
Abstract. Background/Aim: An evaluation if radiomic
features of CT perfusion (CTP) can predict tumor grade and
aggressiveness in prostate cancer was performed. Materials
and Methods: Forty-seven patients had biopsy-confirmed
prostate cancer, and received a CTP. Blood volume (BV),
blood flow (BF) and mean transit time (MTT) maps were
derived and 1,701 radiomic features were determined per
patient. Regression models were built to estimate post-
surgical Gleason score (GS), microvessel density (MVD) and
distinguish between the different risk groups. Results: Six out
of the 47 patients had to be excluded from further analysis.
A weak relationship between postsurgical GS and one
radiomic parameter was found (R2=0.21, p=0.01). The same
parameter combined with MTT inter-quartile range was
prognostic for the risk group categorisation (AUC=0.81).
Two different radiomic parameters were able to distinguish
between low-intermediate risk and high-intermediate risk
(AUC=0.77). Four parameters correlated with MVD
(R2=0.53, p<0.02). Conclusion: This exploratory study
shows the potential of radiomics to classify prostate cancer.

Prostate cancer is the most common malignant tumor in men
in Europe (1). Its incidence is increasing since the late 1970s
and it is expected to further increase in the future.

Tumor grading, i.e. the Gleason score, together with PSA
serum concentration and T stage is important to assign risk

groups and offer an adequate therapy to the patient. The current
standard for tumor grading is histopathological assessment of
core-needle biopsy probes. The limitation of this approach is
that only a limited number of biopsies can be taken, which leads
to the risk of missing the tumor. Heidegger et al. showed that
pre-surgical biopsy-derived tumor grading differed significantly
from the grading after radical prostatectomy (2, 3). 

Besides tumor grade, the microvessel density (MVD) is a
histopathologic surrogate for angiogenesis or aggressiveness
in many tumors (4, 5). In a retrospective analysis of tissue
microarrays containing several thousand prostate cancer
biopsies, a high MVD correlated with biochemical failure
after prostatectomy (5). However, the assessment of this
parameter in biopsies is so far not feasible in clinical
practice. Therefore, there is a high interest for a non-invasive
assessment of the MVD with functional imaging. 

Recently, multiparametric magnetic resonance imaging
(MRI) has become a standard for prostate cancer diagnosis and
prediction of tumor aggressiveness (6-8). However, many
patients have contraindications to MRI, such as claustrophobia,
metallic foreign bodies, or pacemakers. Another approach is
computed tomography perfusion (CTP) that provides blood
volume (BV), blood flow (BF) and mean transit time (MTT)
values as a surrogate for angiogenesis and might therefore be
a promising tool for the grading of prostate tumors, especially
in patients with contraindications to MRI. Two studies found
an association between tumor grade and mean perfusion
parameters (9, 10). Huellner et al. showed that the mean BF
distinguished better between high grade and intermediate grade
tumors than the presurgical Gleason score (GS) (10).

Radiomics is a technique to extract quantitative features
automatically from medical images. In some studies, up to
1000 features per image were extracted, which enables more
detailed tumor quantification than clinically used imaging
metrics. Such features were shown to be prognostic for
treatment outcome and associated with biological parameters
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(11-13). This makes CTP radiomics a potential powerful tool
for the assessment of tumor grade and stage in prostate cancer.

The aim of this study was to evaluate if radiomic features
of CTPs can predict tumor grade and aggressiveness in
prostate cancer. In 47 patients, a CTP scan was performed
before surgery and the association between BF, BV and MTT
radiomics parameters and GS, risk group (RG) and MVD
was investigated.

Materials and Methods
Patient population and image acquisition. This retrospective
analysis was performed on datasets of 47 patients collected in
prospectively and approved by the local ethical commission.
Informed consent was obtained from all patients. Patients were
assigned to the following risk groups based on GS: low risk (GS
≤6), intermediate risk (GS 7) or high risk (GS 8-10). The
intermediate risk group was further subdivided into low-
intermediate (GS 3+4) or high-intermediate (GS 4+3) (14).

All patients had biopsy confirmed prostate cancer, and underwent
a CTP scan prior to radical prostatectomy. CTP imaging was
performed on a Somatom Definition Flash scanner (Siemens
Healthcare, Erlangen, Germany) using the scanning protocol
previously published by Hüllner et al. (10) (100kV, 100 mAs, time
between two scans=1 s, slice thickness=3 mm). Iodinated contrast
medium (40 ml of Ultravist® 370, Bayer Schering Healthcare,
Berlin, Germany) was injected at a flow rate of 4.5 ml/s, and after
a delay of 3 to 5 seconds, the acquisition of CTP scans was started.
Images were reconstructed using filtered back projection with an in-
plane resolution between 0.5 and 1 mm.

This prospective study was approved by the institutional review
board and by the cantonal ethics committee. All patients provided
informed signed consent before the examinations.

Perfusion maps calculation. First, the motion of the prostate during
the CT series acquisition was determined. If the motion was larger
than 3 mm, the patient was excluded from further analysis. Then the
resolution and slice thickness of all CT scans was adjusted to the
maximum slice thickness used (3 mm). Based on these CTs scans the
three perfusion maps, blood volume (BV), blood flow (BF) and mean
transit time (MTT) were calculated using an in-house developed
software, which is based on the singular value decomposition method
(15, 16). All maps were normalized to the perfusion values inside the
external iliac artery. To exclude bone and air from the maps, only
tissue in the Hounsfield unit range from -100 to 180 was used.

The prostate without seminal vesicles was delineated on one of
the CT image batches of the perfusion series and perfusion
parameters were only calculated inside these contours.

Radiomics analysis. In total, 1,701 radiomic features per patient
were determined in the three perfusion maps (567 parameters per
map). The following 63 features were calculated in the non-
transformed maps and their wavelet transforms (8 sub-bands) (12):
• the histogram of intensities (HI) parameters (n=17)
• the Gray Level Co-occurrence Matrix (GLCM) parameters (n=26)
• the Neighborhood Gray Tone Difference Matrix (NGTDM)
parameters (n=5) 
• the Gray Level Size Zone Matrix (GLSZM) parameters (n=14) 
• the fractal dimension (n=1).

The analysis was performed using an in-house developed software
solution implemented in Python programming language (v. 2.7). The
wavelet decomposition was performed using PyWavelets library and
the ‘Coif1’ wavelet (12). Histogram-based parameters were
calculated on the original image intensities, whereas for texture
quantification perfusion maps and their wavelet transforms were
discretized into 64 bins, using patient-specific minimum and
maximum intensity. The full list of calculated radiomic features will
be provided by the corresponding author upon request.

Histopathological analysis. The GS was assessed according to
international guidelines (17). The mean MVD in the tumor was
determined according to immuno-histochemical cluster of
differentiation molecule 34 (CD34) staining as previously published
by Huellner et al. (10).

Statistical analysis. To reduce the dimensionality of the dataset, a
principal component analysis (PCA) was performed. Horn’s parallel
analysis was used to determine the number of components to retain
in PCA. All radiomic parameters were investigated with regard to
the retained principal components using Spearman correlation. For
each principal component, the radiomic parameter with the largest
absolute correlation coefficient was taken to represent the group of
parameters associated with this principal component. Multivariable
regression models were learned with these radiomic parameters to
estimate postsurgical GS and MVD. Additionally, a model to predict
the post-surgical GS was learned using the radiomic parameters and
the biopsy-derived GS.

To distinguish between low (GS<7) and intermediate (GS=7) risk
groups and between intermediate and high (GS>7) risk groups,
logistic regression models were learned. All patients in the
intermediate risk group were divided into two groups, patients with
a GS 3+4 (low-intermediate risk) and a GS 4+3 (high-intermediate).
A logistic model was learned to distinguish these two subgroups.
For all models 10-fold cross validation was used to estimate the
prediction accuracy. The area under the curve (AUC) was calculated
to show sensitivity and specificity of these models.

Results
Six out of the 47 patients had to be excluded from the analysis
because the motion during the CT series was exceeding 3 mm.
The most common GS was 7, both at biopsy and at whole-
mount histopathology after surgery (Table I). In 13 patients
(28%), there was a change of the grading from biopsy results
to postsurgical histopathology, with an upgrading in 10
patients. There was a weak correlation between biopsy-derived
GS and postsurgical GS (R2=0.22, p=0.002). The microvessel
density was determined in 30 out of 41 patients, the mean
value was 148.3±52.0 microvessels/mm2 (Table I). The
median time interval between CTP scan and biopsy was 16
days, whereas the median time interval between CTP scan and
surgery was 69 days.

Radiomic parameters selection. A total of 1701 radiomic
features were calculated, 87 of them were excluded because
they had zero variation among the patients. The remaining
1,614 parameters were grouped into 10 groups using the

ANTICANCER RESEARCH 38: 685-690 (2018)

686



principal component analysis. For each group, the radiomic
parameter that correlated best with the principal component
of the group was chosen to represent the group (Table II). 

Estimation of Gleason score. A multivariate regression
analysis was performed including all ten radiomic parameters
to predict the GS. A significant but weak relationship
between postsurgical GS and one radiomic parameter was
found (R2=0.21, p=0.01): The joint average parameter in the
HHL wavelet transform of the BF map. The model could be
improved by combining the radiomic parameter with the
biopsy-derived GS (R2=0.33, p=0.002).

Estimation of risk group. There was only one patient in the
low-risk group, therefore no modelling could be performed

to compare low and intermediate risk groups. A logistic
regression was performed comparing intermediate and high
risk groups. Two radiomic parameters had a significant
contribution to the model (Table II). The AUC of this model
was 0.81 (Figure 1). Both radiomic parameters had lower
values in the intermediate risk group (Figure 2).

Comparison between low-intermediate risk and high-
intermediate risk. The patients with a postsurgical GS of 7
were subdivided into 2 groups: GS 3+4 (19 patients) and GS
4+3 (13 patients). A logistic regression model was built to
distinguish between these two groups. Two radiomic
parameters significantly contributed to the model
(AUC=0.77, Figure 3). The BV HLH inverse difference
parameter was higher for the GS 3+4 group compared to the
4+3 group, whereas the BF HHH fractal dimension was
smaller (Figure 4).

Correlation with MVD. Four radiomic parameters had a
significant correlation with the MVD (R2=0.53, p<0.02).
The MVD was increasing with increasing interquartile range
in the non-transformed MTT map and joint average in the
HHL transformed BF map. The MVD was decreasing with
increasing difference entropy in the LLL transform of the BV
map and the kurtosis in the LLH of the BF map.

Discussion

Prostate cancer is a very heterogeneous disease. Therapeutic
options include surgery, radiotherapy, hormone therapy or a
combination thereof. In order to guide treatment, patients are
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Table I. Patient characteristics.

Biopsy-derived Gleason score                                            N
   6                                                                                         7
   7                                                                                        28
   8                                                                                         4
   9                                                                                         2
Postsurgical Gleason score                                                 N
   6                                                                                         1
   7                                                                                        32
   8                                                                                         5
   9                                                                                         3
Microvessel density:
   Mean±SD (microvessels/mm2), n=30                      148.3±2.0
Time between CTP and surgery
   Median (range) (days)                                             69 (10-300)
Time between biopsy and CTP
   Median (range) (days)                                              16 (0-202)

Table II. Ten radiomic parameters were determined by the principal
component analysis and considered in the multivariable regression
model. Four parameters had a significant influence on the MVD, two
on the prediction of the risk group, two to distinguish the intermediate
risk group (IRG) into low-intermediate and high-intermediate, and one
parameter to predict post-surgical GS. 

Principle                      Most correlated                  Significant influence 
component                         parameter                                 on model

1                                BV HHL coarseness                                
2                          BV HLH root mean square                       IRG
3                                      MTT median                                      
4                                   BF LLH kurtosis                              MVD
5                            MTT inter-quartile range                    RG, MVD
6                          BV LLL difference entropy                     MVD
7                              BV difference average                              
8                              BF HHL joint average                  GS, RG, MVD
9                          BF HHH fractal dimension                       IRG
10                              BV HLL correlation                                

Figure 1. The receiver operating characteristics for risk group prognosis
(AUC=0.81).



routinely allocated to low, intermediate or high-risk groups
based on tumor stage, tumor grade and PSA serum
concentration. We assessed radiomics to non-invasively estimate
postsurgical GS, risk group categorisation and microvessel
density (MVD) based on CTP imaging. We found one radiomic
parameter (BF HHL joint average) to be prognostic for the GS.
This parameter and in combination with MTT inter-quartile
range was prognostic for the risk group categorisation. Based
on a recent publication that suggested to further divide
intermediate risk prostate cancer into low-intermediate (Gleason
3+4) and high-intermediate (Gleason 4+3) risk groups due to
substantial differences in clinical outcome that require different
treatment strategies (14), we found two different radiomic
parameters (BF HHH fractal dimension and BV HLH root
mean square) that distinguish between low-intermediated risk
and high-intermediate risk. Four parameters correlated with
MVD, which is an angiogenesis-related marker associated with
improved prognosis.

In this study, the final postsurgical GS was incorrectly
estimated by biopsy in 28% of the patients. This is in
agreement with other published studies, which showed a
disagreement between biopsy-derived GS and postsurgical
GS between 26-71% (18, 19). Radiomics in combination
with the biopsy-derived GS improved the prediction
accuracy. 

Huellner et al. used CTP imaging to predict GS and MVD
(10). They did not find a correlation between mean values of
BF, BV and MTT with MVD. Using radiomics we could
build a model to predict the MVD based on 4 radiomic
parameters (R2=0.53). Tumors characterized with increased
MVD had a higher MTT interquartile range and lower BF
LLH kurtosis. These radiomic parameters likely correspond
to a more heterogeneous blood flow, which could be

explained by tortuous tumor vasculature. The biological and
physiological implications of this still needs to be
determined.

Our correlation model based on one radiomic parameter
to predict the GS was slightly superior (R2=0.22) to the
model by Hüllner et al., which is based on the mean BV
value (R2=0.18) (10). We could additionally improve the
model by combining radiomics with presurgical GS. Similar
results were found for the prediction of the risk group.
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Figure 2. Boxplots for the intermediate risk and high risk group for the two significant parameters in the model.

Figure 3. The receiver operating characteristics for distinguishing
between low-intermediate (GS 3+4) and high-intermediate (GS 4+3)
risk groups (AUC=0.77).



Several authors used radiomic analysis of multi-parametric
MRI imaging for tumor grading and could show a good
performance of their models to distinguish low and
intermediate risk tumors (AUC=0.83-0.92) (6, 7). The
performance of the models to distinguish low-intermediate
and high-intermediate GS was slightly worse (AUC=0.59-
0.77) (6, 8). Our models for CTP imaging performed
similarly well (AUC=0.77-0.81) to distinguish intermediate
from high risk patients and GS 3+4 from 4+3. 

Radiomic analysis for predicting patient outcome or tumor
phenotype is most often performed by delineating the tumor
and performing radiomic analysis in the tumor volume itself.
In our study the entire prostate was used for the analysis,
because specificity and sensitivity of detecting the tumor
lesion inside the prostate using computed tomography and
functional imaging is not high enough (20). Additionally,
often two or more lesions are present inside the prostate. We
were able to show that the radiomic analysis of the entire
prostate compared to an individual tumor lesion is a valid
approach for the assessment of prostate cancer. This concept
might be translated to other tumor entities, which would
reduce the delineation work. 

In our study, we calculated 3 different types of radiomic
features: first order statistical parameters, texture parameters
and wavelet-transform parameters. No shape parameters
were calculated because not the tumor lesion itself was
delineated but the entire prostate. Since the shape of the
prostate does not differ much among patients, we decided
not to include shape parameters.

A drawback of the study is the small number of patients
included and the missing validation dataset. CT perfusion
imaging is currently not standard of care for prostate cancer
patients. Before applying this imaging technique to a large
number of patients, its value needs to be proven on a small

number of patients in clinical studies. Therefore, this
exploratory study should motivate to further investigate CTP
imaging for staging and grading of prostate cancer, especially
for patients with contraindications to MRI. To overcome the
small number of patients included in the study, we reduced
the dimensionality of the dataset by performing a principal
component analysis. Out of the 1,701 radiomic parameters,
only the ten parameters with the best correlation to the first
ten principal components were used for modelling.  

Conclusion

This exploratory study showed the potential of CTP
radiomics for prostate cancer classification. The analysis of
a larger patient cohort in the future will allow for a more
advanced radiomic parameter selection and will eventually
improve the prognostic models.
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