23-

fold increase, 1,25(OH)2D3: 1.17-fold increase; SCL-1 after
6 h: 1,25(OH)2D3+25(OH)D3: 2.5-fold increase, p<0.0005,
1,25(OH)2D3: 2.4-fold increase, p<0.0005).
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1,25(OH)2D3 induces COX2 mRNA in HaCaT but not in SCL-1
cells. Treatment with 1,25(OH)2D3 strongly increased COX2
mRNA expression in HaCaT cells (16.2-fold increase, p≤0.05),
but barely altered it in SCL-1 cells (1.8-fold increase, p≤0.05)
(Figure 2E and 2F). In both cell lines however, after treatment
with 1,25(OH)2D3 and 25(OH)D3, up-regulation of COX2 gene
expression was even stronger as compared to treatment with
1,25(OH)2D3 alone (HaCaT after 6 h: 1,25(OH)2D3+25(OH)D3:
4.2-fold increase, p<0.0005, 1,25(OH)2D3: 2.8-fold increase,
p<0.0005; HaCaT after 24 h: 1,25(OH)2D3+25(OH)D3: 2.4-fold
increase, p<0.0005, 1,25(OH)2D3: 2.3-fold increase, p<0.005;
SCL-1 after 6 h: 1,25(OH)2D3+25(OH)D3: 1.4-fold increase,
p<0.0005, 1,25(OH)2D3: 1.1-fold increase;  SCL-1 after 24 h:
1,25(OH)2D3+25(OH)D3: 2.1-fold increase, p<0.0005,

1,25(OH)2D3: 1.4-fold increase, p<0.0005) (Figure 4). Treatment
with UVB up-regulated COX2 gene expression in both cell lines
to a similar degree (HaCaT: 5.4-fold increase; SCL-1: 3.9-fold
increase, p≤0.05). Combination treatment with UVB and
1,25(OH)2D3 exerted a synergistic effect only in HaCaT (38.3-
fold increase, p<0.05) and not in SCL-1 cells (4.2-fold increase,
p≤0.05) (Figure 2E and F).

1,25(OH)2D3, but not UVB, induces CYP24A1 mRNA in
HaCaT and SCL-1 cells. CYP24A1 mRNA expression was
increased in HaCaT and SCL-1 cells, after treatment with
1,25(OH)2D3, but not after treatment with UVB (Figure 2I
and J). Co-treatment with 1,25(OH)2D3 and 25(OH)D3
induced CYP24A1 mRNA in SCL-1 cells even stronger than
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Figure 1. Relative mRNA expression (A, C, E, G, I) and AUC (B, D, F, H, J) of AHR, CYP1A1, COX2, VDR, and CYP24A1 relative to the mean of
GAPDH and β-actin in untreated HaCaT and SCL-1 cells (mean 2-ΔΔCt). Cells were treated only with culture medium and harvested in 6 h intervals
over 24 h. The mRNA expression was measured with RTqPCR and the relative fold gene expression was calculated with the 2–∆∆Ct method. HaCaT-
cells harvested after 0 h were used as the internal control sample in the bar graphs (A, C, E, G, I). The “area under the curve” was calculated for
each cell line from the respective time curve (data not shown). The values represent the means±SD of duplicate assays. The experiments were
repeated thrice with similar results. *p≤0.05; **p<0.005; ***p<0.0005.
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1,25(OH)2D3 alone (after 6 h: 1,25(OH)2D3+25(OH)D3:
133.1-fold increase, p<0.0005, 1,25(OH)2D3: 82.7-fold
increase, p<0.0005; after 24 h: 1,25(OH)2D3+25(OH)D3:
123.5-fold increase, p<0.0005, 1,25(OH)2D3: 94.9-fold
increase, p<0.0005) (Figure 5). In contrast, expression of VDR
was only altered in SCL-1 cells treated with 1,25(OH)2D3
(38% decrease, p<0.005), while other treatments with
1,25(OH)2D3 and/or UVB had only marginal effects in HaCaT
or SCL-1 (Figure 2G and H). Combined treatment with UVB
further enhanced the 1,25(OH)2D3-induced increase in
CYP24A1 mRNA exclusively in SCL-1 [1,25(OH)2D3:
44,703.5-fold increase, p<0.0005, 1,25(OH)2D3+UVB:
119,233.4-fold increase, p<0.0005], but not in HaCaT cells
[1,25(OH)2D3: 6,233,471-fold increase, p<0.05, 1,25(OH)2D3
+UVB: 5,127,778.3-fold increase, p<0.005]. 

Discussion

During the last decades, a continuously growing body of
evidence has convincingly shown an important role of
vitamin D in carcinogenesis and the progression of many
malignancies (85-87). It can be speculated that during the
next years, these new scientific findings in the vitamin D
field, which include the identification of AHR, RORs, and
LXR as alternative receptors for vitamin D compounds (69,
88, 89), will have a great impact on the prevention and
therapy of cancer. It was the aim of this study to understand
the role of the vitamin D endocrine system in the multistep
process of skin photo-carcinogenesis (90), that shows
characteristic early (e.g., initiated cells) and late (e.g., cells
that express the complete malignant phenotype) stages (72-
79). In particular, we investigated the molecular interaction

of two different nuclear receptor pathways for vitamin D,
which are activated either by binding of the classical
biologically active vitamin D metabolite, 1,25(OH)2D3, to
the VDR, or by binding of non-classical vitamin D
hydroxyderivatives [e.g., 20,23(OH)2D3] to the AHR. 

By analyzing the expression of AHR, CYP1A1, and COX2
as well as of VDR and CYP24A1, we showed that the
expression of genes encoding for key elements of both VDR
and AHR pathways are differentially expressed and regulated
during different stages of skin carcinogenesis. For example,
expression of AHR and CYP1A1 was much stronger in
untreated HaCaT as compared to untreated SCL-1 cells,
while in contrast, expression of VDR, CYP24A1, and COX2
was stronger in untreated SCL-1 as compared to HaCaT
cells. It remains to be investigated in future studies, whether
stage-dependent differences in the expression of key
elements of these different nuclear signaling pathways for
vitamin D compounds contribute to the carcinogenesis of
non-melanoma skin cancer. It may be speculated that these
findings are caused by functional changes associated to the
p53 status in HaCaT (p53 mutation, p53mut) and SCL-1 (no
p53 protein present, p53null) cells, as previous studies have
reported a p53-mediated tissue-dependent regulation of AHR
(91-93) and VDR (94, 95) signaling. Moreover, it can be
speculated whether low basal levels of AHR and CYP1A1 in
SCL-1, and of VDR, CYP24A1, and COX2 in HaCaT cells
may point at a functional defect of AHR signaling in SCL-1
and of VDR signaling in HaCaT cells. 

To further investigate the interaction between AHR and
VDR signaling, we treated cells with UVB, and/or the VDR-
ligand 1,25(OH)2D3, its precursor 25(OH)D3 [that has been
described as a partial VDR-antagonist (83)], and the AHR-
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Figure 2. Relative mRNA expression (AUC) of AHR (A, B), CYP1A1 (C, D), COX2 (E, F), VDR (G, H), and CYP24A1 (I, J) relative to the mean of
GAPDH and β-actin in treated HaCaT and SCL-1 cells (mean 2–∆∆Ct). After treatment, cells were harvested in 6 h intervals over 24 h. The mRNA
expression was measured with RTqPCR and the relative fold gene expression was calculated with the 2–∆∆Ct method. Cells harvested after 0 h were
used as the internal control sample for each time curve (data not shown). The “area under the curve” of every treatment condition was measured
and set relative to the “area under the curve” of the EtOH-treated cells (vehicle). The values represent the means±SD of duplicate assays. The
experiments were repeated thrice with similar results. All p-values are relative to cells treated with EtOH alone. *p≤0.05; **p<0.005; ***p<0.0005.



antagonist CH223191 (81, 82). It has to be noted that we did
not succeed in obtaining the non-classical hydroxyderivatives
[e.g., 20,23(OH)2D3] of vitamin D that were recently
described as AHR-ligands. 

This study also examined whether effects of UVB on
expression of AHR target genes may be mediated via the UVB-
induced cutaneous synthesis of 1,25(OH)2D3 or 25(OH)D3,
indicating that oral supplementation with vitamin D could
compensate for the effects of UVB both on AHR and VDR
signaling pathways. Until now, only a few studies have analyzed
the effects of 1,25(OH)2D3 on the expression of AHR target
genes; however, studies in cutaneous SCC cells are lacking (68,
69). We here show that the complete carcinogen UVB and the
anti-carcinogenic agent 1,25(OH)2D3 exert different effects on

the expression of key elements of the VDR and AHR pathways.
Although the results of our investigation do not allow definite
conclusions, these findings do not support the assumption that
effects of UVB on CYP1A1 expression are mediated via UVB-
induced cutaneous production of 1,25(OH)2D3. 

We showed that the expression of genes encoding for
proteins that contribute to AHR signaling is regulated
differentially by UVB in HaCaT and SCL-1 cells, representing
keratinocytes that reveal phenotype characteristics for early
and late stages of skin carcinogenesis, respectively. CYP1A1
mRNA was regulated differentially by 1,25(OH)2D3 and UVB
in HaCaT and SCL-1 cells. In SCL-1, induction of CYP1A1
mRNA was stronger after treatment with 1,25(OH)2D3 (6.9-
fold induction compared to control) as compared to treatment
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Figure 3. Relative mRNA expression of CYP1A1 in HaCaT and SCL-1 cells 6 h (A, B) and 24 h (C, D) after treatment relative to the mean of
GAPDH and β-actin (mean 2-ΔΔCt). Cells were harvested 6 and 24 h after treatment. The mRNA expression was measured with RTqPCR and the
relative fold gene expression was calculated with the 2–∆∆Ct method. Cells treated with solvent vehicle alone (EtOH) were used as the internal
control. The values represent the means±SD of duplicate assays. The experiments were repeated thrice with similar results. All p-values are relative
to cells treated with EtOH alone. *p≤0.05; **p<0.005; ***p<0.0005.



with UVB (2.4-fold induction compared to control); however,
opposite effects were seen in HaCaT cells. In these cells,
induction of CYP1A1 mRNA was stronger after treatment with
UVB (7.7-fold induction compared to control) as compared to
that after treatment with 1,25(OH)2D3 (2.8-fold induction
compared to control). 

It has been reported that CYP1A1 induction can be
mediated via several independent mechanisms that include
elevation of intracellular calcium and subsequent cell
differentiation (96-98), or involve other nuclear receptors
(NR). It is well established that 1,25(OH)2D3 plays a crucial
role in calcium homeostasis (99-101) and promotes
differentiation in cultured skin cells (102) and cancer cells
like human colon cancer, CAFs, and CSCs (103). Thus,

1,25(OH)2D3 could regulate the CYP1A1 mRNA activity
through its pro-differentiating effect. Interestingly,
combination treatment with 1,25(OH)2D3 and UVB
increased CYP1A1 mRNA activity even further. In vivo
studies report, that even minimal UVB radiation levels of 18
mJ/cm2 are enough to activate 1,25(OH)2D3 synthesis in the
skin (104). An enhancing effect of UVB radiation on
1,25(OH)2D3-induced CYP1A1 mRNA expression through
additional endogenous 1,25(OH)2D3 production could
therefore be considered. However, our results do not exclude
the possibility that induction of CYP1A1 may be induced
AHR independently via other mechanisms that may include
the activation and involvement of other NR pathways. The
Pregnane X receptor (PXR), a member of the nuclear

Christofi et al: AHR and VDR-signaling in Human Keratinocytes 

5057

Figure 4. Relative mRNA expression of COX2 in HaCaT and SCL-1 cells 6 h (A, B) and 24 h (C, D) after treatment relative to the mean of GAPDH
and β-actin (mean 2-ΔΔCt). Cells were harvested 6 and 24 h after treatment. The mRNA expression was measured with RTqPCR and the relative
fold gene expression was calculated with the 2-ΔΔCt method. Cells treated with solvent vehicle alone (EtOH) were used as the internal control. The
values represent the means±SD of duplicate assays. The experiments were repeated thrice with similar results. All p-values are relative to cells
treated with EtOH alone. *p≤0.05; **p<0.005; ***p<0.0005.



hormone receptor family and regulator of xenobiotic and
drug metabolism (105-107), that was linked to the
development of SCC (108), was found to have similarities to
both the AHR (109, 110) and VDR (111, 112), and was
shown to regulate expression of CYP1A1 (113). 

Interestingly, Wilkens et al. (114) were able to
demonstrate that intravenous administration of 1,25(OH)2D3
up-regulates the mRNA expression of PXR in sheep renal
tissue. Other CYP1A1-regulating NRs (115) including the
Glucocorticoid receptor (GR), Estrogen receptor (ER) and
Retinoid acid receptor (RAR) have also shown interactions
with 1,25(OH)2D3 (69, 116, 117).

In agreement with previously published reports (82),
exposure of HaCaT cells to a single dose UVB (50 J/cm2)

induced expression of AHR and CYP1A1 mRNA, indicating
that UVB-induced regulation of AHR signaling functions
correctly in these cells. 

1,25(OH)2D3 in a dose of 10-7 M had no conspicuous
regulating effect on AHR expression in HaCaT and SCL-1
cells. These findings are in agreement with the results of
Slominski et al. (69), who reported in epidermal keratinocytes
a dose-dependent, 1,25(OH)2D3-induced AHR expression,
that was detected after treatment with 1,25(OH)2D3 at a dose
of 10-6 M, but not at a dose of 10-7 M. 

In SCL-1 cells, UVB (50 J/cm2) induced expression of
AHR and CYP1A1. CYP1A1 mRNA induction after treatment
with 1,25(OH)2D3 was almost 7 times higher than that of the
control group and 2.5 times stronger than that after UVB
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Figure 5. Relative mRNA expression of CYP24A1 in HaCaT and SCL-1 cells 6 h (A, B) and 24 h (C,D) after treatment relative to the mean of
GAPDH and β-actin (mean 2-ΔΔCt). Cells were harvested 6 and 24 h after treatment. The mRNA expression was measured with RTqPCR and the
relative fold gene expression was calculated with the 2-ΔΔCt method. Cells treated with solvent vehicle alone (EtOH) were used as the internal
control. The values represent the means±SD of duplicate assays. The experiments were repeated thrice with similar results. All p-values are relative
to cells treated with EtOH alone. *p≤0.05; **p<0.005; ***p<0.0005.



treatment. Until now, only a few studies have reported an
effect of 1,25(OH)2D3 on the AHR target gene; however,
none of them was carried out in cutaneous SCC (68, 69). 

To analyze whether the induction of CYP1A1 mRNA in
HaCaT and SCL-1 cells was AHR-dependent, we used
CH223191 (AHR-antagonist). Treatment with CH223191
suppressed CYP1A1 mRNA expression both in HaCaT and
SCL-1 cells under all experimental conditions. 

It is well established that 1,25(OH)2D3 exerts its cancer-
inhibiting activity in many cell types through various direct
(e.g., regulation of the cell cycle, induction of apoptosis,
inhibition of angiogenesis and tumor-invasiveness, -
metastasis and -proliferation) and indirect (e.g., regulation of
immuno-modulation, effect on tumor microenvironment)
mechanisms (95, 118). Although AHR-activated CYP1A1 is
associated with pro-carcinogen transformation and cancer
development, some studies documented a contribution to
cancer prevention (27). Therefore, key elements of AHR
signaling may at least in part contribute to 1,25(OH)2D3-
mediated anti-cancer mechanisms.

Notably, it has been shown that 1,25(OH)2D3 modulates
the cell cycle through checkpoint regulation (118). Binding
to the promoter region of genes encoding p21 and p27 results
in cyclin dependent kinase (CDK) inhibition and cell cycle
arrest in the G1 phase via decreased cyclin D1 expression
(95, 118). Interestingly, ligand-dependent AHR activation
was also found to increase p21 and p27 expression in
addition to CYP1A1, resulting in G1 phase cell cycle arrest
(119, 120). Another mechanism that may be involved in
1,25(OH)2D3-induced cell cycle regulation is executed
through activation of distinct molecular pathways including
intracellular kinase pathways (e.g., ERK, PI3K), pathways
of transforming growth factor β (TGF-β) and of insulin-like
growth factor-binding proteins (IGF-BP), which are found to
interact with AHR signaling (121-127). Moreover,
1,25(OH)2D3 induces protein kinase C (PKC) activation,
which plays an important role in the regulation of gene
expression, cell differentiation, mobility, and metastasis. The
subsequently induced mitogen-activated kinases 1 and 2
(MAPK1 and MAPK2) are regulators of cell growth (95) and
of transcription factors as well as co-regulatory and
chromatin proteins in malignant melanoma (128). Recent
studies demonstrated, that PKC activity is required for
classical AHR-mediated signaling in a tissue-dependent
manner (129). MAPKs induced by TCDD were also found
to be important for the induction of AHR-dependent gene
transcription and CYP1A1 expression (130).

Inhibition of angiogenesis represents another anti-tumor
mechanism exerted by 1,25(OH)2D3 (95). Through interaction
with nuclear factor kappaB (NF-ĸB), inhibition of Interleukin-
8 (IL-8) transcription is achieved. Suppression of growth
factors like vascular endothelial growth factor (VEGF) or
platelet-derived growth factor (PDGF) and of hypoxia

inducible factor 1 alpha (HIF1α) also seems to be an important
part of this process (131). Tight interactions between NF-ĸB
and AHR signaling have been studied in various immune cells
contributing to xenobiotic metabolism and carcinogenesis.
AHR has been found to modulate peptidoglycan (PGN)-
induced expression of IL-8 in human sebocytes involving the
NF-ĸB pathway (132). Another finding showed that after UVB
irradiation, NF-ĸB preliminary suppressed CYP1A1 expression,
indicating a role of NF-ĸB in UVB-dependent AHR signaling
and potentially in a photo-protective cellular response (133). 

The Hedgehog (Hh) signaling pathway, whose
inappropriate activation is associated with cancer stimulation
and progression (134, 135), represents another target of the
cancer-inhibitory function of 1,25(OH)2D3. Different types
of human cancer, including skin BCC, have been linked to
deregulation of Hh signaling caused by gene mutations or
uncontrolled Hh ligand production (135, 136). 1,25(OH)2D3
inhibits Hh-induced  proliferation and signaling through
modulation of Hh target gene GLI1 (137). Contrary to its
previous described cancer-promoting properties, AHR
signaling was found to inhibit the Hh pathway in vivo in
medulloblastoma and was identified as a potent tumour
suppressor (138). It remains to be clarified how CYP1A1 is
involved in the regulation of Hh signaling and whether it
participates in the execution of tumor-suppressive functions.

Indirect anti-cancer effects of 1,25(OH)2D3 mainly
concern the tumor microenvironment. They include
modulation of immune mediators [e.g., DNA methylation of
CpG regions, production of Interleukin-1β (IL-1β) and tumor
necrosis factor-α (TNF-α)], cancer-associated metabolic
cascades (e.g., Inhibition of estrogenic signaling through
down-regulation of CYP19A1, suppression of 27-
hydroxycholesterol (27HC) and CYP27A1), and homeostatic
processes in surrounding tissues (e.g., down-regulation of
pyruvate carboxylase, up-regulation of CYP3A4, reduction
of AMP hydrolysis and adenosine production) (118).
Interestingly, some of these effects may also be related to
key players of AHR signaling. In human salivary cells, TNF-
α significantly induced AHR along with CYP1A1 expression,
whereas IL-1β did not affect AHR or CYP1A1 mRNA levels
(139). Additionally, AHR inhibits ER activity in human
breast cancer cells, rodent uterus, and mammary tumors
(140). AHR activators PAHs and TCDD increased CYP3A4
mRNA expression in HepG2 cells (141). CYP3A4 induction
by xenobiotics largely depends on PXR, which tightly
regulates CYP3A4 expression (142). As there is ample
evidence for an interaction between PXR and AHR (143-
145), a possible role for AHR signaling in the regulation of
the CYP3A4 gene is conceivable. 

Additionally, cells were treated with 25(OH)D3 (partly
VDR-inhibitor) to determine whether the CYP1A1 mRNA
induction was VDR-dependent. Co-treatment with 25(OH)D3
induced and suppressed CYP1A1 gene expression in
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1,25(OH)2D3- and in EtOH-treated cells, respectively. In
conclusion, these findings indicate that 25(OH)D3 does not
act as a partly VDR inhibitor, at least in HaCaT cells. As
25(OH)D3 is converted in epidermal keratinocytes to
1,25(OH)2D3 by the 1-alpha-hydroxylase (CYP27B1) (146-
148), it could exert agonist activity and intensify the effect
of 1,25(OH)2D3 on CYP1A1. Moreover, the mechanisms by
which 25(OH)D3 suppresses CYP1A1 mRNA expression in
these cells remain to be elucidated. 

We here show that transcriptional activity of CYP24A1 is
significantly up-regulated after 1,25(OH)2D3 treatment,
while VDR mRNA expression is only marginally altered
(HaCaT) or even down-regulated (SCL-1) when compared
to the control group. It was reported that CYP24A1, the
major metabolizing enzyme of 1,25(OH)2D3, is elevated in
many human tumor tissues (149, 150) including non-
melanoma skin cancer (151) and is associated with poor
prognosis in various cancer types (152). Thus, CYP24A1 has
been considered a possible oncogene (66). Consistent with
these findings, our study demonstrated that mRNA
expression of CYP24A1 was stronger in untreated SCL-1
cells, revealing the complete phenotype of malignant
transformation, as compared to precancerous HaCaT cells.
Increased levels of CYP24A1 mRNA could lead to rapid
inactivation of 1,25(OH)2D3, resulting in abolition of its
antiproliferative effects against cancer. It would therefore be
conceivable, that the high transcriptional level of CYP24A1
is not due to up-regulation by the physiological
1,25(OH)2D3/VDR signaling pathway, but rather to over-
expression of the gene. Identically to CYP1A1, the
combination of 1,25(OH)2D3 and UVB increased CYP24A1
transcriptional activity in SCL-1 cells even more. 

Notably, 1,25(OH)2D3 induced CYP24A1 expression 100
times stronger in HaCaT as compared to SCL-1 cells. The p53
status of HaCaT (p53mut) and SCL-1 (p53null) keratinocytes
and the crosstalk of p53 with VDR may contribute to this
finding. Under physiological conditions, the p53 protein
protects cells from DNA damage by several mechanisms (e.g.,
apoptosis induction, cell cycle progression halting, cellular
aging) (153). In several tumor types, the cancer-associated and
mutated p53 (p53mut) has been found to exert new
mechanisms that have been termed gain-of-function (GOF),
enabling it to act at the molecular level in a similar way to
1,25(OH)2D3 (95). It has been shown that p53mut is able to
interact with the VDR, modulate the expression of VDR-
regulated genes and enhance the nuclear VDR translocation
and accumulation (154). As these effects were even more
prominent after 1,25(OH)2D3 supplementation, a mechanism
leading to stronger VDR target gene expression in p53 mutated
cells might be plausible. Importantly, p53mut reversed the
impact of 1,25(OH)2D3 on cell death and converted it from a
pro-apoptotic to an anti-apoptotic agent. Thus, p53 status may
alter the biological function of 1,25(OH)2D3 in precancerous

and cancerous skin cells and deregulate the anti-cancer effects
of the VDR pathway. As p53 also modulates AHR target genes
like CYP1A1 (93) and COX2 (155-157), it could be speculated
that the AHR pathway may exert a similar effect in
cooperation with 1,25(OH)2D3. However, this assumption
could only be confirmed for COX2, as its mRNA expression
after 1,25(OH)2D3 treatment was 9 times stronger in HaCaT
cells than in SCL-1 cells.  

In addition to its anti-apoptotic activity also induced by
TNF-α, TNF-related apoptosis-inducing ligand (TRAIL) and
Fas ligand (FasL), 1,25(OH)2D3 has been described to increase
cell survival after UV damage and protect some cancer cell
lines against cytotoxic drugs (154, 158). However, several
other studies have shown contradictory results regarding the
association between 1,25(OH)2D3 and skin tumorigenesis (95,
118), questioning the exclusivity of the anti-cancer properties
of 1,25(OH)2D3 in the skin and speculating about possibly
harmful and cancer-promoting effects. 

In summary, we here show differential regulation of AHR-
and VDR-mediated signaling in HaCaT as compared with
SCL-1 cells and after treatment with UVB as compared with
1,25(OH)2D3. In conclusion, our data indicate that the
complex network of AHR- and VDR-mediated signaling may
contribute to the photo-carcinogenesis of non-melanoma skin
cancer. Treatment of keratinocytes with UVB exerts
additional biological effects in human skin cells as compared
to treatment with 1,25(OH)2D3. These findings imply that
oral uptake of vitamin D (e.g., by food or supplements)
cannot compensate for all effects of UVB on human health,
that include effects of non-classical, AHR-activating vitamin
D derivatives. However, the exact mechanisms behind this
are yet not fully understood. Further investigations are
required to demonstrate the underlying pathophysiological
relevance of our results. Advanced detection and assay
methods, other malignant and non-malignant skin cell lines
and CYP1A1-related signaling pathways, extended
examination time points as well as multiple 1,25(OH)2D3
concentrations and UVB doses should be considered, in
order to eventually open new perspectives regarding the
prevention and treatment of skin cancer.
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