Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies
Open Access

Oral-recombinant Methioninase Converts an Osteosarcoma from Docetaxel-resistant to -Sensitive in a Clinically-relevant Patient-derived Orthotopic-xenograft (PDOX) Mouse Model

YUSUKE AOKI, YASUNORI TOME, NATHANIEL F. WU, JUN YAMAMOTO, KAZUYUKI HAMADA, QINGHONG HAN, MICHAEL BOUVET, KOTARO NISHIDA and ROBERT M. HOFFMAN
Anticancer Research April 2021, 41 (4) 1745-1751; DOI: https://doi.org/10.21873/anticanres.14939
YUSUKE AOKI
1AntiCancer Inc, San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, La Jolla, CA, U.S.A.;
3Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
YASUNORI TOME
3Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com yastome@med.u-ryukyu.ac.jp
NATHANIEL F. WU
1AntiCancer Inc, San Diego, CA, U.S.A.;
4Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JUN YAMAMOTO
1AntiCancer Inc, San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, La Jolla, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KAZUYUKI HAMADA
1AntiCancer Inc, San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, La Jolla, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
QINGHONG HAN
1AntiCancer Inc, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MICHAEL BOUVET
2Department of Surgery, University of California, San Diego, La Jolla, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KOTARO NISHIDA
3Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROBERT M. HOFFMAN
1AntiCancer Inc, San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, La Jolla, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com yastome@med.u-ryukyu.ac.jp
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Osteosarcoma is the most frequent malignant bone tumor. Failure of first-line therapy results in poor prognosis of osteosarcoma. In the present report, we examined the efficacy of the combination of oral recombinant methioninase (o-rMETase) and docetaxel (DOC) on an osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model. Materials and Methods: Osteosarcoma-PDOX models were established by tumor insertion within the tibia of nude mice. The osteosarcoma PDOX models were randomized into four groups (4-5 mice per group): control; o-rMETae alone; DOC alone; o- rMETase combined with DOC. The treatment period was 3 weeks. Results: The combination of o-rMETase and DOC showed significant efficacy compared to the control group (p=0.03). In contrast, there was no significant efficacy of o-rMETase alone or DOC alone (p=0.65, 0.60, respectively). Conclusion: o-rMETase converted an osteosarcoma PDOX from DOC-resistant to -sensitive. This combination therapy may be effective against recalcitrant osteosarcoma and other recalcitrant cancers.

Key Words:
  • Osteosarcoma
  • nude mice
  • PDOX
  • methionine
  • methioninase
  • docetaxel
  • combination therapy
  • efficacy

Osteosarcoma is classified as a rare cancer, but it is the most frequent malignant bone tumor. Failure of first-line therapy results in very poor prognosis of osteosarcoma patients (1-4).

In order to individualize and improve therapy for recalcitrant osteosarcoma, our laboratory has established a patient-derived orthotopic xenograft (PDOX) mouse model of osteosarcoma to identify potential effective treatment strategies (5-20).

Methionine addiction (21) is a fundamental and general hallmark of cancer, resulting in the requirement of very high levels of methionine compared to normal cells (21-26). Μethionine addiction of cancer is termed the Hoffman effect (27-29), which is analogous to the glucose addiction of cancer cells, termed the Warburg effect. The methionine-degrading enzyme, recombinant methioninase (rMETase), effectively targets methionine addiction to inhibit or arrest cancer cells in late-S/G2 phases of the cell cycle (30-36).

Docetaxel (DOC) arrests cells in the M-phase of the cell cycle (37), complementing the effect of rMETase (38). The efficacy of the combination of DOC and gemcitabine (GEM) in osteosarcoma, especially in relapsed or refractory cases, has been reported (37). DOC has also shown synergy with AG-270, an inhibitor of methionine adenosyl-transferase 2α (MAT2A), which is involved in methionine addiction (39).

In 2018, our laboratory discovered that rMETase could be effectively administrated orally (o-rMETase) (32), which greatly facilitated treatment of recalcitrant cancer in both PDOX models and patients (19, 20, 32-34, 40-57).

In the present study, we examined whether the combination of o-rMETase and DOC is effective in an osteosarcoma-PDOX mouse model.

Materials and Methods

Mice. Athymic nu/nu nude mice in the present study, (AntiCancer, Inc., San Diego, CA, USA), 4-6week old, were used as previously described (5-20), with Institutional Animal Care and Use Committee (IACUC) approval, following the principles and procedures provided in the National Institutes of Health (NIH) Guide for the Care and Use of Animals, under Assurance Number A3873-1 (5-20).

Patient-derived tumor. An osteosarcoma biopsy specimen from a 14-year-old boy with pelvic osteosarcoma was previously surgically obtained from the UCLA Medical Center after patient and parent informed written consent and Institutional Review Board approval (IRB#10-001857) and established in nude mice as previously reported (20).

Tibia-insertion osteosarcoma PDOX model. A 1-mm diameter medullary cavity was made in the proximal tibia and 1 mm3 tumor fragments, previously grown subcutaneously in nude mice, were implanted into the medullary cavity, as previously described (58).

Recombinant methioninase (rMETase) production. The protocol for the production of rMETase has been previously reported (59).

Treatment study design. The osteosarcoma-PDOX mouse models were randomized into four groups of four or five mice per group as follows: G1, control PBS (0.2 ml/day, oral, twice a day); G2, o-rMETase (50 units/mouse, oral, twice a day); G3, DOC [20 mg/kg, intraperitoneal (i.p.) injection, once a week]; G4, combination of o-rMETase (50 units, oral, twice a day) and DOC (20 mg/kg, i.p. injection, once a week). The treatment was initiated once tumor size reached a volume of 40 mm3. Tumor measurement and tumor-volume calculation were performed as previously described (5-20). The treatment period was 3 weeks for each group, and all mice were sacrificed after treatment as previously described (5-20) (Figure 1). Data are presented as mean±standard deviation.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Treatment scheme.

Hematoxylin and eosin (H&E) staining. Procedures for H&E staining were performed according to standard protocols.

Statistical analyses. All statistical analyses were performed with JMP ver. 15.0.0 (SAS Institute, Cary, NC, USA). Welch’s t-test was applied as the parametric test to compare the means between two related groups. Tukey-Kramer HSD was performed for the parametric test of comparison between groups. Bar graphs show the mean, and error bars indicate standard deviation of the mean. A p-value ≤0.05 was defined as statistically significant.

Results

Treatment efficacy on the osteosarcoma PDOX. There were no significant differences in tumor volume of the osteosarcoma-PDOX between the control and those treated with o-rMETase alone, or DOC alone, at the end of the treatment period (p=0.65, 0.60, respectively). In contrast, the combination of o-rMETase and DOC showed significant efficacy to reduce tumor volume compared to the control group (p=0.03) (Figure 2). There were no animal deaths in any group. Mouse weight showed no significant differences between the four groups (Figure 3).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

A: Efficacy of drugs on the osteosarcoma-PDOX. Line graphs show relative tumor volume at each time point. Relative tumor volume is defined as the tumor volume at time (t) divided by the tumor volume at the onset of treatment. n=4-5 mice/group. *p<0.05. Error bars: ±SD. B: Representative photographs of osteosarcoma-PDOX mouse models from each treatment group at the end of treatment. A: Untreated control; B: o-rMETase alone; C: DOC; D: o-rMETase and DOC.

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Mouse body weight at pre- and post-treatment.

Histology of osteosarcoma-PDOX. The osteosarcoma-PDOX tissue of the control group comprised high-density spindle-shaped cancer cells (Figure 4A). Treatment with o-rMETase-alone or DOC alone had no effect on the histologic phenotype of the osteosarcoma PDOX, which was similar to the control. Treatment with the combination of DOC and o-rMETase reduced cancer-cell density in the osteosarcoma PDOX (Figure 4B-D).

Figure 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 4.

Representative photomicrographs of H & E-stained tissue sections of the untreated and treated osteosarcoma-PDOX. (A) Control administered oral PBS. (B) o-rMETase. (C) DOC. (D) Combination of o-rMETase and DOC. Magnification: 200×. Scale bar: 50 μm.

Discussion

The present study showed that o-rMETase converted an osteosarcoma PDOX from DOC-resistant to -sensitive. The combination of DOC and GEM has shown efficacy as second-line therapy for soft-tissue sarcoma, following failure of first-line treatment with doxorubicin (DOX) and ifosfamide (IFO) (60). In the present study, DOC alone had no efficacy on the osteosarcoma PDOX, but it was highly effective in combination with o-rMETase. The present study was performed in a clinically-relevant osteosarcoma PDOX model, compared to an un-physiological subcutaneous-tumor model of sarcoma (61).

The present results are consistent with a previous study reporting that the combination of AG-270, a methionine adenosyltransferase 2α (MAT2A) inhibitor, with DOC showed efficacy on non-small-cell lung carcinoma (NSCLC) and esophageal squamous cell carcinoma (SCC) in patient-derived xenograft (PDX) models, where neither DOC alone nor AG-270 alone showed significant efficiency (39).

AG-270 targets methionine addiction, as does o-rMETase, and the efficacy of the combination of AG-270 and DOC suggested that the combination of o-rMETase and DOC would be effective. Indeed, our present results confirmed this hypothesis. o-rMETase and DOC are complementary as o-rMETase selectively arrests cancer cells in late-S/G2-phases of the cell cycle (35, 36), DOC arrests cells in the M phases (37). The combination of methionine restriction and an anti-mitotitc has been previously shown to be selectively effective on cancer cells on a co-culture of cancer and normal cells, as cancer cells which escaped from the late-S/G2 arrest by methionine restriction were arrested by the antimitotic in M phase (38).

The present results suggest that the combination of o-rMETase and DOC should be effective against recalcitrant osteosarcoma and other recalcitrant cancers. o-rMETase and combination chemotherapy for blockade of the methionine-methylation axis (40, 41) is also a promising strategy as o-rMETase has shown clinical efficacy (33).

Acknowledgements

This paper is dedicated to the memory of A. R. Moossa, MD, Sun Lee, MD, Professor Li Jiaxi and Masaki Kitajima, MD, and Sun Lee, MD.

Footnotes

  • Authors’ Contributions

    YA, YT and RMH were involved in study conception and design. YA and NFW were involved in acquisition of data. YA, YT, NFW, JY, KH and RMH analyzed and interpreted data. YA, YT and RMH wrote this manuscript. All Authors reviewed and approved the manuscript.

  • This article is freely accessible online.

  • Conflicts of Interest

    The Authors have no conflicts of interest to declare in relation to this study.

  • Received March 1, 2021.
  • Revision received March 9, 2021.
  • Accepted March 10, 2021.

This is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

References

  1. ↵
    1. Misaghi A,
    2. Goldin A,
    3. Awad M and
    4. Kulidjian AA
    : Osteosarcoma: A comprehensive review. SICOT J 4: 12, 2018. PMID: 29629690. DOI: 10.1051/sicotj/2017028
    OpenUrlCrossRef
    1. Sampson VB,
    2. Gorlick R,
    3. Kamara D and
    4. Anders Kolb E
    : A review of targeted therapies evaluated by the pediatric preclinical testing program for osteosarcoma. Front Oncol 3: 132, 2013. PMID: 23755370. DOI: 10.3389/fonc.2013.00132
    OpenUrlCrossRefPubMed
    1. Zhao J,
    2. Dean DC,
    3. Hornicek FJ,
    4. Yu X and
    5. Duan Z
    : Emerging next-generation sequencing-based discoveries for targeted osteosarcoma therapy. Cancer Lett 474: 158-167, 2020. PMID: 31987920. DOI: 10.1016/j.canlet.2020.01.020
    OpenUrlCrossRef
  2. ↵
    1. Meyers PA,
    2. Schwartz CL,
    3. Krailo M,
    4. Kleinerman ES,
    5. Betcher D,
    6. Bernstein ML,
    7. Conrad E,
    8. Ferguson W,
    9. Gebhardt M,
    10. Goorin AM,
    11. Harris MB,
    12. Healey J,
    13. Huvos A,
    14. Link M,
    15. Montebello J,
    16. Nadel H,
    17. Nieder M,
    18. Sato J,
    19. Siegal G,
    20. Weiner M,
    21. Wells R,
    22. Wold L,
    23. Womer R and
    24. Grier H
    : Osteosarcoma: A randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 23(9): 2004-2011, 2005. PMID: 15774791. DOI: 10.1200/JCO.2005.06.031
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Igarashi K,
    2. Kawaguchi K,
    3. Yamamoto N,
    4. Hayashi K,
    5. Kimura H,
    6. Miwa S,
    7. Higuchi T,
    8. Taniguchi Y,
    9. Yonezawa H,
    10. Araki Y,
    11. Morinaga S,
    12. Misra S,
    13. Nelson SD,
    14. Dry SM,
    15. Li Y,
    16. Odani A,
    17. Singh SR,
    18. Tsuchiya H and
    19. Hoffman RM
    : A novel anionic-phosphate-platinum complex effectively targets a cisplatinum-resistant osteosarcoma in a patient-derived orthotopic xenograft mouse model. Cancer Genomics Proteomics 17(3): 217-223, 2020. PMID: 32345663. DOI: 10.21873/cgp.20182
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Yamamoto J,
    3. Sugisawa N,
    4. Tashiro Y,
    5. Nishino H,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Bouvet M,
    12. Singh SR,
    13. Tsuchiya H and
    14. Hoffman RM
    : PPARγ agonist pioglitazone in combination with cisplatinum arrests a chemotherapy-resistant osteosarcoma PDOX model. Cancer Genomics Proteomics 17(1): 35-40, 2020. PMID: 31882549. DOI: 10.21873/cgp.20165
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Sugisawa N,
    3. Miyake K,
    4. Oshiro H,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Kline Z,
    11. Bouvet M,
    12. Singh SR,
    13. Tsuchiya H and
    14. Hoffman RM
    : Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed Pharmacother 118: 109356, 2019. PMID: 31545293. DOI: 10.1016/j.biopha.2019.109356
    OpenUrlCrossRef
    1. Higuchi T,
    2. Sugisawa N,
    3. Miyake K,
    4. Oshiro H,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Kline Z,
    11. Belt P,
    12. Chawla SP,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H and
    16. Hoffman RM
    : Combination treatment with sorafenib and everolimus regresses a doxorubicin-resistant osteosarcoma in a PDOX mouse model. Anticancer Res 39(9): 4781-4786, 2019. PMID: 31519579. DOI: 10.21873/anticanres.13662
    OpenUrlAbstract/FREE Full Text
    1. Kiyuna T,
    2. Tome Y,
    3. Miyake K,
    4. Murakami T,
    5. Oshiro H,
    6. Igarashi K,
    7. Kawaguchi K,
    8. Hsu J,
    9. Singh M,
    10. Li Y,
    11. Nelson S,
    12. Bouvet M,
    13. Singh SR,
    14. Kanaya F and
    15. Hoffman RM
    : Eribulin suppressed cisplatinum- and doxorubicin-resistant recurrent lung metastatic osteosarcoma in a patient-derived orthotopic xenograft mouse model. Anticancer Res 39(9): 4775-4779, 2019. PMID: 31519578. DOI: 10.21873/anticanres.13661
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Sugisawa N,
    3. Miyake K,
    4. Oshiro H,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Chawla SP,
    11. Bouvet M,
    12. Singh SR,
    13. Tsuchiya H and
    14. Hoffman RM
    : Sorafenib and palbociclib combination regresses a cisplatinum-resistant osteosarcoma in a PDOX mouse model. Anticancer Res 39(8): 4079-4084, 2019. PMID: 31366491. DOI: 10.21873/anticanres.13565
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Sugisawa N,
    3. Miyake K,
    4. Oshiro H,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Bouvet M,
    11. Singh SR,
    12. Tsuchiya H and
    13. Hoffman RM
    : The combination of olaratumab with doxorubicin and cisplatinum regresses a chemotherapy-resistant osteosarcoma in a patient-derived orthotopic xenograft mouse model. Transl Oncol 12(9): 1257-1263, 2019. PMID: 31299622. DOI: 10.1016/j.tranon.2019.06.002
    OpenUrlCrossRef
    1. Higuchi T,
    2. Miyake K,
    3. Oshiro H,
    4. Sugisawa N,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Chawla SP,
    11. Bouvet M,
    12. Singh SR,
    13. Tsuchiya H and
    14. Hoffman RM
    : Trabectedin and irinotecan combination regresses a cisplatinum-resistant osteosarcoma in a patient-derived orthotopic xenograft nude-mouse model. Biochem Biophys Res Commun 513(2): 326-331, 2019. PMID: 30955860. DOI: 10.1016/j.bbrc.2019.03.191
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Li Y,
    7. Nelson SD,
    8. Dry SM,
    9. Singh AS,
    10. Elliott IA,
    11. Russell TA,
    12. Eckardt MA,
    13. Yamamoto N,
    14. Hayashi K,
    15. Kimura H,
    16. Miwa S,
    17. Tsuchiya H,
    18. Eilber FC and
    19. Hoffman RM
    : Temozolomide combined with irinotecan regresses a cisplatinum-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) precision-oncology mouse model. Oncotarget 9(8): 7774-7781, 2017. PMID: 29487690. DOI: 10.18632/oncotarget.22892
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Li S,
    7. Han Q,
    8. Tan Y,
    9. Zhao M,
    10. Li Y,
    11. Nelson SD,
    12. Dry SM,
    13. Singh AS,
    14. Elliott IA,
    15. Russell TA,
    16. Eckardt MA,
    17. Yamamoto N,
    18. Hayashi K,
    19. Kimura H,
    20. Miwa S,
    21. Tsuchiya H,
    22. Eilber FC and
    23. Hoffman RM
    : Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: Decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17(6): 801-809, 2018. PMID: 29374999. DOI: 10.1080/15384101.2018.1431596
    OpenUrlCrossRef
    1. Igarashi K,
    2. Murakami T,
    3. Kawaguchi K,
    4. Kiyuna T,
    5. Miyake K,
    6. Zhang Y,
    7. Nelson SD,
    8. Dry SM,
    9. Li Y,
    10. Yanagawa J,
    11. Russell TA,
    12. Singh AS,
    13. Tsuchiya H,
    14. Elliott I,
    15. Eilber FC and
    16. Hoffman RM
    : A patient-derived orthotopic xenograft (PDOX) mouse model of a cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: Implications for precision oncology. Oncotarget 8(37): 62111-62119, 2017. PMID: 28977930. DOI: 10.18632/oncotarget.19095
    OpenUrlCrossRef
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Murakami T,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Tsuchiya H and
    11. Hoffman RM
    : Effective metabolic targeting of human osteosarcoma cells in vitro and in orthotopic nude-mouse models with recombinant methioninase. Anticancer Res 37(9): 4807-4812, 2017. PMID: 28870899. DOI: 10.21873/anticanres.11887
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Murakami T,
    4. Kiyuna T,
    5. Miyake K,
    6. Nelson SD,
    7. Dry SM,
    8. Li Y,
    9. Yanagawa J,
    10. Russell TA,
    11. Singh AS,
    12. Yamamoto N,
    13. Hayashi K,
    14. Kimura H,
    15. Miwa S,
    16. Tsuchiya H,
    17. Eilber FC and
    18. Hoffman RM
    : Intra-arterial administration of tumor-targeting Salmonella typhimurium A1-R regresses a cisplatin-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Cell Cycle 16(12): 1164-1170, 2017. PMID: 28494180. DOI: 10.1080/15384101.2017.1317417
    OpenUrlCrossRef
    1. Murakami T,
    2. Igarashi K,
    3. Kawaguchi K,
    4. Kiyuna T,
    5. Zhang Y,
    6. Zhao M,
    7. Hiroshima Y,
    8. Nelson SD,
    9. Dry SM,
    10. Li Y,
    11. Yanagawa J,
    12. Russell T,
    13. Federman N,
    14. Singh A,
    15. Elliott I,
    16. Matsuyama R,
    17. Chishima T,
    18. Tanaka K,
    19. Endo I,
    20. Eilber FC and
    21. Hoffman RM
    : Tumor-targeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug. Oncotarget 8(5): 8035-8042, 2017. PMID: 28030831. DOI: 10.18632/oncotarget.14040
    OpenUrlCrossRef
  4. ↵
    1. Higuchi T,
    2. Sugisawa N,
    3. Yamamoto J,
    4. Oshiro H,
    5. Han Q,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Tan Y,
    12. Kuchipudi S,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H and
    16. Hoffman RM
    : The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85(2): 285-291, 2020. PMID: 31705268. DOI: 10.1007/s00280-019-03986-0
    OpenUrlCrossRef
  5. ↵
    1. Higuchi T,
    2. Oshiro H,
    3. Miyake K,
    4. Sugisawa N,
    5. Han Q,
    6. Tan Y,
    7. Park J,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Bouvet M,
    16. Chawla SP,
    17. Singh SR,
    18. Tsuchiya H and
    19. Hoffman RM
    : Oral recombinant methioninase, combined with oral caffeine and injected cisplatinum, overcome cisplatinumresistance and regresses patient-derived orthotopic xenograft model of osteosarcoma. Anticancer Res 39(9): 4653-4657, 2019. PMID: 31519563. DOI: 10.21873/anticanres.13646
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Hoffman RM and
    2. Erbe RW
    : High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73(5): 1523-1527, 1976. PMID: 179090. DOI: 10.1073/pnas.73.5.1523
    OpenUrlAbstract/FREE Full Text
    1. Coalson DW,
    2. Mecham JO,
    3. Stern PH and
    4. Hoffman RM
    : Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79(14): 4248-4251, 1982. PMID: 6289297. DOI: 10.1073/pnas.79.14.4248
    OpenUrlAbstract/FREE Full Text
    1. Stern PH and
    2. Hoffman RM
    : Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20(8): 663-670, 1984. PMID: 6500606. DOI: 10.1007/BF02619617
    OpenUrlCrossRefPubMed
    1. Yamamoto J,
    2. Han Q,
    3. Inubushi S,
    4. Sugisawa N,
    5. Hamada K,
    6. Nishino H,
    7. Miyake K,
    8. Kumamoto T,
    9. Matsuyama R,
    10. Bouvet M,
    11. Endo I and
    12. Hoffman RM
    : Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochem Biophys Res Commun 533(4): 1034-1038, 2020. PMID: 33019978. DOI: 10.1016/j.bbrc.2020.09.108
    OpenUrlCrossRef
    1. Mecham JO,
    2. Rowitch D,
    3. Wallace CD,
    4. Stern PH and
    5. Hoffman RM
    : The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117(2): 429-434, 1983. PMID: 6661235. DOI: 10.1016/0006-291x(83)91218-4
    OpenUrlCrossRefPubMed
  7. ↵
    1. Tan Y,
    2. Xu M and
    3. Hoffman RM
    : Broad selective efficacy of rMETase and PEG-rMETase on cancer cells in vitro. Anticancer Res 30(3): 793-798, 2010. PMID: 20392998.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Kaiser P
    : Methionine Dependence of Cancer. Biomolecules 10(4): 568, 2020. PMID: 32276408. DOI: 10.3390/biom10040568
    OpenUrlCrossRef
    1. Lauinger L and
    2. Kaiser P
    : Sensing and signaling of methionine metabolism. Metabolites 11(2): 83, 2021. PMID: 33572567. DOI: 10.3390/metabo11020083
    OpenUrlCrossRef
  9. ↵
    1. Borrego SL,
    2. Fahrmann J,
    3. Hou J,
    4. Lin DW,
    5. Tromberg BJ,
    6. Fiehn O and
    7. Kaiser P
    : Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res 100056, 2021. PMID: 33647277. DOI: 10.1016/j.jlr.
    OpenUrlCrossRef
  10. ↵
    1. Yoshioka T,
    2. Wada T,
    3. Uchida N,
    4. Maki H,
    5. Yoshida H,
    6. Ide N,
    7. Kasai H,
    8. Hojo K,
    9. Shono K,
    10. Maekawa R,
    11. Yagi S,
    12. Hoffman RM and
    13. Sugita K
    : Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58(12): 2583-2587, 1998. PMID: 9635582.
    OpenUrlAbstract/FREE Full Text
    1. Kokkinakis DM,
    2. Hoffman RM,
    3. Frenkel EP,
    4. Wick JB,
    5. Han Q,
    6. Xu M,
    7. Tan Y and
    8. Schold SC
    : Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61(10): 4017-4023, 2001. PMID: 11358820.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Kiyuna T,
    8. Miyake M,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Wangsiricharoen S,
    14. Bouvet M,
    15. Singh SR,
    16. Unno M and
    17. Hoffman RM
    : Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432: 251-259, 2018. PMID: 29928962. DOI: 10.1016/j.canlet.2018.06.016
    OpenUrlCrossRef
  12. ↵
    1. Han Q,
    2. Tan Y and
    3. Hoffman RM
    : Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res 40(5): 2813-2819, 2020. PMID: 32366428. DOI: 10.21873/anticanres.14254
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Yamamoto J,
    2. Miyake K,
    3. Han Q,
    4. Tan Y,
    5. Inubushi S,
    6. Sugisawa N,
    7. Higuchi T,
    8. Tashiro Y,
    9. Nishino H,
    10. Homma Y,
    11. Matsuyama R,
    12. Chawla SP,
    13. Bouvet M,
    14. Singh SR,
    15. Endo I and
    16. Hoffman RM
    : Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 492: 174-184, 2020. PMID: 32739322. DOI: 10.1016/j.canlet.2020.07.034
    OpenUrlCrossRef
  14. ↵
    1. Hoffman RM and
    2. Jacobsen SJ
    : Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12): 7306-7310, 1980. PMID: 6261250. DOI: 10.1073/pnas.77.12.7306
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Yano S,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Bouvet M,
    6. Fujiwara T and
    7. Hoffman RM
    : Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18): 8729-8736, 2014. PMID: 25238266. DOI: 10.18632/oncotarget.2369
    OpenUrlCrossRefPubMed
  16. ↵
    1. Zhang Y,
    2. Yang J,
    3. Zhao N,
    4. Wang C,
    5. Kamar S,
    6. Zhou Y,
    7. He Z,
    8. Yang J,
    9. Sun B,
    10. Shi X,
    11. Han L and
    12. Yang Z
    : Progress in the chemotherapeutic treatment of osteosarcoma. Oncol Lett 16(5): 6228-6237, 2018. PMID: 30405759. DOI: 10.3892/ol.2018.9434
    OpenUrlCrossRefPubMed
  17. ↵
    1. Stern PH and
    2. Hoffman RM
    : Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76(4): 629-639, 1986. PMID: 3457200. DOI: 10.1093/jnci/76.4.629
    OpenUrlCrossRefPubMed
  18. ↵
    1. Kalev P,
    2. Hyer ML,
    3. Gross S,
    4. Konteatis Z,
    5. Chen CC,
    6. Fletcher M,
    7. Lein M,
    8. Aguado-Fraile E,
    9. Frank V,
    10. Barnett A,
    11. Mandley E,
    12. Goldford J,
    13. Chen Y,
    14. Sellers K,
    15. Hayes S,
    16. Lizotte K,
    17. Quang P,
    18. Tuncay Y,
    19. Clasquin M,
    20. Peters R,
    21. Weier J,
    22. Simone E,
    23. Murtie J,
    24. Liu W,
    25. Nagaraja R,
    26. Dang L,
    27. Sui Z,
    28. Biller SA,
    29. Travins J,
    30. Marks KM and
    31. Marjon K
    : MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell 39(2): 209-224.e11, 2021. PMID: 33450196. DOI: 10.1016/j.ccell.2020.12.010
    OpenUrlCrossRef
  19. ↵
    1. Higuchi T,
    2. Han Q,
    3. Sugisawa N,
    4. Yamamoto J,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Bouvet M,
    11. Singh SR,
    12. Tsuchiya H and
    13. Hoffman RM
    : Combination methionine-methylation-axis Blockade: A Novel approach to target the methionine addiction of cancer. Cancer Genomics Proteomics 18(2):113-120, 2021. PMID: 33608308. DOI:10.21873/cgp.20246
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Sugisawa N,
    2. Yamamoto J,
    3. Han Q,
    4. Tan Y,
    5. Tashiro Y,
    6. Nishino H,
    7. Inubushi S,
    8. Hamada K,
    9. Kawaguchi K,
    10. Unno M,
    11. Bouvet M and
    12. Hoffman RM
    : Triple-methyl blockade with recombinant methioninase, cycloleucine, and azacitidine arrests a pancreatic cancer patient-derived orthotopic xenograft model. Pancreas 50(1): 93-98, 2021. PMID: 33370029. DOI: 10.1097/MPA.0000000000001709
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Higuchi T,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Igarashi K,
    7. Zhao M,
    8. Miyake K,
    9. Kiyuna T,
    10. Miyake M,
    11. Ohshiro H,
    12. Sugisawa N,
    13. Zhang Z,
    14. Razmjooei S,
    15. Wangsiricharoen S,
    16. Chmielowski B,
    17. Nelson SD,
    18. Russell TA,
    19. Dry SM,
    20. Li Y,
    21. Eckardt MA,
    22. Singh AS,
    23. Singh SR,
    24. Eilber FC,
    25. Unno M and
    26. Hoffman RM
    : Combination therapy of tumor-targeting Salmonella typhimurium A1-R and oral recombinant methioninase regresses a BRAF-V600E-negative melanoma. Biochem Biophys Res Commun 503(4): 3086-3092, 2018. PMID: 30166061. DOI: 10.1016/j.bbrc.2018.08.097
    OpenUrlCrossRef
    1. Higuchi T,
    2. Kawaguchi K,
    3. Miyake K,
    4. Han Q,
    5. Tan Y,
    6. Oshiro H,
    7. Sugisawa N,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Chawla SP,
    16. Singh AS,
    17. Eilber FC,
    18. Singh SR,
    19. Tsuchiya H and
    20. Hoffman RM
    : Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10): 5639-5644, 2018. PMID: 30275182. DOI: 10.21873/anticanres.12899
    OpenUrlAbstract/FREE Full Text
    1. Miyake K,
    2. Kiyuna T,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Zhao M,
    7. Oshiro H,
    8. Kawaguchi K,
    9. Higuchi T,
    10. Zhang Z,
    11. Razmjooei S,
    12. Barangi M,
    13. Wangsiricharoen S,
    14. Murakami T,
    15. Singh AS,
    16. Li Y,
    17. Nelson SD,
    18. Eilber FC,
    19. Bouvet M,
    20. Hiroshima Y,
    21. Chishima T,
    22. Matsuyama R,
    23. Singh SR,
    24. Endo I and
    25. Hoffman RM
    : Combining tumor-selective bacterial therapy with Salmonella typhimurium A1-R and cancer metabolism targeting with oral recombinant methioninase regressed an Ewing’s sarcoma in a patient-derived orthotopic Xenograft model. Chemotherapy 63(5): 278-283, 2018. PMID: 30673664. DOI: 10.1159/000495574
    OpenUrlCrossRef
    1. Hoffman RM,
    2. Han Q,
    3. Kawaguchi K,
    4. Li S and
    5. Tan Y
    : Afterword: Oral methioninase-answer to cancer and fountain of youth? Methods Mol Biol 1866: 311-322, 2019. PMID: 30725426. DOI: 10.1007/978-1-4939-8796-2_24
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Han Q,
    3. Li S,
    4. Tan Y,
    5. Igarashi K,
    6. Murakami T,
    7. Unno M and
    8. Hoffman RM
    : Efficacy of recombinant methioninase (rMETase) on recalcitrant cancer patient-derived orthotopic xenograft (PDOX) mouse models: A review. Cells 8(5):410, 2019. PMID: 31052611. DOI: 10.3390/cells8050410
    OpenUrlCrossRef
    1. Park JH,
    2. Zhao M,
    3. Han Q,
    4. Sun Y,
    5. Higuchi T,
    6. Sugisawa N,
    7. Yamamoto J,
    8. Singh SR,
    9. Clary B,
    10. Bouvet M and
    11. Hoffman RM
    : Efficacy of oral recombinant methioninase combined with oxaliplatinum and 5-fluorouracil on primary colon cancer in a patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 518(2): 306-310, 2019. PMID: 31421825. DOI: 10.1016/j.bbrc.2019.08.051
    OpenUrlCrossRef
    1. Oshiro H,
    2. Tome Y,
    3. Kiyuna T,
    4. Yoon SN,
    5. Lwin TM,
    6. Han Q,
    7. Tan Y,
    8. Miyake K,
    9. Higuchi T,
    10. Sugisawa N,
    11. Katsuya Y,
    12. Park JH,
    13. Zang Z,
    14. Razmjooei S,
    15. Bouvet M,
    16. Clary B,
    17. Singh SR,
    18. Kanaya F,
    19. Nishida K and
    20. Hoffman RM
    : Oral recombinant methioninase overcomes colorectal-cancer liver metastasis resistance to the combination of 5-fluorouracil and oxaliplatinum in a patient-derived orthotopic xenograft mouse model. Anticancer Res 39(9): 4667-4671, 2019. PMID: 31519565. DOI: 10.21873/anticanres.13648
    OpenUrlAbstract/FREE Full Text
    1. Park JH,
    2. Han Q,
    3. Zhao M,
    4. Tan Y,
    5. Higuchi T,
    6. Yoon SN,
    7. Sugisawa N,
    8. Yamamoto J,
    9. Bouvet M,
    10. Clary B,
    11. Singh SR and
    12. Hoffman RM
    : Oral recombinant methioninase combined with oxaliplatinum and 5-fluorouracil regressed a colon cancer growing on the peritoneal surface in a patient-derived orthotopic xenograft mouse model. Tissue Cell 61: 109-114, 2019. PMID: 31759402. DOI: 10.1016/j.tice.2019.09.006
    OpenUrlCrossRef
    1. Higuchi T,
    2. Han Q,
    3. Miyake K,
    4. Oshiro H,
    5. Sugisawa N,
    6. Tan Y,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Bouvet M,
    13. Singh SR,
    14. Tsuchiya H and
    15. Hoffman RM
    : Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 523(1): 135-139, 2020. PMID: 31839218. DOI: 10.1016/j.bbrc.2019.12.024
    OpenUrlCrossRef
    1. Tashiro Y,
    2. Han Q,
    3. Tan Y,
    4. Sugisawa N,
    5. Yamamoto J,
    6. Nishino H,
    7. Inubushi S,
    8. Higuchi T,
    9. Aoki T,
    10. Murakami M and
    11. Hoffman RM
    : Oral recombinant methioninase prevents obesity in mice on a high-fat diet. In Vivo 34(2): 489-494, 2020. PMID: 32111745. DOI: 10.21873/invivo.11799
    OpenUrlAbstract/FREE Full Text
    1. Tashiro Y,
    2. Han Q,
    3. Tan Y,
    4. Sugisawa N,
    5. Yamamoto J,
    6. Nishino H,
    7. Inubushi S,
    8. Sun YU,
    9. Lim H,
    10. Aoki T,
    11. Murakami M,
    12. Takahashi Y,
    13. Bouvet M and
    14. Hoffman RM
    : oral recombinant methioninase prevents nonalcoholic fatty liver disease in mice on a high fat diet. In Vivo 34(3): 979-984, 2020. PMID: 32354883. DOI: 10.21873/invivo.11866
    OpenUrlAbstract/FREE Full Text
    1. Tashiro Y,
    2. Han Q,
    3. Tan Y,
    4. Sugisawa N,
    5. Yamamoto J,
    6. Nishino H,
    7. Inubushi S,
    8. Sun YU,
    9. Lim H,
    10. Aoki T,
    11. Murakami M,
    12. Takahashi Y,
    13. Bouvet M and
    14. Hoffman RM
    : Oral recombinant methioninase prevents nonalcoholic fatty liver disease in mice on a high fat diet. In Vivo 34(3): 979-984, 2020. PMID: 32354883. DOI: 10.21873/invivo.11866
    OpenUrlAbstract/FREE Full Text
    1. Lim HI,
    2. Hamada K,
    3. Yamamoto J,
    4. Han Q,
    5. Tan Y,
    6. Choi HJ,
    7. Nam SJ,
    8. Bouvet M and
    9. Hoffman RM
    : Oral methioninase inhibits recurrence in a PDOX mouse model of aggressive triple-negative breast cancer. In Vivo 34(5): 2281-2286, 2020. PMID: 32871751. DOI: 10.21873/invivo.12039
    OpenUrlAbstract/FREE Full Text
    1. Sugisawa N,
    2. Hamada K,
    3. Han Q,
    4. Yamamoto J,
    5. Sun YU,
    6. Nishino H,
    7. Kawaguchi K,
    8. Bouvet M,
    9. Unno M and
    10. Hoffman RM
    : Adjuvant oral recombinant methioninase inhibits lung metastasis in a surgical breast-cancer orthotopic syngeneic model. Anticancer Res 40(9): 4869-4874, 2020. PMID: 32878774. DOI: 10.21873/anticanres.14489
    OpenUrlAbstract/FREE Full Text
    1. Sun YU,
    2. Nishino H,
    3. Sugisawa N,
    4. Yamamoto J,
    5. Hamada K,
    6. Zhu G,
    7. Lim HI and
    8. Hoffman RM
    : Oral recombinant methioninase sensitizes a bladder cancer orthotopic xenograft mouse model to low-dose cisplatinum and prevents metastasis. Anticancer Res 40(11): 6083-6091, 2020. PMID: 33109546. DOI: 10.21873/anticanres.14629
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Lim HI,
    2. Yamamoto J,
    3. Han Q,
    4. Sun YU,
    5. Nishino H,
    6. Tashiro Y,
    7. Sugisawa N,
    8. Tan Y,
    9. Choi HJ,
    10. Nam SJ,
    11. Bouvet M and
    12. Hoffman RM
    : Response of triple-negative breast cancer liver metastasis to oral recombinant methioninase in a patient-derived orthotopic xenograft (PDOX) model. In Vivo 34(6): 3163-3169, 2020. PMID: 33144420. DOI: 10.21873/invivo.12151
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Wu NF,
    2. Yamamoto J,
    3. Bouvet M and
    4. Hoffman RM
    : A novel procedure for orthotopic tibia implantation for establishment of a more clinical osteosarcoma PDOX mouse model. In Vivo 35(1): 105-109, 2021. PMID: 33402455. DOI: 10.21873/invivo.12237
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Tan Y,
    2. Xu M,
    3. Tan X,
    4. Tan X,
    5. Wang X,
    6. Saikawa Y,
    7. Nagahama T,
    8. Sun X,
    9. Lenz M and
    10. Hoffman RM
    : Overexpression and large-scale production of recombinant L-methionine-alpha-deamino-gamma-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9(2): 233-245, 1997. PMID: 9056489. DOI: 10.1006/prep.1996.0700
    OpenUrlCrossRefPubMed
  24. ↵
    1. Ratan R and
    2. Patel SR
    : Chemotherapy for soft tissue sarcoma. Cancer 122(19): 2952-2960, 2016. PMID: 27434055. DOI: 10.1002/cncr.30191
    OpenUrlCrossRefPubMed
  25. ↵
    1. Marchetto A,
    2. Ohmura S,
    3. Orth MF,
    4. Knott MML,
    5. Colombo MV,
    6. Arrigoni C,
    7. Bardinet V,
    8. Saucier D,
    9. Wehweck FS,
    10. Li J,
    11. Stein S,
    12. Gerke JS,
    13. Baldauf MC,
    14. Musa J,
    15. Dallmayer M,
    16. Romero-Pérez L,
    17. Hölting TLB,
    18. Amatruda JF,
    19. Cossarizza A,
    20. Henssen AG,
    21. Kirchner T,
    22. Moretti M,
    23. Cidre-Aranaz F,
    24. Sannino G and
    25. Grünewald TGP
    : Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat Commun 11(1): 2423, 2020. PMID: 32415069. DOI: 10.1038/s41467-020-16244-2
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Anticancer Research: 41 (4)
Anticancer Research
Vol. 41, Issue 4
April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Oral-recombinant Methioninase Converts an Osteosarcoma from Docetaxel-resistant to -Sensitive in a Clinically-relevant Patient-derived Orthotopic-xenograft (PDOX) Mouse Model
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Oral-recombinant Methioninase Converts an Osteosarcoma from Docetaxel-resistant to -Sensitive in a Clinically-relevant Patient-derived Orthotopic-xenograft (PDOX) Mouse Model
YUSUKE AOKI, YASUNORI TOME, NATHANIEL F. WU, JUN YAMAMOTO, KAZUYUKI HAMADA, QINGHONG HAN, MICHAEL BOUVET, KOTARO NISHIDA, ROBERT M. HOFFMAN
Anticancer Research Apr 2021, 41 (4) 1745-1751; DOI: 10.21873/anticanres.14939

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Oral-recombinant Methioninase Converts an Osteosarcoma from Docetaxel-resistant to -Sensitive in a Clinically-relevant Patient-derived Orthotopic-xenograft (PDOX) Mouse Model
YUSUKE AOKI, YASUNORI TOME, NATHANIEL F. WU, JUN YAMAMOTO, KAZUYUKI HAMADA, QINGHONG HAN, MICHAEL BOUVET, KOTARO NISHIDA, ROBERT M. HOFFMAN
Anticancer Research Apr 2021, 41 (4) 1745-1751; DOI: 10.21873/anticanres.14939
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Chronic Treatment of an Advanced Prostate-cancer Patient With Oral Methioninase Resulted in Long-term Stabilization of Rapidly Rising PSA Levels
  • Google Scholar

More in this TOC Section

  • 5-Azacytidine (5-aza) Induces p53-associated Cell Death Through Inhibition of DNA Methyltransferase Activity in Hep3B and HT-29 Cells
  • Prognostic Value of WNT1, NOTCH1, PDGFRβ, and CXCR4 in Oral Squamous Cell Carcinoma
  • Hypoxia-adapted Multiple Myeloma Stem Cells Resist γδ-T-Cell-mediated Killing by Modulating the Mevalonate Pathway
Show more Experimental Studies

Similar Articles

Keywords

  • Osteosarcoma
  • nude mice
  • PDOX
  • methionine
  • methioninase
  • docetaxel
  • combination therapy
  • efficacy
Anticancer Research

© 2023 Anticancer Research

Powered by HighWire