Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies

Mxi-2 Dependent Regulation of p53 in Prostate Cancer

BARBARA KÖDITZ, JOCHEN W.U. FRIES, HEIKE GÖBEL, PIA PAFFENHOLZ, KONSTANTIN RICHTER, AXEL HEIDENREICH and MELANIE VON BRANDENSTEIN
Anticancer Research October 2020, 40 (10) 5539-5544; DOI: https://doi.org/10.21873/anticanres.14566
BARBARA KÖDITZ
1Department of Natural Sciences, University of Applied Sciences Bonn Rhein Sieg, Rheinbach, Germany
2Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JOCHEN W.U. FRIES
2Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HEIKE GÖBEL
3Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PIA PAFFENHOLZ
2Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KONSTANTIN RICHTER
2Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AXEL HEIDENREICH
2Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MELANIE VON BRANDENSTEIN
2Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: melanie@vonbandenstein.de
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Endothelin-1 (ET-1) is overexpressed in many types of cancer, inhibiting the release of the microRNA 15a (miR-15a) and inducing the production of Mxi-2. Our aim was to identify a molecular complex regulating p53 activity in prostate cancer (PCa). Materials and Methods: DU145 cells were treated with ET-1, MAPK p38 inhibitor, Endothelin A receptor inhibitor (ETAR inhibitor) and Endothelin B receptor inhibitor (ETBR inhibitor). Extracts were analysed using Western Blot, immunoprecipitation and qRT–PCR. Furthermore, prostate cancer patient samples were analysed using qRT–PCR and ELISA. Results: The hypothesised molecular complex was identified, with miR-15a, microRNA 1285 (miR-1285) and Mxi-2 levels up-regulated in patients in relation to increasing aggressiveness of PCa. Conclusion: A complex composed of Argonaut 2 (Ago2)/Mxi-2/miR-1285 is involved in PCa. The expression of Mxi-2 correlates with increasing PCa aggressiveness and might be used as a non-invasive marker for the diagnosis and progression of PCa.

  • Prostate cancer
  • Endothelin-1
  • Mxi-2
  • Ago2
  • p53
  • Received July 2, 2020.
  • Revision received July 31, 2020.
  • Accepted August 4, 2020.
  • Copyright© 2020, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles
PreviousNext
Back to top

In this issue

Anticancer Research: 40 (10)
Anticancer Research
Vol. 40, Issue 10
October 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mxi-2 Dependent Regulation of p53 in Prostate Cancer
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Mxi-2 Dependent Regulation of p53 in Prostate Cancer
BARBARA KÖDITZ, JOCHEN W.U. FRIES, HEIKE GÖBEL, PIA PAFFENHOLZ, KONSTANTIN RICHTER, AXEL HEIDENREICH, MELANIE VON BRANDENSTEIN
Anticancer Research Oct 2020, 40 (10) 5539-5544; DOI: 10.21873/anticanres.14566

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Mxi-2 Dependent Regulation of p53 in Prostate Cancer
BARBARA KÖDITZ, JOCHEN W.U. FRIES, HEIKE GÖBEL, PIA PAFFENHOLZ, KONSTANTIN RICHTER, AXEL HEIDENREICH, MELANIE VON BRANDENSTEIN
Anticancer Research Oct 2020, 40 (10) 5539-5544; DOI: 10.21873/anticanres.14566
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The Prognostic Significance of p16 and its Role as a Surrogate Marker for Human Papilloma Virus in Oral Squamous Cell Carcinoma: An Analysis of 281 Cases
  • Diagnostic Value of Circulating Cell-free DNA in Patients With Papillary Thyroid Cancer
  • Changes in Lysophospholipid Components in Ulcerative Colitis and Colitis-associated Cancer
Show more Experimental Studies

Similar Articles

Keywords

  • prostate cancer
  • Endothelin-1
  • Mxi-2
  • Ago2
  • P53
Anticancer Research

© 2022 Anticancer Research

Powered by HighWire