Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleClinical Studies
Open Access

Lowering and Stabilizing PSA Levels in Advanced-prostate Cancer Patients With Oral Methioninase

QINGHONG HAN and ROBERT M. HOFFMAN
Anticancer Research April 2021, 41 (4) 1921-1926; DOI: https://doi.org/10.21873/anticanres.14958
QINGHONG HAN
AntiCancer, Inc., San Diego, CA, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROBERT M. HOFFMAN
AntiCancer, Inc., San Diego, CA, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Methionine addiction is a general and fundamental hallmark of cancer due to the excess use of methionine for transmethylation reactions, termed the “Hoffman Effect”. Methionine addiction has been shown to be a highly-effective target for cancer therapy by methionine restriction with oral recombinant methioninase (o-rMETase) in preclinical studies, including patient- derived orthotopic xenograft (PDOX) mouse models of cancer. A clinical study of o-rMETase as a supplement showed a 70% reduction of PSA levels in a patient with bone-metastatic prostate cancer. Materials and Methods: In the present study, two advanced prostate-cancer patients took o-rMETase as a supplement for approximately one month. Results: One of the patients taking o-rMETase showed a 38% reduction of PSA levels and the second patient showed a 20% PSA reduction. Conclusion: o-rMETase shows promise for treating patients with advanced prostate cancer.

Key Words:
  • Methioninase
  • oral
  • methionine addiction
  • prostate cancer
  • PSA
  • patients
  • response

Methionine addiction is a general and fundamental hallmark of cancer that greatly distinguishes all tested cancer types from normal cells, with respect to their high requirement levels for methionine (1-8). The methionine addiction of cancer cells is due to excess transmethylation reactions, compared to normal cells, which leads to methionine overuse and depletion of the cellular pools of free methionine and S-adenosylmethionine (7, 8), which is called the “Hoffman Effect” (9-11), a possibly stronger effect than the Warburg effect for glucose (12). The elevated transmethylation in cancer is due in part to the over-methylation of histone H-3 lysine marks (13, 14).

Targeting methionine addiction in cancer with recombinant methioninase (rMETase), cloned from P. putida and expressed in Escherichia coli (15), has been shown to be effective against all major cancer types in mouse models of cancer, including patient-derived orthotopic xenograft (PDOX) mouse models (16-42).

Previous preliminary safety studies on i.v. PEGylated r-METase in macaque monkeys showed that rMETase depleted plasma methionine to <5 μmol/l, with transient anemia being the only side effect (43). PEGylation of rMETase was necessary to prevent anaphylaxis due to repeated treatment (43). i.v. injection of rMETase also caused rapid loss of the rMETase co-factor pyrodoxal 5-phosphate (PLP) and thereby, a loss of its enzymatic activity (43).

A previous pilot Phase I clinical trial of o-rMETase was carried out to determine rMETase toxicity and the extent of methionine depletion in high-stage cancer patients. Circulating methionine levels were lowered to 0.1 μM by short-term i.v. rMETase treatment, without toxicity (44, 45).

The discovery that rMETase could be effectively administered orally (o-rMETase) (26), solved the problem of anaphylaxis and dissociation of PLP from rMETase, since o-rMETase exerts its effects in the gastro-intestinal tract without entering the circulation. o-rMETase has been shown to be highly effective against recalcitrant sarcoma, pancreatic cancer, colon cancer, and melanoma in PDOX mouse models (17-20, 24-26, 32, 33, 39).

Prostate cancer is the second-leading cause of death of North American men (46). Prostate-specific antigen (PSA) is a blood biomarker of prostate cancer and its progression (46). Androgen-deprivation therapy has been combined with docetaxel to improve survival of prostate cancer patients (46-49). However, survival of hormone-independent prostate cancer patients is low (47), and in need of improved therapy.

Due to the very low toxicity of o-rMETase, a pilot clinical study of o-rMETase, as a supplement, was initiated in 2020, with an advanced prostate-cancer patient with bone-metastatic disease. During a three-month period of receiving o-rMETase as a supplement, the patient had a 70% drop in his PSA levels, without any side effects (50). In the present study, we report a reduction in PSA levels in two additional advanced prostate cancer patients taking o-rMETase as a supplement, without side effects.

Materials and Methods

rMETase production and formulation. rMETase was fermented in recombinant E. coli and purified using column chromatography, as previously described (15). Pure methioninase was dissolved in phosphate-buffered saline (PBS) at 5 mg/ml (250 units), which comprised one dose for oral administration, to be taken after breakfast and dinner.

Methionine measurement. Methionine was measured in the plasma by high performance liquid chromatography as previously described (51).

Results

Patients. Two prostate-cancer patients were treated with o-rMETase twice a day with a dose of 250 units each time. Patient #1 was 55 years old, and had a 35 mm prostate cancer at diagnosis. The patient was initially treated with image-guided radiotherapy. This patient had a Gleason score of 4+3, with perineural invasion and extracapsular extension. Patient #2 was 90 years old, and was diagnosed with prostate cancer, with rapidly rising PSA levels.

PSA reduction by o-rMETase. Patient #1 had a 38.3% PSA drop within four weeks (Figure 1). Patient #2 had a 20.1% PSA drop within four weeks which then stabilized (Figure 2).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

PSA levels in patient #1 before and after receiving o-rMETase as a supplement for 21 days. The patient took two daily doses of 250 units of o-rMETase.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

PSA levels in patient #2 before and during his treatment with o-rMETase, twice daily, 250 units/dose. Red arrow indicates the start of o-rMETase treatment.

Circulating methionine reduction by o-rMETase. Patient #1 had a 42.7% drop in methionine levels during a 12-day period of taking o-rMETase (Figure 3).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Daily methionine levels in the plasma of patient #1 during treatment with o-rMETase, twice daily, 250 units/dose.

Discussion

o-rMETase has been previously shown to cause a 70% drop in the PSA levels of a bone-metastatic prostate-cancer patient who was treated with o-rMETase as a supplement for 3 months, with a starting PSA value of over 2000 ng/ml (50).

Initially, rMETase was administered intra-venously or intra-peritoneally in mouse models (1, 21, 44, 45). However, primate studies showed that repeated i.v. infusion of rMETase caused anaphylaxis, which could be prevented by PEGylation of rMETase (43). In 2018, it was found that rMETase could be effectively administered orally (o-rMETase) (26), and subsequent studies showed that o-rMETase was effective in PDOX models against all major cancer types (17-20, 24-26, 32, 33, 39). o-rMETase does not appear to enter the blood stream, thereby eliminating the risk of anaphylaxis, as well as eliminating loss of activity due to dissociation of the rMETase co-factor PLP. o-rMETase functions in the gut to degrade methionine, which subsequently lowers the blood levels of methionine, since there is no longer a source of external methionine (26).

o-rMETase is therefore much safer than injecting rMETase into the blood stream (52), and has allowed the initial development of o-rMETase as a supplement for patients. The fact that the origin of o-rMETase was in P. putida, a soil bacterium that survives in environments with a wide range of pH, enabled o-rMETase to evolve into an acid-resistant enzyme that can survive the low pH of the stomach (1, 26).

The two prostate-cancer patients in the present report responded to o-rMETase as observed by the reduction in PSA levels (Figures 1 and 2). Patient #1 periodically fasted and was on a vegan diet, which may have affected his methionine and PSA levels.

The present dose of 250 units twice a day may be modified in the future in order to maximally lower the circulating methionine levels. Modifying the diet with low methionine–containing foods (53), may also be helpful along with altered dosing and scheduling of o-rMETase, to lower methionine and PSA levels even further. After optimization of the dose, schedule and diet, cancer patients can be treated with combinations of o-rMETase and chemotherapy, as methionine restriction and chemotherapy were found to be synergistic (6, 36). Most promising is combination chemotherapy along with o-rMETase for blockade of the methionine-methylation axis (54-56).

Acknowledgements

This paper is dedicated to the memory of John Mays, AR Moossa, MD, Sun Lee, MD, Professor Li Jiaxi and Masaki Kitajima, MD.

Footnotes

  • Authors’ Contributions

    Qinghong Han produced the recombinant methioninase and analyzed the data. Robert M. Hoffman wrote the paper.

  • This article is freely accessible online.

  • Conflicts of Interest

    The Authors report no conflicts of interest in relation to this study.

  • Received February 22, 2021.
  • Revision received March 8, 2021.
  • Accepted March 11, 2021.

This is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

References

  1. ↵
    1. Hoffman RM
    : Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: A 40-year odyssey. Expert Opin Biol Ther 15(1): 21-31, 2015. PMID: 25439528. DOI: 10.1517/14712598.2015.963050
    OpenUrlCrossRef
    1. Hoffman RM and
    2. Erbe RW
    : High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73(5): 1523-1527, 1976. PMID: 179090. DOI: 10.1073/pnas.73.5.1523
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM and
    2. Jacobsen SJ
    : Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12): 7306-7310, 1980. PMID: 6261250. DOI: 10.1073/pnas.77.12.7306
    OpenUrlAbstract/FREE Full Text
    1. Guo H,
    2. Lishko VK,
    3. Herrera H,
    4. Groce A,
    5. Kubota T and
    6. Hoffman RM
    : Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 53(23): 5676-5679, 1993. PMID: 8242623.
    OpenUrlAbstract/FREE Full Text
    1. Yano S,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Bouvet M,
    6. Fujiwara T and
    7. Hoffman RM
    : Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18): 8729-8736, 2014. PMID: 25238266. DOI: 10.18632/oncotarget.2369
    OpenUrlCrossRefPubMed
  2. ↵
    1. Stern PH and
    2. Hoffman RM
    : Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76(4): 629-639, 1986. PMID: 3457200. DOI: 10.1093/jnci/76.4.629
    OpenUrlCrossRefPubMed
  3. ↵
    1. Stern PH and
    2. Hoffman RM
    : Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20(8): 663-670, 1984. PMID: 6500606. DOI: 10.1007/BF02619617
    OpenUrlCrossRefPubMed
  4. ↵
    1. Coalson DW,
    2. Mecham JO,
    3. Stern PH and
    4. Hoffman RM
    : Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79(14): 4248-4251, 1982. PMID: 6289297. DOI: 10.1073/pnas.79.14.4248
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Kaiser P
    : Methionine dependence of cancer. Biomolecules 10(4): 568, 2020. PMID: 32276408. DOI: 10.3390/biom10040568
    OpenUrlCrossRef
    1. Lauinger L and
    2. Kaiser P
    : Sensing and signaling of methionine metabolism. Metabolites 11(2): 83, 2021. PMID: 33572567. DOI: 10.3390/metabo11020083
    OpenUrlCrossRef
  6. ↵
    1. Borrego SL,
    2. Fahrmann J,
    3. Hou J,
    4. Lin DW,
    5. Tromberg BJ,
    6. Fiehn O and
    7. Kaiser P
    : Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res Feb 26:100056, 2021. Epub ahead of print. PMID: 33647277. DOI: 10.1016/j.jlr.2021.100056
    OpenUrlCrossRef
  7. ↵
    1. Pirotte B,
    2. Goldman S,
    3. Massager N,
    4. David P,
    5. Wikler D,
    6. Vandesteene A,
    7. Salmon I,
    8. Brotchi J and
    9. Levivier M
    : Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45(8): 1293-1298, 2004. PMID: 15299051.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Yamamoto J,
    2. Inubushi S,
    3. Han Q,
    4. Tashiro Y,
    5. Sun Y,
    6. Sugisawa N,
    7. Hamada K,
    8. Nishino H,
    9. Aoki Y,
    10. Miyake K,
    11. Matsuyama R,
    12. Bouvet M,
    13. Endo I and
    14. Hoffman RM
    : Cancer-specific overmethylation of histone H3 lysines is necessary for methionine addiction and malignancy. BioRxiv, 2020. DOI:10.1101/2020.12.04.412437
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Yamamoto J,
    2. Han Q,
    3. Inubushi S,
    4. Sugisawa N,
    5. Hamada K,
    6. Nishino H,
    7. Miyake K,
    8. Kumamoto T,
    9. Matsuyama R,
    10. Bouvet M,
    11. Endo I and
    12. Hoffman RM
    : Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochem Biophys Res Commun 533(4): 1034-1038, 2020. PMID: 33019978. DOI: 10.1016/j.bbrc.2020.09.108
    OpenUrlCrossRef
  10. ↵
    1. Tan Y,
    2. Xu M,
    3. Tan X,
    4. Tan X,
    5. Wang X,
    6. Saikawa Y,
    7. Nagahama T,
    8. Sun X,
    9. Lenz M and
    10. Hoffman RM
    : Overexpression and large-scale production of recombinant L-methionine-alpha-deamino-gamma-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9(2): 233-245, 1997. PMID: 9056489. DOI: 10.1006/prep.1996.0700
    OpenUrlCrossRefPubMed
  11. ↵
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Murakami T,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Tsuchiya H and
    11. Hoffman RM
    : Effective metabolic targeting of human osteosarcoma cells in vitro and in orthotopic nude-mouse models with recombinant methioninase. Anticancer Res 37(9): 4807-4812, 2017. PMID: 28870899. DOI: 10.21873/anticanres.11887
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Higuchi T,
    2. Han Q,
    3. Miyake K,
    4. Oshiro H,
    5. Sugisawa N,
    6. Tan Y,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Bouvet M,
    13. Singh SR,
    14. Tsuchiya H and
    15. Hoffman RM
    : Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 523(1): 135-139, 2020. PMID: 31839218. DOI: 10.1016/j.bbrc.2019.12.024
    OpenUrlCrossRef
    1. Higuchi T,
    2. Sugisawa N,
    3. Yamamoto J,
    4. Oshiro H,
    5. Han Q,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Tan Y,
    12. Kuchipudi S,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H and
    16. Hoffman RM
    : The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85(2): 285-291, 2020. PMID: 31705268. DOI: 10.1007/s00280-019-03986-0
    OpenUrlCrossRef
    1. Oshiro H,
    2. Tome Y,
    3. Kiyuna T,
    4. Yoon SN,
    5. Lwin TM,
    6. Han Q,
    7. Tan Y,
    8. Miyake K,
    9. Higuchi T,
    10. Sugisawa N,
    11. Katsuya Y,
    12. Park JH,
    13. Zang Z,
    14. Razmjooei S,
    15. Bouvet M,
    16. Clary B,
    17. Singh SR,
    18. Kanaya F,
    19. Nishida K and
    20. Hoffman RM
    : Oral recombinant methioninase overcomes colorectal-cancer liver metastasis resistance to the combination of 5-fluorouracil and oxaliplatinum in a patient-derived orthotopic xenograft mouse model. Anticancer Res 39(9): 4667-4671, 2019. PMID: 31519565. DOI: 10.21873/anticanres.13648
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Higuchi T,
    2. Oshiro H,
    3. Miyake K,
    4. Sugisawa N,
    5. Han Q,
    6. Tan Y,
    7. Park J,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Bouvet M,
    16. Chawla SP,
    17. Singh SR,
    18. Tsuchiya H and
    19. Hoffman RM
    : Oral recombinant methioninase, combined with oral caffeine and injected cisplatinum, overcome cisplatinum-resistance and regresses patient-derived orthotopic xenograft model of osteosarcoma. Anticancer Res 39(9): 4653-4657, 2019. PMID: 31519563. DOI: 10.21873/anticanres.13646
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Kawaguchi K,
    2. Han Q,
    3. Li S,
    4. Tan Y,
    5. Igarashi K,
    6. Murakami T,
    7. Unno M and
    8. Hoffman RM
    : Efficacy of recombinant methioninase (rMETase) on recalcitrant cancer patient-derived orthotopic xenograft (PDOX): A review. Cells 8(5): 410, 2019. PMID: 31052611. DOI: 10.3390/cells8050410
    OpenUrlCrossRef
    1. Miyake K,
    2. Kiyuna T,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Zhao M,
    7. Oshiro H,
    8. Kawaguchi K,
    9. Higuchi T,
    10. Zhang Z,
    11. Razmjooei S,
    12. Barangi M,
    13. Wangsiricharoen S,
    14. Murakami T,
    15. Singh AS,
    16. Li Y,
    17. Nelson SD,
    18. Eilber FC,
    19. Bouvet M,
    20. Hiroshima Y,
    21. Chishima T,
    22. Matsuyama R,
    23. Singh SR,
    24. Endo I and
    25. Hoffman RM
    : Combining tumor-selective bacterial therapy with Salmonella typhimurium A1-R and cancer metabolism targeting with oral recombinant methioninase regressed an Ewing’s sarcoma in a patient-derived orthotopic xenograft model. Chemotherapy 63(5): 278-283, 2018. PMID: 30673664. DOI: 10.1159/000495574
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyaki M,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Higuchi T,
    11. Singh AS,
    12. Chmielowski B,
    13. Nelson SD,
    14. Russell TA,
    15. Eckardt MA,
    16. Dry SM,
    17. Li Y,
    18. Singh SR,
    19. Chawla SP,
    20. Eilber FC,
    21. Tsuchiya H and
    22. Hoffman RM
    : Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506(4): 912-917, 2018. PMID: 30392912. DOI: 10.1016/j.bbrc.2018.10.119
    OpenUrlCrossRef
  15. ↵
    1. Higuchi T,
    2. Kawaguchi K,
    3. Miyake K,
    4. Han Q,
    5. Tan Y,
    6. Oshiro H,
    7. Sugisawa N,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Chawla SP,
    16. Singh AS,
    17. Eilber FC,
    18. Singh SR,
    19. Tsuchiya H and
    20. Hoffman RM
    : Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10): 5639-5644, 2018. PMID: 30275182. DOI: 10.21873/anticanres.12899
    OpenUrlAbstract/FREE Full Text
    1. Kawaguchi K,
    2. Higuchi T,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Igarashi K,
    7. Zhao M,
    8. Miyake K,
    9. Kiyuna T,
    10. Miyake M,
    11. Ohshiro H,
    12. Sugisawa N,
    13. Zhang Z,
    14. Razmjooei S,
    15. Wangsiricharoen S,
    16. Chmielowski B,
    17. Nelson SD,
    18. Russell TA,
    19. Dry SM,
    20. Li Y,
    21. Eckardt MA,
    22. Singh AS,
    23. Singh SR,
    24. Eilber FC,
    25. Unno M and
    26. Hoffman RM
    : Combination therapy of tumor-targeting Salmonella typhimurium A1-R and oral recombinant methioninase regresses a BRAF-V600E-negative melanoma. Biochem Biophys Res Commun 503(4): 3086-3092, 2018. PMID: 30166061. DOI: 10.1016/j.bbrc.2018.08.097
    OpenUrlCrossRef
  16. ↵
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Kiyuna T,
    8. Miyake M,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Wangsiricharoen S,
    14. Bouvet M,
    15. Singh SR,
    16. Unno M and
    17. Hoffman RM
    : Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432: 251-259, 2018. PMID: 29928962. DOI: 10.1016/j.canlet.2018.06.016
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Lwin TM,
    8. Higuchi T,
    9. Kiyuna T,
    10. Miyake M,
    11. Oshiro H,
    12. Bouvet M,
    13. Unno M and
    14. Hoffman RM
    : Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 17(7): 868-873, 2018. PMID: 29623758. DOI: 10.1080/15384101.2018.1445907
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Han Q,
    3. Li S,
    4. Tan Y,
    5. Igarashi K,
    6. Miyake K,
    7. Kiyuna T,
    8. Miyake M,
    9. Chemielwski B,
    10. Nelson SD,
    11. Russell TA,
    12. Dry SM,
    13. Li Y,
    14. Singh AS,
    15. Eckardt MA,
    16. Unno M,
    17. Eilber FC and
    18. Hoffman RM
    : Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 9(13): 11119-11125, 2018. PMID: 29541401. DOI: 10.18632/oncotarget.24264
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Igarashi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Kiyuna T,
    7. Miyake K,
    8. Murakami T,
    9. Chmielowski B,
    10. Nelson SD,
    11. Russell TA,
    12. Dry SM,
    13. Li Y,
    14. Unno M,
    15. Eilber FC and
    16. Hoffman RM
    : Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 8(49): 85516-85525, 2017. PMID: 29156737. DOI: 10.18632/oncotarget.20231
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Li S,
    7. Han Q,
    8. Tan Y,
    9. Zhao M,
    10. Li Y,
    11. Nelson SD,
    12. Dry SM,
    13. Singh AS,
    14. Elliott IA,
    15. Russell TA,
    16. Eckardt MA,
    17. Yamamoto N,
    18. Hayashi K,
    19. Kimura H,
    20. Miwa S,
    21. Tsuchiya H,
    22. Eilber FC and
    23. Hoffman RM
    : Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: Decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17(6): 801-809, 2018. PMID: 29374999. DOI: 10.1080/15384101.2018.1431596
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Singh AS,
    11. Eckardt MA,
    12. Nelson SD,
    13. Russell TA,
    14. Dry SM,
    15. Li Y,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Singh SR,
    22. Eilber FC and
    23. Hoffman RM
    : Recombinant methioninase in combination with doxorubicin (DOX) overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417: 168-173, 2018. PMID: 29306021. DOI: 10.1016/j.canlet.2017.12.028
    OpenUrlCrossRef
  17. ↵
    1. Kawaguchi K,
    2. Han Q,
    3. Li S,
    4. Tan Y,
    5. Igarashi K,
    6. Kiyuna T,
    7. Miyake K,
    8. Miyake M,
    9. Chmielowski B,
    10. Nelson SD,
    11. Russell TA,
    12. Dry SM,
    13. Li Y,
    14. Singh AS,
    15. Eckardt MA,
    16. Unno M,
    17. Eilber FC and
    18. Hoffman RM
    : Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for chronic clinical cancer therapy and prevention. Cell Cycle 17(3): 356-361, 2018. PMID: 29187018. DOI: 10.1080/15384101.2017.1405195
    OpenUrlCrossRef
  18. ↵
    1. Park JH,
    2. Han Q,
    3. Zhao M,
    4. Tan Y,
    5. Higuchi T,
    6. Yoon SN,
    7. Sugisawa N,
    8. Yamamoto J,
    9. Bouvet M,
    10. Clary B,
    11. Singh SR and
    12. Hoffman RM
    : Oral recombinant methioninase combined with oxaliplatinum and 5-fluorouracil regressed a colon cancer growing on the peritoneal surface in a patient-derived orthotopic xenograft mouse model. Tissue Cell 61: 109-114, 2019. PMID: 31759402. DOI: 10.1016/j.tice.2019.09.006
    OpenUrlCrossRef
    1. Igarashi K,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Kawaguchi K,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Li Y,
    10. Nelson SD,
    11. Dry SM,
    12. Singh AS,
    13. Elliott IA,
    14. Russell TA,
    15. Eckardt MA,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Eilber FC and
    22. Hoffman RM
    : Growth of doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119(4): 3537-3544, 2018. PMID: 29143983. DOI: 10.1002/jcb.26527
    OpenUrlCrossRef
    1. Murakami T,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Kiyuna T,
    6. Igarashi K,
    7. Kawaguchi K,
    8. Hwang HK,
    9. Miyake K,
    10. Singh AS,
    11. Nelson SD,
    12. Dry SM,
    13. Li Y,
    14. Hiroshima Y,
    15. Lwin TM,
    16. DeLong JC,
    17. Chishima T,
    18. Tanaka K,
    19. Bouvet M,
    20. Endo I,
    21. Eilber FC and
    22. Hoffman RM
    : Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8(22): 35630-35638, 2017. PMID: 28404944. DOI: 10.18632/oncotarget.15823
    OpenUrlCrossRef
  19. ↵
    1. Yano S,
    2. Takehara K,
    3. Zhao M,
    4. Tan Y,
    5. Han Q,
    6. Li S,
    7. Bouvet M,
    8. Fujiwara T and
    9. Hoffman RM
    : Tumor-specific cell-cycle decoy by Salmonella typhimurium A1-R combined with tumor-selective cell-cycle trap by methioninase overcome tumor intrinsic chemoresistance as visualized by FUCCI imaging. Cell Cycle 15(13): 1715-1723, 2016. PMID: 27152859. DOI: 10.1080/15384101.2016.1181240
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Gainor E,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Higuchi T,
    11. Oshiro H,
    12. Singh AS,
    13. Eckardt MA,
    14. Nelson SD,
    15. Russell TA,
    16. Dry SM,
    17. Li Y,
    18. Yamamoto N,
    19. Hayashi K,
    20. Kimura H,
    21. Miwa S,
    22. Tsuchiya H,
    23. Eilber FC and
    24. Hoffman RM
    : Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 9(27): 19263-19272, 2018. PMID: 29721200. DOI: 10.18632/oncotarget.24996
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Igarashi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Miyake K,
    7. Kiyuna T,
    8. Miyake M,
    9. Murakami T,
    10. Chmielowski B,
    11. Nelson SD,
    12. Russell TA,
    13. Dry SM,
    14. Li Y,
    15. Unno M,
    16. Eilber FC and
    17. Hoffman RM
    : Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient- derived orthotopic xenograft (PDOX) mouse models. Oncotarget 9(1): 915-923, 2017. PMID: 29416666. DOI: 10.18632/oncotarget.23185
    OpenUrlCrossRef
  20. ↵
    1. Park JH,
    2. Zhao M,
    3. Han Q,
    4. Sun Y,
    5. Higuchi T,
    6. Sugisawa N,
    7. Yamamoto J,
    8. Singh SR,
    9. Clary B,
    10. Bouvet M and
    11. Hoffman RM
    : Efficacy of oral recombinant methioninase combined with oxaliplatinum and 5-fluorouracil on primary colon cancer in a patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 518(2): 306-310, 2019. PMID: 31421825. DOI: 10.1016/j.bbrc.2019.08.051
    OpenUrlCrossRef
    1. Yoshioka T,
    2. Wada T,
    3. Uchida N,
    4. Maki H,
    5. Yoshida H,
    6. Ide N,
    7. Kasai H,
    8. Hojo K,
    9. Shono K,
    10. Maekawa R,
    11. Yagi S,
    12. Hoffman RM and
    13. Sugita K
    : Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58(12): 2583-2587, 1998. PMID: 9635582.
    OpenUrlAbstract/FREE Full Text
    1. Kokkinakis DM,
    2. Hoffman RM,
    3. Frenkel EP,
    4. Wick JB,
    5. Han Q,
    6. Xu M,
    7. Tan Y and
    8. Schold SC
    : Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61(10): 4017-4023, 2001. PMID: 11358820.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Tan Y,
    2. Sun X,
    3. Xu M,
    4. Tan X,
    5. Sasson A,
    6. Rashidi B,
    7. Han Q,
    8. Tan X,
    9. Wang X,
    10. An Z,
    11. Sun FX and
    12. Hoffman RM
    : Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5(8): 2157-2163, 1999. PMID: 10473100.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Yang Z,
    2. Wang J,
    3. Lu Q,
    4. Xu J,
    5. Kobayashi Y,
    6. Takakura T,
    7. Takimoto A,
    8. Yoshioka T,
    9. Lian C,
    10. Chen C,
    11. Zhang D,
    12. Zhang Y,
    13. Li S,
    14. Sun X,
    15. Tan Y,
    16. Yagi S,
    17. Frenkel EP and
    18. Hoffman RM
    : PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64(18): 6673-6678, 2004. PMID: 15374983. DOI: 10.1158/0008-5472.CAN-04-1822
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Tan Y,
    2. Zavala J Sr.,
    3. Han Q,
    4. Xu M,
    5. Sun X,
    6. Tan X,
    7. Tan X,
    8. Magana R,
    9. Geller J and
    10. Hoffman RM
    : Recombinant methioninase infusion reduces the biochemical endpoint of serum methionine with minimal toxicity in high-stage cancer patients. Anticancer Res 17(5B): 3857-3860, 1997. PMID: 9427792.
    OpenUrlPubMed
  24. ↵
    1. Tan Y,
    2. Zavala J Sr.,
    3. Xu M,
    4. Zavala J Jr. and
    5. Hoffman RM
    : Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res 16(6C): 3937-3942, 1996. PMID: 9042316.
    OpenUrlPubMed
  25. ↵
    1. Sartor O and
    2. de Bono JS
    : Metastatic Prostate Cancer. N Engl J Med 378(7): 645-657, 2018. PMID: 29412780. DOI: 10.1056/NEJMra1701695
    OpenUrlCrossRef
  26. ↵
    1. Siegel RL,
    2. Miller KD and
    3. Jemal A
    : Cancer statistics, 2020. CA Cancer J Clin 70(1): 7-30, 2020. PMID: 31912902. DOI: 10.3322/caac.21590
    OpenUrlCrossRefPubMed
    1. Sweeney CJ,
    2. Chen YH,
    3. Carducci M,
    4. Liu G,
    5. Jarrard DF,
    6. Eisenberger M,
    7. Wong YN,
    8. Hahn N,
    9. Kohli M,
    10. Cooney MM,
    11. Dreicer R,
    12. Vogelzang NJ,
    13. Picus J,
    14. Shevrin D,
    15. Hussain M,
    16. Garcia JA and
    17. DiPaola RS
    : Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373(8): 737-746, 2015. PMID: 26244877. DOI: 10.1056/NEJMoa1503747
    OpenUrlCrossRefPubMed
  27. ↵
    1. James ND,
    2. Sydes MR,
    3. Clarke NW,
    4. Mason MD,
    5. Dearnaley DP,
    6. Spears MR,
    7. Ritchie AW,
    8. Parker CC,
    9. Russell JM,
    10. Attard G,
    11. de Bono J,
    12. Cross W,
    13. Jones RJ,
    14. Thalmann G,
    15. Amos C,
    16. Matheson D,
    17. Millman R,
    18. Alzouebi M,
    19. Beesley S,
    20. Birtle AJ,
    21. Brock S,
    22. Cathomas R,
    23. Chakraborti P,
    24. Chowdhury S,
    25. Cook A,
    26. Elliott T,
    27. Gale J,
    28. Gibbs S,
    29. Graham JD,
    30. Hetherington J,
    31. Hughes R,
    32. Laing R,
    33. McKinna F,
    34. McLaren DB,
    35. O’Sullivan JM,
    36. Parikh O,
    37. Peedell C,
    38. Protheroe A,
    39. Robinson AJ,
    40. Srihari N,
    41. Srinivasan R,
    42. Staffurth J,
    43. Sundar S,
    44. Tolan S,
    45. Tsang D,
    46. Wagstaff J,
    47. Parmar MK and STAMPEDE investigators
    : Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387(10024): 1163-1177, 2016. PMID: 26719232. DOI: 10.1016/S0140-6736(15)01037-5
    OpenUrlCrossRefPubMed
  28. ↵
    1. Han Q,
    2. Tan Y and
    3. Hoffman RM
    : Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res 40(5): 2813-2819, 2020. PMID: 32366428. DOI: 10.21873/anticanres.14254
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Sun X,
    2. Tan Y,
    3. Yang Z,
    4. Li S and
    5. Hoffman RM
    : A rapid HPLC method for the measurement of ultra-low plasma methionine concentrations applicable to methionine depletion therapy. Anticancer Res 25(1A): 59-62, 2005. PMID: 15816519.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Lu WC,
    2. Saha A,
    3. Yan W,
    4. Garrison K,
    5. Lamb C,
    6. Pandey R,
    7. Irani S,
    8. Lodi A,
    9. Lu X,
    10. Tiziani S,
    11. Zhang YJ,
    12. Georgiou G,
    13. DiGiovanni J and
    14. Stone E
    : Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proc Natl Acad Sci USA 117(23): 13000-13011, 2020. PMID: 32434918. DOI: 10.1073/pnas.1917362117
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Gao X,
    2. Sanderson SM,
    3. Dai Z,
    4. Reid MA,
    5. Cooper DE,
    6. Lu M,
    7. Richie JP Jr.,
    8. Ciccarella A,
    9. Calcagnotto A,
    10. Mikhael PG,
    11. Mentch SJ,
    12. Liu J,
    13. Ables G,
    14. Kirsch DG,
    15. Hsu DS,
    16. Nichenametla SN and
    17. Locasale JW
    : Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572(7769): 397-401, 2019. PMID: 31367041. DOI: 10.1038/s41586-019-1437-3
    OpenUrlCrossRefPubMed
  32. ↵
    1. Sugisawa N,
    2. Yamamoto J,
    3. Han Q,
    4. Tan Y,
    5. Tashiro Y,
    6. Nishino H,
    7. Inubushi S,
    8. Hamada K,
    9. Kawaguchi K,
    10. Unno M,
    11. Bouvet M and
    12. Hoffman RM
    : Triple-methyl blockade with recombinant methioninase, cycloleucine, and azacitidine arrests a pancreatic cancer patient-derived orthotopic xenograft model. Pancreas 50(1): 93-98, 2021. PMID: 33370029. DOI: 10.1097/MPA.0000000000001709
    OpenUrlCrossRef
    1. Higuchi T,
    2. Han Q,
    3. Sugisawa N,
    4. Yamamoto J,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Bouvet M,
    11. Singh SR,
    12. Tsuchiya H and
    13. Hoffman RM
    : Combination methionine-methylation-axis blockade: A novel approach to target the methionine addiction of cancer. Cancer Genomics Proteomics 18(2):113-120, 2021. PMID: 33608308. DOI: 10.21873/cgp.20246
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Kalev P,
    2. Hyer ML,
    3. Gross S,
    4. Konteatis Z,
    5. Chen CC,
    6. Fletcher M,
    7. Lein M,
    8. Aguado-Fraile E,
    9. Frank V,
    10. Barnett A,
    11. Mandley E,
    12. Goldford J,
    13. Chen Y,
    14. Sellers K,
    15. Hayes S,
    16. Lizotte K,
    17. Quang P,
    18. Tuncay Y,
    19. Clasquin M,
    20. Peters R,
    21. Weier J,
    22. Simone E,
    23. Murtie J,
    24. Liu W,
    25. Nagaraja R,
    26. Dang L,
    27. Sui Z,
    28. Biller SA,
    29. Travins J,
    30. Marks KM and
    31. Marjon K
    : MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell 39: 209-224, 2021. PMID: 33450196. DOI: 10.1016/j.ccell.2020.12.010
    OpenUrlCrossRef
View Abstract
PreviousNext
Back to top

In this issue

Anticancer Research: 41 (4)
Anticancer Research
Vol. 41, Issue 4
April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Lowering and Stabilizing PSA Levels in Advanced-prostate Cancer Patients With Oral Methioninase
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Lowering and Stabilizing PSA Levels in Advanced-prostate Cancer Patients With Oral Methioninase
QINGHONG HAN, ROBERT M. HOFFMAN
Anticancer Research Apr 2021, 41 (4) 1921-1926; DOI: 10.21873/anticanres.14958

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Lowering and Stabilizing PSA Levels in Advanced-prostate Cancer Patients With Oral Methioninase
QINGHONG HAN, ROBERT M. HOFFMAN
Anticancer Research Apr 2021, 41 (4) 1921-1926; DOI: 10.21873/anticanres.14958
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Retrospective Study of Radiotherapy Impact on the Outcome of Material-assisted Implant-based Subpectoral Breast Reconstruction
  • Carbon-ion Radiotherapy for Oligometastatic Colorectal Cancer in the Liver or Lung
  • Treatment Volume, Dose Prescription and Delivery Techniques for Dose-intensification in Rectal Cancer: A National Survey
Show more Clinical Studies

Similar Articles

Keywords

  • methioninase
  • oral
  • methionine addiction
  • prostate cancer
  • PSA
  • patients
  • response
Anticancer Research

© 2021 Anticancer Research

Powered by HighWire