
Abstract. Background/Aim: The aim of this study was to
examine clonal heterogeneity, to test the utility of liquid biopsy
in monitoring disease progression and to evaluate the usefulness
of ex vivo drug screening in a BRAF L597Q-mutated colorectal
cancer (CRC) patient developing metastases during adjuvant
therapy. Materials and Methods: Next generation sequencing
(NGS) and droplet digital PCR (ddPCR) were performed in
samples from tumor tissues and liquid biopsies. Live cancer cells
from a metastatic lesion were used in ex vivo drug sensitivity
assays. Results: We found evidence of continued dependence of
MEK/MAPK pathway activation, but different activating
mutations in primary tumor and metastases. Liquid biopsy based
BRAF L597Q ddPCR testing was a sensitive personalized
biomarker predicting the rise of clinically aggressive metastatic
disease. Ex vivo drug sensitivity assays with BRAF L597Q
mutated cells showed response to MEK/MAPK targeted
therapies. Conclusion: The rare BRAF L597Q mutation may be
associated with aggressive tumor behavior in CRC. Liquid
biopsy can be used to capture clinically relevant tumor features. 

Understanding oncogenic drivers and molecular pathways
promoting cancer development, progression and drug
resistance is crucially important for precision oncology. As

tissue-based molecular pathology analyses are subject to
sampling bias, provide only a snapshot of tumor
heterogeneity, and cannot be obtained repeatedly, liquid
biopsies are suggested as an alternative to tissue-based
analytics. Circulating cell-free tumor DNA (ctDNA) assays
have been shown to capture many of the clinically relevant
molecular features of cancer. However, it is still unclear how
the presence of rare variants should be interpreted and
whether sensitivity of ctDNA assays is sufficient for detection
of actionable alterations when tumor burden is low (1-3).

In recent years, it has become clear that MEK/MAPK-
pathway is frequently activated in the pathogenesis of
colorectal cancer (CRC) (4). The hotspot BRAF mutation
V600E leads to very high and constitutive BRAF kinase
activity and sustained MAPK pathway signaling. 

The prevalence of the BRAF V600E mutation is 5-10% in
metastatic colorectal cancer (mCRC) and it is a biomarker
for poor prognosis (5). In BRAF V600E–mutant mCRC,
patients median overall survival was only 10.4 months
compared to 34.7 months in patients without this mutation
(6). Increasing use of comprehensive tumor genomic
profiling with next generation sequencing (NGS) technology
has led to the detection of many BRAF nonV600E mutations.
Their prevalence in mCRC is reported to range from 1.6%
to 5.1% (7-11). The BRAF V600E mutation still represents
60% to 80% of all BRAF-mutations (11, 12).  

Clinical and prognostic implications of rare BRAF
mutations are largely unknown. Based on in vitro kinase
activity data, BRAF-mutations can be classified into
activating, intermediate activating and impaired activity
subgroups, as compared to wild type-BRAF (13, 14). These
data indicate that there are different types of BRAF-
mutations, not all leading to a similar phenotype. Until now
(14), little attention has been devoted to the functional
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characterization of rare mutations and their potential
implications in the treatment of CRC. 

Today, multiple BRAF-directed targeted therapies have
been adopted into standard clinical practice. Unlike
melanoma (15), BRAF and MEK-inhibitors used as a
monotherapy show modest responses in BRAF V600E
mCRC. In metastatic melanoma the response rate is up to
50%, whereas only dismal 5% response rates are reported in
mCRC. However, combining EGFR-antibody with BRAF-
MEK-inhibitor doublet in BRAF V600E mutant mCRC
patients finally resulted in an overall response rate of 48%
for the binimetinib-encorafenib-cetuximab triplet. This led to
the first FDA-approval for BRAF-inhibitors alone or in
combinations in BRAF-mutated mCRC (16).

Here, we describe the molecular analysis and ex vivo
functional characterization of a BRAF L597Q-mutated
colorectal cancer patient that developed metastatic disease
during standard adjuvant therapy. 

Materials and Methods

Case history. A 74-year-old female with no significant past medical
history presented with severe anaemia (Hemoglobin 58 g/l).
Colonoscopy biopsy samples revealed an adenocarcinoma located
in the ascending colon. No unequivocal metastases were observed
in computer tomography (CT) scan and preoperative
carcinoembryonic antigen (CEA) was low (3.1 μg/l). Elective
hemicolectomy was performed in February 2017. Histological
examination revealed a grade II adenocarcinoma with lymphatic
invasion, and lymph node status 3/16, staging pT3N1b. An adjuvant
therapy with planned eight cycles of capecitabine-oxaliplatin
(CAPOX) was initiated. A peritoneal lesion was found in a CT-scan
2 months after primary surgery and after the first chemotherapy
cycle. Retrospective review showed that this lesion was detectable
also in the preoperative CT scan. Nevertheless, this lesion was not
metabolically active in the fludeoxyglucose(18F) positron emission
tomography-computed tomography (PET-CT) scan 6 months after
the surgery and showed no growth tendency. Instead, the PET-CT
scan demonstrated a new metabolically active lymph node in the
para-aortal area. After the seventh cycle of CAPOX (7 months after
primary surgery) the active lymph node was removed and
histologically verified as metastatic adenocarcinoma. One month
later a new lesion in the right ovary was detected in CT with the
same histology. During severe abdominal pain period, a metastasis
infiltrating vena cava and multiple pulmonary metastases were
detected. No further chemotherapy was initiated due to the rapid
progression and patient deterioration. She died about a year after
the initial diagnosis of colon cancer. 

Study design. The patient was recruited in a prospective study that
is designed for colorectal cancer patients resected with curative
intent in Tampere University Hospital in Finland. The study was
approved by the ethics committee of Tampere University Hospital
(R15085) and the patient provided written informed consent. The
trial identifier is NCT03189576. The drug sensitivity and resistance
testing were implemented within another clinical trial recruiting in
Central Finland Health Care District (DNRO 3U/2015).

Blood samples for ctDNA and CEA were planned to be collected
preoperatively (0-3 weeks before), at 4 weeks and every 3 months
up to 2 years and every 6 months up to 3 years or until trial
withdrawal or death. Altogether, five plasma samples were obtained
from this patient before her death.

Algorithm for classifying ctDNA status. Plasma collection:
Peripheral whole blood (2×10 ml) was collected into Vacuette Blood
Collection Tubes (Bio-Greiner GmbH, Kremsmünster, Austria).
Plasma was separated by centrifugation for 10 min at 1,100 × g.
Separated plasma was then stored at –70˚C until cfDNA extraction.

DNA extraction from plasma: Plasma cfDNA was extracted from
4 ml of blood plasma using QIAamp Circulating Nucleic Acid Kit
(Qiagen, Hilden, Germany). Extraction was performed according to
the protocol provided by the kit manufacturer.

DNA extraction from tissue samples: DNA was extracted from
representative FFPE tissue sections with QIAamp DNA FFPE
Tissue Kit (Qiagen) according to the protocol provided by the kit
manufacturer. 

NGS: Qiaseq Human Comprehensive Cancer Panel (Qiagen)
including 275 cancer related genes was used to prepare NGS
amplicon gene library according to the protocol provided by kit
manufacturer. Unique molecular identifiers (UMI) were used to tag
individual DNA strands. Sequencing was performed with Illumina
NextSeq500 instrument (Illumina, San Diego, CA, USA) according
to standard protocol. Data was demultiplexed and fastq files created
with bcl2fastq software (Illumina). The data was processed in CLC
Biomedical Genomics Workbech (Qiagen) with workflow provided
by Qiagen and using Hg19 human reference genome to call the gene
variants. Gene annotations were performed according to the vcf files
in OmnomicsNGS software (Euformatics, Espoo, Finland). 

Droplet digital PCR: To detect the mutation BRAF c.1790T>A
(p.Leu597Gln), droplet digital PCR (ddPCR) testing was performed
in cfDNA samples. PCR mix contained 5 μl cfDNA, 1× ddPCR
Supermix for probes (no UTP; Bio-Rad, Hercules, CA, USA), 1×
target (FAM) and wild-type (HEX) primers/probes (Bio-Rad), 2 U Hae
III (New England Biolabs, Ipswich MA, USA) and water in a 20 μl
volume. Droplets were then prepared with QX200 Droplet Generator
(Bio-Rad) and then the reactions were subjected to PCR cycling. The
PCR cycling included a 95˚C enzyme activation step for 10 min
followed by 40 cycles of a two-step cycling protocol (94˚C for 30 sec
and 55˚C for 1 min) and finally a 10 min enzyme inactivation step at
98˚C. The ramp rate between these steps was slowed to 2˚C/sec. After
PCR, the droplets were counted using QX200 Droplet Reader (Bio-
Rad) and data analysis was performed with QuantaSoft software (Bio-
Rad). Each sample was prepared in duplicates. Mutation positive and
negative samples were prepared as controls for test performance.

Drug sensitivity and resistance testing. A sample of metachronous
para-aortal lymph node metastasis was dissected into three pieces
by a pathologist: 1) formalin fixed sample for histological
evaluation, 2) liquid nitrogen frozen sample for sequencing and 3)
fresh tissue for drug testing.

For drug screening, tumour sample was rinsed with cold Hank’s
balanced salt solution (HyClone HBSS GEHealthCare Life Sciences,
Marlborough, MA, USA) and dissected into 1 mm3 pieces with
scalpel. Pieces were further digested enzymatically into a uniform cell
suspension by incubating for 2.5 h in HBSS with 1 U/ml Dispase
(Corning Bedford, MA, USA), after which the enzyme was
inactivated by repeated washing and centrifugation of cells in RPMI-
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1640 cell culture medium (Lonza Ltd, Basel, Switzerland)
supplemented with 5% FCS (Gibco by Life Technologies, Waltham,
MA, USA). Cells were seeded on ready-made 384-well drug plates
that contained altogether 146 FDA-approved and investigational
drugs in four different concentrations. The ex vivo drug screening
library drugs were purchased from a commercial vendor (Cat no
L1300, Selleck Chemicals, Houston, TX, USA). Cells were incubated
for 5 days in the presence of drugs in four 2-fold dilutions with 5 μM
as the highest concentration. DMSO (Amresco Inc., Solon, OH, USA)
only samples were used as negative control, 5 μM Staurosporin
(Fisher Scientific, Waltham, MA, USA) as cell death control and 2
μM Aphidicolin (MP Biomedicals, Santa Ana, CA, USA) was used
for normalization of growth rate. Cell viability was measured by
using a CellTiter-Glo reagent (CTG, Promega Corporation, Madison,
WI, USA) and a luminescence reader (Labrox, Turku, Finland). The
drug response data were analysed with Microsoft Excel using the
normalized growth rate inhibition (GR) approach, which yields per-
division metrics for drug potency (17, 18). Absolute IC50 values were
calculated with GraphPad Prism 7 software using a non-linear curve
fit equation modified using previously described parameters (19).

Drug sensitivity testing (cell line derived from metachronous para-
aortal lymph node metastasis). Adherent cell line derived from
primary sample was cultured in RPMI-1640 medium (Lonza)
containing 5% FCS (Gibco)+1% L-glutamine (Gibco)+1%
Penicillin-Streptomycin (Gibco). Cells were seeded on a 384-
multiwell plate (2000 cells/ well) and were allowed to adhere and
grow for 8 days before the addition of drugs. Wells were aspirated
and drug dilutions were added on cells, which were then incubated
at 37˚C in a 5% CO2 incubator for 5 days. Viability of cells was
detected with a luminescence based CTG-assay. Mean results of
normalized data from three parallel wells are shown. All
experiments were performed two independent times in triplicate.
Drugs used in drug combination tests were obtained from the
National Cancer Institute (NCI)/Division of Cancer Treatment and
Diagnosis (DCTD)/Developmental Therapeutics Program (DTP)
repository (Rockville, MD, USA). Combination index (CI) which
defines drug synergism (CI<1) and antagonism (CI>1) was
calculated with Microsoft Excel from replicate, fixed-ratio, dose
escalation experiments using the Chou and Talalay method (20). CI
values were reported at 50% inhibitory values (CI50).

Results
Mutational analysis. Targeted sequencing of the primary
tumor revealed multiple somatic mutations (Table I, Figure
1). KRAS G13D has established clinical significance and
guided therapy choices in this case. Co-occurrence of a
KRAS mutation with BRAF F595L was detected in the
primary tumor sample. Sequencing of the whole blood
sample revealed no germline mutations. 

Sequencing of the synchronous locoregional lymph node
metastasis revealed a different assembly of somatic
mutations (Table I, Figure 1). A BRAF L597Q had replaced
the BRAF F595L and the KRAS G13D mutation had
disappeared. In addition, nine other somatic mutations were
found. The mutational landscape of metachronous para-aortal
lymph node resembled the synchronous locoregional lymph

node at the time of primary operation with only exception in
SMAD4. A high concordance between mutations in these
two lymph node metastases was detected in a plasma sample
taken 9 months after primary surgery. The same driver
mutations were observed in this liquid biopsy sample.

Ovarian metastasis revealed mutations in concordance
with mutations found in the primary tumor: a BRAF F595L
mutation with KRAS G13D mutation (Table I, Figure 1). 

Other known somatic mutations were found in CRC tissue
samples in genes such as MAP2K4, MAP2K2, APC,
AMER1, BCOR, BLM, AKT1, HIST1H3B, SMAD4,
ASXL1 and CCNE1 (Table I, Figure 1).

Droplet digital PCR. Serial plasma samples (N=5) were
tested for driver mutation, BRAF L597Q, with ddPCR. The
ctDNA for BRAF L597Q was found in 4 out of the 5 time
points (Figure 2). 

Targeted drug testing. Viable tumor cells were successfully
extracted and cultured from the metachronous para-aortal
lymph node metastasis sample taken 7 months after primary
surgery. These cells containing the BRAF L597Q mutation
were assayed for response to various drugs and drug
combinations ex vivo (Figures 3 and 4). The most effective
single-agent compound was the MEK-inhibitor, trametinib,
with an IC50 of 0.69 μM. Also, the MEK1/2-inhibitor,
AZD6244, and the pan-EGFR-inhibitor, AZD8931, showed
activity in killing tumor cells with an IC50 of 1.40 μM and
1.86 μM, respectively. These results were consistent with the
clinical experience that metastatic disease was resistant to
adjuvant therapy of CAPOX showing tumor response in vitro
with an IC50 of 25.81 μM for capecitabine and 11.11 μM for
oxaliplatin (Figure 3). The control tumor cells grew well
without the presence of an active antitumor agent. Drugs
active against MEK/MAPK pathway targets were tested
alone or in combinations in the tumor cell line derived from
the metachronous para-aortal lymph node metastasis sample.
Trametinib showed activity alone with an IC50 of 1.664 μM.
Cetuximab as a single agent showed only modest activity
with an IC50 of 157.900 mg/ml but the combination showed
synergism (CI50=0.67) with an IC50 of 1.009 μM for
trametinib, 10.090 mg/ml for cetuximab (Figure 4A). Adding
dabrafenib to cetuximab showed no benefit with an IC50 of
9.237 μM for dabrafenib, 92.370 mg/ml for cetuximab
(CI50=1.07) (Figure 4B). Similarly, the combination
dabrafenib-trametinib had no synergism in these experiments
with an IC50 of 1.279 μM for the combination and an IC50
of 1.244 μM for trametinib only (CI50=1.14) (Figure 4C). 

Discussion

Results presented here emphasize multiple aspects of tumor
heterogeneity. It has been established that the molecular
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makeup of tumors evolves dynamically in response to
treatment and correlates with disease progression (21). Here,
we showed that the primary tumor and metastatic sites may
show dependence on the same signaling pathway, but
mutations in target genes may show heterogeneity. These
results illustrate that currently dominating and therapeutically
relevant clonality may not be accurately captured by relying
on primary tumor samples as a tissue source for treatment-
guiding molecular pathology analyses. CtDNA has been
suggested to be useful as a surrogate marker for metabolically
active, dominant cancer clones. Previous studies have shown
good correlation of ctDNA alterations with tissue biopsies,
particularly in EGFR-driven cancers (22-24). There are also
promising results in the non-metastatic, postoperative setting
(25, 26). These findings have led to the suggestion that

identification of these mutations in patient’s blood, enables
characterization of molecular heterogeneity, molecular residual
disease and tumor evolution in real time. Results presented
here illustrate that this approach is feasible.

It can be speculated that activating the MEK/MAPK
pathway is crucial for colorectal cancer cell survival, yet
different activating mutation combinations can result in a
similar tumor phenotype. Interestingly, BRAF L597Q
appeared to be the most suitable ctDNA biomarker for our
patient. This ctDNA was detected in preoperative samples,
the amount rapidly decreased after surgery and resurgence
predicted clinical relapse. 

For this patient BRAF L597Q ctDNA was a more sensitive
biomarker than CEA or radiological imaging with CT. This
is in agreement with the suggestion that ctDNA could work
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Table I. Targeted sequencing. The mutations found in the primary tumor, in the locoregional synchronous lymph node metastasis, in the metachronous
para-aortal lymph node metastasis and in the ovarian metastasis.

                                                                                Primary              Ovarian                Synchronous                  Metachronous               Plasma sample 
                                                                                 tumor               metastasis               locoregional                     para-aortal                      9 months 
                                                                                                                                            metastatic                       metastatic                    after primary 
                                                                                                                                          lymph node                     lymph node                       surgery

                                                                               Average              Average                   Average                          Average                         Average
                                                                               coverage             coverage                   coverage                          coverage                        coverage
                                                                                   641                      630                             50                                  1579                               2273

BLM 
c.2287C>G p.Leu763Val                                         24.7%                  0.0%                          0.0%                                0.0%                              0.0%
BRAF
c.1785T>G p.Phe595Leu                                       26.7%                20.7%                          0.0%                                0.0%                              0.0%

KRAS
c.38G>A p.Gly13Asp                                             26.2%                  4.4%                         0.0%                                0.0%                              0.0%

APC  c.4393_4394delp.Ser1465TrpfsTer3            34.0%                14.8%                        43.1%                                8.3%                              1.8%
MAP2K4 
c.328C>T p.Arg110Ter                                           35.7%                15.2%                        42.5%                              19.1%                              2.0%
AMER1
c.1591C>T p.Arg531Ter                                        43.1%                  0.0%                        45.9%                              18.0%                              3.6%

BCOR
c.1792G>A p.Val598Met                                       11.5%                  0.0%                        26.9%                              13.1%                              2.4%

SMAD4
c.808G>T p.Gly270Ter                                            0.0%                  0.0%                          0.0%                              16.5%                              2.1%

HIST1H3B
c.318G>C, p.Glu106Asp                                         0.0%                  0.0%                        26.2%                              13.1%                              1.4%

CCNE1
c.276C>G p.Cys92Trp                                             0.0%                  0.0%                        33.2%                              15.4%                              1.2%

BRAF
c.1790T>A, p.Leu597Gln                                        0.0%                  0.0%                        42.5%                              15.9%                              3.2%

MAP2K2 
c.395G>A p.Gly132Asp                                            0.0%                  0.0%                        30.7%                              16.3%                              2.8%
AKT1
c.49G>A, p.Glu17Lys                                              0.0%                  0.0%                        43.0%                              17.1%                              2.2%

BCOR
c.724G>T p.Glu242Ter                                            0.0%                  0.0%                        40.4%                              20.9%                              2.6%

ASXL1
c.2501A>G p.His834Arg                                         0.0%                  0.0%                          0.0%                                0.0%                              3.2%



as an early indicator of tumor dynamics and serve to guide
treatment strategies by revealing dominant tumor clonality.
In vitro evidence also points to the role of BRAF L597Q as
an oncogenic driver mutation since it has been described to
be sufficient for MEK/MAPK pathway activation but to a
lesser extent compared to BRAF V600E (13, 27, 28). There
are no previous functional data available regarding this rare
mutation in CRC. BRAF L597Q has been described in
studies cataloguing BRAF mutations (27, 29, 30). The
prevalence of BRAF L597Q mutation has been highest in
melanoma, occurring at 4.1% frequency in two melanoma
series (27, 31).

It is interesting to note that KRAS G13D mutation was
lost in the metastatic sites with the BRAF L597Q mutation
but retained in ovarian metastasis that contained the BRAF
F595L mutation. Co-operation of the BRAF F595L and
KRAS is consistent with the reported literature (32, 33).
BRAF V600E and KRAS-mutations tend not to be expressed
together and the mutual exclusivity is speculated to be due
to senescence (34). In contrast, weak and intermediate kinase
activity BRAF nonV600E mutant tumors are more likely to

occur with concomitant KRAS-mutations (6, 10, 12, 32, 33,
35, 36).

Other mutations found in primary tumor and metastatic sites
(APC, AMER1, SMAD4, MAP2K2, MAP2K4, AKT1, BCOR
and BLM) have all been previously described somatic
mutations in CRC (4, 12, 37-41). APC and MAP2K2 mutations
appeared to be present in all samples suggesting that these were
truncal mutations in this cancer, whereas variability was
observed for other mutations suggesting their subclonal nature. 

Mutations appear to be enriched in key oncogenic
signaling pathway target genes. It has been shown that new
mutations in the EGFR gene conferring drug resistance may
be detected when evolutionary pressure in the form of EGFR
TKI therapy or EGFR monoclonal antibody suppresses drug-
sensitive clones (42, 43). These findings stress the
importance of a system biology-based approach for cancer
therapy, i.e. establishing the major molecular switch that
promotes tumor survival and focusing on therapeutically
shutting down this cascade. In the context of CRC, our
results point to the key role of MEK/MAPK pathway as an
oncogenic switch.
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Figure 1. Nonsynonymous mutations in the primary tumor, metastatic lesions and plasma represented in a heat map (A) and in branched evolution (B). 



The best strategy for MEK/MAPK pathway inhibition in
mCRC remains to be determined. BRAF inhibitor
monotherapy as well as dual blockage of the MEK/MAPK
pathway have had limited efficacy in mCRC (44-49). One
reason for treatment failure seems to be the negative feedback
network that leads to reactivation of MAPK signaling
following treatment with a BRAF inhibitor. In CRC, this
mechanism of resistance seems to be at least partially mediated
via EGFR, while the whole underlying cascade has not yet
been discovered (46, 48). Combining a third target, EGFR-

inhibition, to the BRAF-MEK-inhibitor- doublet in BRAF
V600E mutant patients resulted in a response rate of 21% with
dabrafenib-trametinib-panitumumab triplet (50). Recently,
binimetinib-encorafenib-cetuximab triplet resulted in an overall
response rate of 48% and led to FDA-approval (16).

It has been suggested that one approach to improve
personalized oncology is to utilize patient-derived live cancer
cells, cancer cell clusters or organoid models to directly
screen for optimally active drugs and drug combinations.
Here, we employed this strategy to test effectiveness of a

ANTICANCER RESEARCH 39: 5867-5877 (2019)

5872

Figure 2. Blood based biomarker dynamics illustrating that for this patient BRAF L597Q ctDNA appeared to be more sensitive biomarker for relapse
than CEA. Blood samples for ctDNA (A) and CEA (B) were collected preoperatively (1 week before), and at 1, 3, 6 and 9 months after primary
surgery. Arrow indicates the time point when a new metabolically active lymph node in para-aortal area was detected in fludeoxyglucose (18F)
positron emission tomography-computed tomography (PET-CT) scan. The y-axis is in logarithmic scale in figure (A). 
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panel of cancer drugs on patient-derived tumor cells carrying
BRAF L597Q driver mutation. Importantly, these cells were
resistant to fluorouracil + oxaliplatin regimen recapitulating
clinical tumor behavior. A MEK-inhibitor, trametinib was the
most effective compound as single agent with an IC50 of
0.69 μM. An EGFR-inhibitor, cetuximab, alone showed very
modest activity, but the combination of trametinib-cetuximab
resulted in quantitative synergy (CI50=0.67) (22) with
decreased IC50 of both drugs. In contrast, a BRAF-inhibitor,
dabrafenib, appeared ineffective. Our results are in
concordance with previous findings showing that
intermediate activating BRAF-mutations signal as dimers and
do not respond to BRAF-inhibitors as single agents. EGFR

+ MEK inhibition is probably required to target such BRAF
mutations (14). 

Combination of NGS and ex vivo testing appears to be a
promising strategy for hypothesis-generating experiments in
precision oncology. We suggest to perform NGS sequencing
in the primary tumor to derive a list of driver genetic
alterations and create affordable PCR-assayable personalized
biomarkers to monitor treatment response with liquid
biopsies. At the time of progression, extended molecular
profiling could be used to analyze clonal evolution and
detect novel genetic alterations. These data could then be
used to engineer personalized drug panels to be tested with
ex vivo assays on cancer cells derived from tissue biopsies.
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Figure 4. Targeted ex vivo drug testing. Tumor cell line derived from the metachronous para-aortal lymph node metastasis was tested with drugs
specially directed via MEK/MAPK pathway, alone or in combinations: trametinib-cetuximab (A), dabrafenib-cetuximab (B) and trametinib-
dabrafenib (C).
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