
Abstract. Background/Aim: Experimental oncology
commonly uses cells as oncological models, providing a
framework for the testing of drugs, and investigation of
cytotoxicity, mutagenesis and carcinogenesis. Investigations
into poly-ADP-ribose polymerase 1 (PARP1) inhibition have
become ever more relevant due to its approval as a
therapeutic option for tumors with BRCA1/2 DNA repair-
associated mutation and the seemingly high PARP expression
levels in some tumor subtypes. In this study, we aimed to
determine PARP1 gene expression of different hematological
cancer-derived cell lineages and compare them to that of
normal cell lines. Materials and Methods: PARP1 gene
expression in seven different neoplastic lineages,
representing three different hematological disorders (chronic
myeloid leukemia, Burkitt lymphoma and acute
lymphoblastic leukemia), was quantified by quantitative real-
time polymerase chain reaction. Results: All hematological
malignant lineages in this study overexpressed PARP1 when
compared to the normal cell line MRC-5, with Burkitt's
lymphoma cells having the highest expression values (fold
change: 93). Conclusion: Overexpression of PARP1 in
hematological malignant lineages is a finding of crucial
importance to future studies exploring possible cellular
oncogenic pathways and supports investigations into the
effectiveness of PARP1 inhibitors against hematological
disorders.

Experimental oncology consists in the use of cell cultures for the
study and investigation of neoplasms in biological models.
Commonly utilized in research laboratories, cell models represent
an excellent basis for analyses of genetic and epigenetic
molecular alterations and anticancer drug testing (1, 2).

Research studies utilizing cell lineages are demonstrated
to be appropriate frameworks for the development of new
drugs and provide credible models for the analyses of
cytotoxicity, mutagenesis and carcinogenesis, also allowing
for consistent and reproducible results (3). The primary
advantage when working with cell lines is the availability of
a potentially unlimited source of biological material, as cells
are able to divide and grow indefinitely in vitro. Moreover,
the possibility of storing cells in liquid nitrogen allows for
continuation of research over prolonged periods (4).

Investigations into poly-ADP-ribose polymerase (PARP)
cellular pathways have become ever more relevant since the
first approval of PARP inhibitors (PARPi) for the treatment of
breast cancer 1/2 (BRCA1/2) DNA repair-associated-deficient
tumors, with PARP1 being the main target of inhibition (5, 6).
PARP1 plays a major role in the DNA-damage response and
is overexpressed in various tumor subtypes, being mainly
associated with an unfavorable prognosis (7-9).

PARPi are targeted antineoplastic drugs and the treatment
outcome is dependent on PARP1 expression in the targeted cells
(5, 10). In this study, we aimed to determine the PARP1
expression level of different cell lineages representing neoplastic
hematological disorders and to compare them to the expression
levels of normal cell lines, creating a basis for future studies of
PARPi utilizing experimental oncology models. 

Materials and Methods

Cell culture. For analyses of PARP1 gene expression, we utilized a
panel of leukemia and normal cell lines for comparison, as shown
in Table I. Cells lines derived from patients with chronic myeloid
leukemia (CML) K-562, vincristine-resistant derivative K562-
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Lucena 1, and daunorubicin-resistant derivative FEPS were
generously donated by Professor Vivian M. Rumjanek from the
Federal University of Rio de Janeiro, Brazil. SUP-B15 and Jurkat
cell lines derived from lymphoblastic leukemia, as well as Namalwa
and Raji cell lines from Burkitt’s lymphoma, were kindly provided
by Professor Lucas Eduardo Botelho de Souza from Regional Blood
Center of Ribeirão Preto, University of São Paulo, Brazil. 

All leukemia cell lines were cultivated in RPMI; for resistant cell
lines K562-Lucena 1 and FEPS, media were also supplemented with
60 nM vincristine sulfate and 46 nM daunorubicin, respectively.
Normal cell lines derived from the gastric epithelium (MNP-01) and
lung fibroblast (MRC-5) were maintained in Dulbecco’s modified
Eagle’s medium. All media were supplemented with 10% (v/v) fetal
bovine serum (Gibco®, Carlsbad, CA, USA), 1% (v/v) penicillin
(100 U/ml) and streptomycin (100 mg/ml) (Gibco®), and cells were
conditioned in a 5% CO2 air-humidified atmosphere at 37˚C.

Total mRNA isolation and cDNA synthesis. Cells were plated in 12-
well plates at 5×104 cells/welI for normal cells (MRC-5 and MNP-01)
and about 7×104 cells/well for leukemia cells. Cell lines were
maintained until 80% confluency (~48 hours for normal cells and 44
to 48 hours for leukemia cells). After the cultivation time, cells were
collected and RNA was extracted with TRIzol Reagent®
(Invitrogen™, Carlsbad, CA, USA) according to the manufacturer’s
instructions. After extraction, RNA concentration and quality were
determined using NanoDrop (Thermo Scientific, Carlsbad, CA, USA)
and 20 ng was used for cDNA confection using High-Capacity cDNA
Reverse Transcriptase kit (Life Technologies, Carlsbad, CA, USA).
cDNA was then stored at −20˚C until further expression analysis. 

Analysis of PARP1 expression by quantitative real-time reverse
transcriptase polymerase chain reaction (qPCR). Quantitative real-
time PCR was performed using the Power SYBR Green PCR
Master Mix kit (Applied Biosystems®, Foster City, CA, USA).
Relative expression levels of PARP1 (NM_001618.3) were
normalized and determined using β-actin gene (ACTB;
NM_001101.5) as an endogenous control. Primer efficiency was
determined for all genes described. The detection method was the
TaqMan® Gene expression assays system (Applied Biosystems) and
qPCR was performed using QuantStudio® 5 Real-Time PCR system
(Applied Biosystems). The experiments were performed in triplicate
and the standard requirements for performing the technique were
followed (20). For calculating the relative expression levels, the
2−∆∆CT method was used (21), considering the sample from the
normal cell line MRC-5 as the calibrator of the assays.

Statistical analysis. Assays were performed in triplicate and results
are shown as the mean±standard deviation, the relative expression
of PARP1 in cell lines was compared to the expression in the MRC-
5 sample by one-way analysis of variance followed by Bonferroni’s
post-test. Significant differences were considered with an interval
of confidence of 95% (p<0.05). GraphPad Prism 5.01 software
(Merck®, Darmstadt, Hesse, Germany) was used for data analysis
and graph design.

Results

Firstly, when we compared the expression of PARP1 in cell
lines derived from CML with the normal cell line MRC-5
(Figure 1), all those analyzed presented gene expression
enhanced by more than 10-fold (K-562 and FEPS: p<0.0001;
and K562-Lucena 1: p<0.05). When compared among
themselves, FEPS showed higher expression than K-562 and
K562-Lucena 1, at around 50- and 90-fold, respectively
(p<0.0001).

Next, we analyzed PARP1 expression in cell lines derived
from acute leukemia. Both SUP-B15 (p<0.0001) and Jurkat
(p<0.001) presented a significant increase in PARP1
expression when compared to normal cells (approximately
30- and 20-fold, respectively). However, when these cell
lines were compared with each other, there was no difference
in gene expression (Figure 2).

We also evaluated PARP1 gene expression in cell lines
derived from Burkitt’s lymphoma (BKL); Namalwa, and Raji
cell lines presented a 90-fold and 70-fold increase in PARP1
expression, respectively (p<0.0001) when compared to
normal cell MRC-5 (Figure 3), and did not differ statistically
in PARP1 gene expression when compared with each other.

Discussion

Cancer cell lines are commonly used in research
laboratories due to their easy manipulation compared to in
vivo models, and more ethically accepted usage (1). Even
though the cellular genetic expression may diverge between
similar lineages cultivated in different laboratories, it is
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Table I. Cell lines evaluated in this study.

Cell line                                                            Tissue of origin                                                            Classification                                       Reference 

K-562                                           Bone marrow chronic myeloid leukemia                                           Blast cells                                                11
K562-Lucena 1                                             Derived from K-562                                                   Vincristine-resistant                                        12
FEPS                                                             Derived from K-562                                                 Daunorubicin-resistant                                      13
SUP-B15                                                            Bone marrow                                                             B Lymphoblast                                            14
Jurkat                                                                Peripheral blood                                                           T Lymphocyte                                            15
Namalwa                                                          Peripheral blood                                                           B Lymphocyte                                            16
Raji                                                                     Bone marrow                                                             B Lymphocyte                                            17
MRC-5                                                   Human fetal lung fibroblasts                                                   Normal cell                                               18
MNP-01                                             Non-neoplastic gastric epithelium                                               Normal cell                                               19



essential to determine a lineage’s molecular profile for the
correct conduction of anticancer drug tests and when
searching for possible mechanisms of resistance (1, 22, 23).

Characterization of PARP1 expression in cancer cell lines
is becoming ever more relevant due to the increased use of
PARPi in clinical practice for the treatment of different solid
tumors and their promising activity in in vitro studies and
clinical trials as a therapeutic option for leukemia and other
hematological malignancies (24, 25).

When analyzing the profile of CML lineages, it is not
surprising that significant differences in PARP1 expression
levels were detected, even though all lineages were derived
from K-562, since previous literature reports already
determined the main resistance mechanism of K562-Lucena
1 and FEPS to be through overexpression of ATP binding
cassette subfamily B member 1 (ABCB1) transporter protein.

More than 1,000 genes are differentially expressed between
these cell lines (26), and we demonstrate PARP1 to be one of
these genes.
PARP1 was overexpressed in all CML lineages analyzed

when compared to the normal MRC-5 cell line. This
observation corroborates previous data indicating PARPi
effectiveness against CML cell lines and patient samples
harboring breakpoint cluster region–Abelson murine
leukemia translocation (BCR–ABL), especially when
combined in synergistic treatments (27-30).

Both acute leukemia lineages analyzed also demonstrate
PARP1 overexpression in comparison to normal cells. While
PARPi usage may not always be effective as a single agent
against acute leukemia cells (31), its in synergistic treatments,
alongside DNA damage-inducing drugs, demonstrated
anticancer potential for different acute leukemia subtypes (32,
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Figure 1. Expression of poly-ADP-ribose polymerase 1 (PARP1) in chronic myeloid leukemia cell lines. Data are presented as the mean±SD of three
independent experiments. PARP1 gene expression was normalized by endogenous gene actin beta (ACTB). Expression in normal gastric cells MNP-
01, and chronic myeloid leukemia cell line K-562, its vincristine-resistant derivative K562-Lucena 1, and daunorubicin-resistant derivative FEPS
was compared to that of lung fibroblasts MRC-5, using analysis of variance and multiple Bonferroni comparisons. Significantly different at: *p<0.05
and **p<0.0001 from MRC-5 cells; ##p<0.0001.

Figure 2. Expression of poly-ADP-ribose polymerase 1 (PARP1) in acute leukemia cell lines. Data are presented as mean±SD of three independent
experiments. PARP1 gene expression was normalized by endogenous gene actin beta (ACTB). Expression in normal gastric cells MNP-01 and cell
lines of acute lymphoblastic leukemia (SUP-B15), and acute T-cell leukemia (Jurkat) was compared to that of lung fibroblasts MRC-5 using analysis
of variance and multiple Bonferroni comparisons. Significantly different from MRC-5 cells at *p<0.001 and **p<0.0001. 



33), pointing to PARP1 overexpression as a possible supportive
pathway to malignancy.

Lastly, the two BKL cell lines presented some of the
higher expression levels of PARP1 in those analyzed.
Immunoglobulin heavy locus/MYC proto-oncogene
translocation is the most common mutation in BKL cells
and, while it is related to overexpression of MYC
transcription factor, it also seems to be responsible for
down-regulation of BRCA2 tumor-suppressor protein and
accumulation of DNA double-strand breaks in these cells
(34), which might explain PARP1 overexpression as being
a compensatory mechanism for perturbed DNA damage-
repair pathways.

It is also relevant to note that, in accordance with the
concept of synthetic lethality, the expression profile of BKL
cells leads to them being sensitive to PARPi treatment as a
total disruption of DNA damage-repair mechanisms induces
apoptosis even in malignant cell phenotypes (34-36).

Conclusion
Overall, all malignant lineages in this study were found to
overexpress PARP1. This observation is crucial for future
studies exploring possible cellular oncogenic pathways and
highlights the need for investigations into PARPi
effectiveness against hematological disorders.
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