Disparity on Unplanned Readmission in Melanoma Patients: A National Cancer Database Analysis

DANIEL BOCZAR¹, DAVID J. RESTREPO¹, ANDREA SISTI¹, MARIA T. HUAYLLANI¹, AARON C. SPAULDING², EMMANUEL GABRIEL³, SANJAY BAGARIA³, ALEXANDER S. PARKER⁴, AARON L. LEPPIN⁵ and ANTONIO J. FORTE¹

¹Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, U.S.A.;

²Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery,
Mayo Clinic, Jacksonville, FL, U.S.A.;

³Department of Surgery, Mayo Clinic, Jacksonville, FL, U.S.A.;

⁴University of Florida, College of Medicine, Jacksonville, FL, U.S.A.;

⁵Health Services Research, Mayo Clinic, Rochester, MN, U.S.A.

Abstract. Background/Aim: This study aimed to analyze associated factors of 30-day hospital readmission after surgery for melanoma. Patients and Methods: We conducted a retrospective analysis of postoperative 30-day unplanned readmission in patients with melanoma in the National Cancer Database (NCDB). Results: Higher odds of unplanned readmission were found in non-white patients compared to white, uninsured patients compared to those with private insurance, tumors with invasive behavior compared to in situ, presence of ulceration, American Joint Committee on Cancer stages greater than II, and location in the extremities. Lower odds of unplanned readmission were found in women living in areas where the percentage of adults who did not graduate from high school was below 13.0% with an annual income of \$38,000 or more, who were treated in Academic/Research Programs or Integrated Network Cancer Programs. Conclusion: Non-white patients and low-income zip-codes were associated with unplanned readmission.

The incidence of melanoma is rising, representing an important epidemiologic and health issue worldwide (1). Readmission is an important marker of care quality in the United States (2). Rehospitalization is a frequent and expensive event often due to flaws in post-discharge care.

Correspondence to: Antonio Jorge Forte, MD, Ph.D., Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, U.S.A. Tel: +1 9049532073, e-mail: ajyforte@yahoo.com.br

Key Words: Melanoma, length of stay/statistics & numerical data, outcome and process assessment, patient readmission, quality of health care, disparities, surgical treatment.

The rate of readmission can be reduced with improvement of the health care system (3). To achieve that outcome, it is important to understand the factors associated with disparities in readmissions in the United States. Disparities in melanoma treatment across the country are a proven reality (4). In 2017, Ascha et al. (5) analyzed the factors associated with 30-day readmission following sentinel lymph node biopsy and lymphadenectomy after malignant melanoma.

This study sought to analyze all patients diagnosed with melanoma recorded in the National Cancer Database (NCDB), searching for factors associated with unplanned readmission after surgical discharge and eventual disparities in the population sample. We hypothesized that patient disparities impact 30-day unplanned surgical readmission in this study population.

Patients and Methods

For our study, we used the NCDB, an initiative driven by the American Cancer Society and the American College of Surgeons' Commission on Cancer that registers 70% of all cancer diagnoses in the United States (6). Our study was considered exempt from review by the institutional review board.

Eligible cases were identified using the NCDB Participant User File of melanoma patients. Data were extracted for all patients diagnosed with melanoma with recorded information regarding 30-day hospital readmission following surgical discharge from January 1, 2004, to December 31, 2015. The cohort was then split into two groups based on hospital readmission (*i.e.*, unplanned readmission or no unplanned readmission) (Table I). Patients who did not undergo a surgical procedure or for whom information about readmission was missing were excluded from this analysis.

Data were extracted on patient demographics, facility type, and tumor characteristics. Patient demographics included age, sex, race, income (i.e., median household income for area of

Table I. Patient demographic and clinical data by presence or absence of unplanned readmission.

Variable	No unplanned readmission		Unplanned readmission		
	No.	%	No.	%	<i>p</i> -Value
Total	485,528	98.9%	5,216	1.1%	
Age, mean (SD)	61.38	16.146	62.29	16.273	< 0.001
Age					< 0.001
0-49	110,609	22.8%	1,173	22.5%	
50-59	96,429	19.9%	963	18.5%	
60-69	113,044	23.3%	1,130	21.7%	
70-79	98,616	20.3%	1,129	21.6%	
80+	66,830	13.8%	821	15.7%	
Gender					< 0.001
Male	276,383	56.9%	3,104	59.5%	
Female	209,145	43.1%	2,112	40.5%	
Income					< 0.001
<\$38,000	48,388	10.0%	765	14.7%	
\$38,000-\$47,999	95,413	19.7%	1,157	22.2%	
\$48,000-\$62,999	131,373	27.1%	1,418	27.2%	
>\$63,000	206,227	42.5%	1,824	35.0%	
Unknown	4,127	0.9%	52	1.0%	
Education	,				< 0.001
>21.0%	44,275	9.1%	669	12.8%	
13.0%-20.9%	99,280	20.4%	1,265	24.3%	
7.0%-12.9%	168,535	34.7%	1,773	34.0%	
<7.0%	169,591	34.9%	1,464	28.1%	
Unknown	3,847	0.8%	45	0.9%	
Population density	-,	212,2			< 0.001
Metro counties	399,051	82.2%	4,207	80.7%	
Urban counties	62,515	12.9%	776	14.9%	
Rural counties	7,932	1.6%	93	1.8%	
Unknown	16,030	3.3%	140	2.7%	
Race	10,050	5.570	110	2.7 70	< 0.001
Caucasian	472,640	97.3%	5,041	96.6%	40.001
Non-Caucasian	5,860	1.2%	117	2.2%	
Unknown	7,028	1.4%	58	1.1%	
Insurance	7,020	1.470	30	1.170	< 0.001
Private	254,612	52.4%	2,345	45.0%	VO.001
Not insured	9,813	2.0%	163	3.1%	
Government	210,160	43.3%	2,338	44.8%	
Unknown	10,943	2.3%	370	7.1%	
Facility type	10,773	2.5 /0	510	7.1 /0	< 0.001
Community Cancer Program	27,316	5.6%	420	8.1%	\0.001
Comprehensive Community Cancer Program	157,026	32.3%	2.179	41.8%	
Academic/Research Program	210,582	43.4%	1,591	30.5%	
Integrated Network Cancer Program	39,599	8.2%	508	9.7%	
Unknown		10.5%	518	9.7% 9.9%	
UlikiloWil	51,005	10.5%	318	9.9%	

Chi square or Mann-Whitney test was used for the analyses.

residency), level of education (based on area of residency), insurance (*i.e.*, private, uninsured, and government), and population density (*i.e.*, metro counties, urban counties, rural counties). Facility characteristics included facility type. Tumor characteristics included invasive behavior, Breslow depth, American Joint Committee on Cancer (AJCC) stage, and presence of ulceration.

Patient demographics, facility type, and tumor characteristics were described and analyzed using χ^2 or Mann-Whitney tests as

appropriate. Multivariate analysis was performed using a logistic regression model to assess independent associations, adjusting for confounders. Separate analyses were conducted with the outcome variable being unplanned readmission and predicted variables being patient demographic and tumor characteristics (*i.e.*, age, sex, race, income, education, insurance, AJCC stage, ulceration, behavior, and body location). The significance level was set at p<0.05. Statistical analysis was done using SPSS, version 25.0, statistical software (SPSS Inc.).

Results

A total of 490,744 patients met the inclusion criteria of the study. The analyzed cohort included 485,528 (98.9%) patients without unplanned readmission and 5,216 (1.1%) with unplanned readmission. Unplanned readmission was more prevalent among non-white men older than 70 years, living in urban or rural counties and areas with an income lower than \$47,999 per year, where the percentage of adults who did not graduate from high school was above 12.9% (p<0.001). On the other hand, unplanned readmission was less prevalent among patients with private insurance treated in Academic/Research Programs (p<0.001) (Table I).

Higher odds of unplanned readmission were found in non-white patients compared to white, uninsured patients compared to those with private insurance, tumors with invasive behavior compared to *in situ*, presence of ulceration, AJCC stages greater than II compared to stage 0, and location in the extremities compared to head and neck. Lower odds of unplanned readmission were found in women, living in areas where the percentage of adults who did not graduate from high school was below 13.0% compared to 21.0% or more, with an annual income of \$38,000 or more compared to less than \$38,000, and treated in Academic/Research Programs or Integrated Network Cancer Programs compared to Community Cancer Program (Table II).

Discussion

To our knowledge, this study is the largest series to date to delineate factors associated with unplanned readmission among melanoma patients. Patients diagnosed with melanoma in the United States over a 12-year span were more likely to have 30-day unplanned readmission if they had low socioeconomic status and were non-white. Therefore, our data illustrates the need for efforts to improve sociodemographic disparities in melanoma treatment.

This topic has been largely unexplored in the literature; however, a few smaller studies have analyzed factors such as insurance status. A study in 2017 that examined surgical treatment delays in patients with melanoma according to insurance type pointed out that people insured by Medicaid experienced delays in treatment in comparison to people insured by private companies and Medicare (7). A similar analysis identified melanoma patients insured by Medicaid to be more likely to manifest with advanced tumor and less likely to undergo curative treatment (8). In our analysis, uninsured patients were more likely to have a 30-day unplanned readmission compared to privately insured patients.

Timeline of swift diagnosis and expedited therapy is of utmost importance in cancer treatment as disparities in cancer care have been heavily studied based on type of

Table II. Odds of presenting unplanned readmission among melanoma patients.

Variables	95%CI					
	OR	Lower	Upper	<i>p</i> -Value		
Age	1.003	1	1.006	0.051		
Gender						
Male	1		rence	-		
Female	0.92	0.868	0.975	0.005		
Income		ъ.				
<\$38,000	1		rence	-0.001		
\$38,000-\$47,999 \$48,000-\$62,999	0.829 0.801	0.751 0.722	0.915 0.889	<0.001 <0.001		
>\$63,000 >\$63,000	0.764	0.722	0.858	< 0.001		
Unknown	1.855	0.868	3.965	0.111		
Education	1.000	0.000	5.705	0.111		
>21%	1	Reference -				
13%-20.9%	0.969	0.877	1.07	0.53		
7%-12.9%	0.891	0.803	0.99	0.031		
<7%	0.822	0.73	0.925	0.001		
Unknown	0.441	0.193	1.008	0.052		
Population density						
Metro counties	1	Reference -				
Urban counties	0.95	0.875	1.033	0.231		
Rural counties	0.822	0.666	1.015	0.068		
Unknown	0.798	0.659	0.965	0.02		
Race						
Caucasian	1		rence	-		
Non-Caucasian	1.514	1.255	1.827	< 0.001		
Unknown	0.796	0.613	1.034	0.087		
Insurance	1	D.C				
Private	1 1.362	1.158	rence 1.602	- -0.001		
Not insured Government	1.054	0.977	1.136	<0.001 0.173		
Unknown	3.893	3.471	4.367	< 0.001		
Behavior	3.073	3.471	4.507	\0.001		
In situ	1	Reference -				
Invasive	1.448	1.188	1.765	< 0.001		
Body location						
Head and neck	1	Refe	rence	-		
Trunk	0.975	0.901	1.055	0.525		
Extremities	1.14	1.061	1.226	< 0.001		
Others	1.751	1.419	2.161	< 0.001		
Ulceration						
No	1	Reference -				
Yes	1.288	1.189	1.395	< 0.001		
Unknown	0.828	0.746	0.919	< 0.001		
AJCC - tumor stage		5 0				
0	1		rence	0.002		
I	1.013	0.824	1.245	0.902		
II	1.255	1.012	1.557	0.039		
III	2.258	1.822	2.8	< 0.001		
IV Unknown	2.922 1.43	2.274 1.174	3.755 1.741	<0.001 <0.001		
Facility type	1.43	1.1/4	1./41	<0.001		
Community Cancer						
Program	1	Refe	rence	_		
Comprehensive	1	KCIC.	i ciicc	=		
Community						
Cancer Program	0.93	0.836	1.034	0.179		
Academic/	0.75	0.000	1.001	0.177		
Research Program	0.512	0.458	0.571	< 0.001		
Integrated Network						
Cancer Program	0.852	0.746	0.972	0.017		

Multivariate logistic regression for unplanned readmission.

insurance, including greater wait times, treatment delays, and higher mortality (8-11). Furthermore, surgical delays have been consistently shown to result in increased morbidity and mortality (12, 13). In our analysis, unplanned readmission was more prevalent in invasive tumors, with AJCC stages higher than II and Breslow depth greater than 1.01 mm. We speculate that these patients potentially had delayed diagnosis and treatment.

Our study used a large sample taken from the NCDB, which records approximately 70% of the newly diagnosed cancer patients in the United States. However, studies on national patient databases have limitations that merit consideration, such as the potential for coding errors and a retrospective nature. Moreover, melanoma is a disease that affects primarily white people, making the cohort of other races substantially smaller. Still, the advantage of the multi-institutional national database allotted in this analysis allows for increased geographic diversity compared to single-institution cohort studies. Our large sample size provided enough statistical power for our multivariate analysis adjusted for confounders. We encourage the continued investigation of predictive factors of unplanned readmission to track temporal trends of these patient disparities.

In conclusion, our analysis of predictive factors contributing to unplanned readmission of patients who underwent surgical treatment for melanoma identified higher odds among non-white patients and those living in a zip code with lower average income. The implications of these differences on care delivery are unclear, but should be taken into consideration.

Conflicts of Interest

The Authors have no conflicts of interest to declare regarding this study.

Authors' Contributions

DB, MTH, and AJF had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: DB, AJF, ACS, EG. Acquisition, analysis, or interpretation of data: DB, ASP, AJF. Drafting of the manuscript: DB, DJR, MTH, AS. Critical revision of the manuscript for important intellectual content: AAL, SB, MTH, ACS, EG, and AJF. Study supervision: AJF.

Acknowledgements

Funding: This study was supported in part by the Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, and by the Mayo Clinic Center for Individualized Medicine.

References

1 Guy GP Jr., Thomas CC, Thompson T, Watson M, Massetti GM and Richardson LC: Vital signs: Melanoma incidence and

- mortality trends and projections united states, 1982-2030. MMWR Morb Mortal Wkly Rep *64*(*21*): 591-596, 2015. PMID: 26042651.
- 2 Gani F, Lucas DJ, Kim Y, Schneider EB and Pawlik TM: Understanding variation in 30-day surgical readmission in the era of accountable care: Effect of the patient, surgeon, and surgical subspecialties. JAMA Surg 150(11): 1042-1049, 2015. PMID: 26244543. DOI: 10.1001/jamasurg.2015.2215
- 3 Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, Wang Z, Erwin PJ, Sylvester T, Boehmer K, Ting HH, Murad MH, Shippee ND and Montori VM: Preventing 30-day hospital readmissions: A systematic review and meta-analysis of randomized trials. JAMA Intern Med 174(7): 1095-1107, 2014. PMID: 24820131. DOI: 10.1001/jamainternmed.2014.1608
- 4 Al-Qurayshi Z, Srivastav S, Wang A, Boh E, Hamner J, Hassan M and Kandil E: Disparities in the presentation and management of cutaneous melanoma that required admission. Oncology 95(2): 69-80, 2018. PMID: 29913445. DOI: 10.1159/000468152
- 5 Ascha M, Ascha MS and Gastman B: Identification of risk factors in lymphatic surgeries for melanoma: A national surgical quality improvement program review. Ann Plast Surg 79(5): 509-515, 2017. PMID: 28650410. DOI: 10.1097/sap.00000 00000001152
- 6 Bilimoria KY, Stewart AK, Winchester DP and Ko CY: The national cancer data base: A powerful initiative to improve cancer care in the united states. Ann Surg Oncol 15(3): 683-690, 2008. PMID: 18183467. DOI: 10.1245/s10434-007-9747-3
- 7 Adamson AS, Zhou L, Baggett CD, Thomas NE and Meyer AM: Association of delays in surgery for melanoma with insurance type. JAMA Dermatol 153(11): 1106-1113, 2017. PMID: 28979974. DOI: 10.1001/jamadermatol.2017.3338
- 8 Amini A, Rusthoven CG, Waxweiler TV, Jones BL, Fisher CM, Karam SD and Raben D: Association of health insurance with outcomes in adults ages 18 to 64 years with melanoma in the united states. J Am Acad Dermatol 74(2): 309-316, 2016. PMID: 26670715. DOI: 10.1016/j.jaad.2015.09.054
- 9 Fedewa SA, Lerro C, Chase D and Ward EM: Insurance status and racial differences in uterine cancer survival: A study of patients in the national cancer database. Gynecol Oncol 122(1): 63-68, 2011. PMID: 21463888. DOI: 10.1016/j.ygyno.2011.03.010
- 10 Halpern MT and Holden DJ: Disparities in timeliness of care for u.S. Medicare patients diagnosed with cancer. Curr Oncol 19(6): e404-413, 2012. PMID: 23300364. DOI: 10.3747/co.19.1073
- 11 Simard EP, Fedewa S, Ma J, Siegel R and Jemal A: Widening socioeconomic disparities in cervical cancer mortality among women in 26 states, 1993-2007. Cancer *118*(20): 5110-5116, 2012. PMID: 22707306. DOI: 10.1002/cncr.27606
- 12 Bilimoria KY, Ko CY, Tomlinson JS, Stewart AK, Talamonti MS, Hynes DL, Winchester DP and Bentrem DJ: Wait times for cancer surgery in the united states: Trends and predictors of delays. Ann Surg 253(4): 779-785, 2011. PMID: 21475020. DOI: 10.1097/SLA.0b013e318211cc0f
- 13 Korsgaard M, Pedersen L, Sorensen HT and Laurberg S: Delay of treatment is associated with advanced stage of rectal cancer but not of colon cancer. Cancer Detect Prev 30(4): 341-346, 2006. PMID: 16965875. DOI: 10.1016/j.cdp.2006.07.001

Received November 5, 2019 Revised November 11, 2019 Accepted November 12, 2019