
Abstract. Background/Aim: Due to their unique
composition of health-promoting compounds, the
consumption of hazelnuts may contribute to the prevention
of colon cancer. Materials and Methods: Since hazelnuts are
often consumed roasted, the impact of different roasting
conditions (RC1=140.6˚C/25 min, RC2=155.1˚C/20 min and
RC3=180.4˚C/21 min) on chemopreventive effects of in vitro
fermented hazelnuts was analyzed in LT97 colon adenoma
cells. Results: FS (2.5%) of raw and roasted hazelnuts
reduced H2O2-induced DNA damage while 5% FS
significantly induced gene expression of SOD2 (3.0-fold) and
GSTP1 (2.1-fold). GPx1 mRNA levels were significantly
decreased (0.6-fold) by FS (2.5%). The growth of LT97 cells
was significantly reduced by hazelnut FS in a time- and
dose-dependent manner. Hazelnut FS (5%) increased the
numbers of early apoptotic cells (9.6% on average) and
caspase-3 activities (6.4-fold on average). Conclusion: These
results indicate a chemopreventive potential of in vitro
fermented hazelnuts which is largely unaffected by the
roasting process. 

Chronic, non-communicable diseases like cardiovascular
diseases, cancer or diabetes are the major causes of death
worldwide (1). These diseases are heavily influenced by
lifestyle factors and nutrition. Especially nuts have the
potential to positively influence the risk for these diseases
due to their unique composition of health-promoting
nutrients such as minerals, vitamins, phytochemicals and
unsaturated fatty acids (2, 3). Results from recent studies

indicate that the consumption of nuts is associated with
lower risks regarding cardiovascular diseases and diabetes
(4-7) or cancer (8-11) as well as total mortality (12).
Especially the risk for colon cancer, which is the second and
third most frequent cancer worldwide in women and men,
respectively (13) is dependent on lifestyle factors and
nutrition (14) and can be reduced by nut consumption.
Studies support an inverse relationship between nut
consumption and the risk for colon cancer in women (9) as
well as in men (15). Dietary fibers, which are abundant in
nuts, may contribute to the beneficial effect on colon cancer
risk. Several studies demonstrated that the consumption of
dietary fiber or fiber rich foods is inversely associated with
the risk for colon cancer development (16, 17). Especially
hazelnuts, one of the most popular nuts consumed
worldwide, belong to the nut varieties which are rich in
dietary fiber (3, 18). A portion of 30 g nuts per day, which
also reflects the daily recommended intake of nuts by the
WHO (19) can provide up to 10% of the recommended daily
amount of dietary fiber of 30 g (20). Hazelnuts are also a
good source for α-tocopherol and phenolic compounds,
which also exert health promoting effects as reviewed by
Alasalvar and Bolling (2). Only a minor part of hazelnuts is
consumed raw, whereas roasted hazelnuts are preferred.
Roasting improves sensory properties of the nuts due to the
development of the typical flavor and crunchy texture (21,
22). The roasting process can also affect the chemical
composition of hazelnuts including health promoting
ingredients like tocopherol and phenolic compounds (2, 18).
Recently, we demonstrated that different nut varieties
including hazelnuts, which were subjected to an in vitro
digestion and fermentation, exhibit chemopreventive effects
in LT97 colon adenoma cells by increasing gene expression
of antioxidant and phase II enzymes, inhibition of
proliferation and induction of apoptosis (23). Similar results
were obtained by Lux et al. (24) who investigated the
chemopreventive potential of different nuts in HT29 colon
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carcinoma cells. Until now, there is no information if the
roasting process has an impact on these chemopreventive
effects. Therefore, the aim of the present study was to
examine the influence of different roasting conditions on
chemopreventive effects of in vitro fermented hazelnuts in
LT97 colon adenoma cells regarding DNA damage, gene
expression of antioxidant and phase II enzymes, proliferation
and apoptosis.

Materials and Methods

Roasting of hazelnuts. Hazelnuts were obtained from Viba Sweets
(Floh-Seligenthal, Germany, originally derived from Turkey).
Roasting of hazelnuts was performed at laboratory scale in charges
of 9.5 kg using a FRC-T.1 drum roaster (Probat, Emmerich am
Rhein, Germany) as previously described (18). The following
roasting conditions (RC) were applied to cover the minimum and
maximum range of roasting temperatures and time periods usually
used for industrial roasting of hazelnuts (25): RC1=140.6˚C/25 min,
RC2=155.1˚C/20 min and RC3=180.4˚C/21 min. Hazelnuts were
stored in hermetically sealed bags at 4˚C until use. 

In vitro digestion and fermentation of hazelnuts. In vitro digestion
and fermentation of hazelnuts was performed as described previously
(23). In brief, 2 g of raw and roasted hazelnuts were ground and
reconstituted with anaerobic potassium phosphate buffer (0.1 M, pH
7.0), incubated with α-amylase (17.4 U/sample in 20 mM NaH2PO4)
and NaCl (0.85%) for 5 min and pepsin (1.11 mg in 0.94 ml 20 mM
HCl, pH 2.0) for 2 h at 37˚C. Synergy1® (oligofructose-enriched
inulin, Beneo, Mannheim, Germany), was used as positive control
and a blank fermentation sample without hazelnuts served as
negative control. Subsequently, samples were treated with an
intestinal extract (26 mg pancreatin, 50 mg oxgall in 5 ml of 11 mM
bicarbonate buffer, pH 6.5) and dialyzed (molecular weight cut off:
500-1,000 Da) under semi-anaerobic conditions (6 h, 37˚C). A feces
inoculum mixture of at least three healthy donors was used to
perform in vitro fermentation in an anaerobic atmosphere (37˚C, 24
h). After stopping fermentation at 4˚C, fermentation supernatants
(FS) were obtained by centrifugation (30 min, 4200 × g and 15 min,
4,200 × g at 4˚C). Final FS were obtained by centrifugation (15 min,
10,300 × g at 4˚C) and sterile filtration (pore size 0.22 μm). Aliquots
of FS were stored at –80˚C until use. 

Cell culture. The human colon adenoma cell line LT97 (a kind gift
from Professor B. Marian, Institute for Cancer Research, University
of Vienna, Austria) was used for cell culture experiments. This cell
line was established from a micro-adenoma and represents an early
stage of colon tumor development (26). Culture conditions and
properties of LT97 cells were already described in detail previously
(27). Recently, an authentication of LT97 cells was performed by
STR (short tandem repeat) profiling (Leibnitz-Institute DSMZ,
German Collection of Microorganisms and Cell Cultures). 

Determination of genotoxic and antigenotoxic effects. Potential
genotoxic and antigenotoxic effects of hazelnut FS were analyzed
using the Comet Assay as described previously (24, 28). LT97
cells were grown to a confluence of about 70%, harvested and
washed with PBS. The ViCell cell counter (Beckman Coulter,

Krefeld, Germany) was used to determine cell number and
viability. After adjusting the cell number to 0.4×106, LT97 cells
were incubated with different concentrations (2.5 and 5%) of FS
from raw and roasted hazelnuts and controls (blank, Synergy1®)
for 1 h at 37˚C. In addition, LT97 cells were challenged with H2O2
to analyze antigenotoxic effects. Therefore, 0.4×106 cells were
incubated with hazelnut FS for 45 min at 37˚C and subsequently
co-incubation was carried out with H2O2 (75 μM) for additional
15 min. For Comet Assay experiments H2O2 (75 μM, 15 min at
37˚C) and PBS served as positive and negative controls,
respectively. After treatment, LT97 cells were washed with PBS
and adjusted to 0.2×106 cells which were mixed with 45 μl 0.7%
low-melting agarose (Biozym, Hessisch Oldendorf, Germany) and
distributed onto microscopic slides coated with 0.5% normal-
melting agarose (Biozym, Hessisch Oldendorf, Germany). Slides
were placed in lysis solution (10 mM Tris-HCl, 100 mM
Na2EDTA, 2.5 M NaCl, 10% DMSO, 1% Triton X-100, pH 10)
for 60 min at 4˚C. Subsequently, slides were placed into a cooled
electrophoresis chamber containing alkaline buffer 
(1 mM Na2EDTA, 300 mM NaOH, pH 13) for 20 min and then
they were electrophoresed for 20 min (20 V, 300 mA, 0.79 V/cm,
4˚C). Slides were washed with PBS (3×5 min) for neutralization.
After staining DNA with SYBR® Green (Sigma Aldrich, Munich,
Germany) DNA damage was detected using a fluorescence
microscope (ZEISS Axiostar plus; Carl Zeiss Jena GmbH) and
image analysis system (Comet Assay IV, Perceptive Instruments,
Suffolk, UK). The tail intensity (% TI) was determined as degree
of DNA damage as means of sixty cells.

Isolation of total RNA. LT97 cells were treated with FS from raw
and roasted hazelnuts (2.5% and 5%) and controls as well as
butyrate (4 mM) as further positive control for 24 h. The RNeasy
Plus Mini kit (Qiagen, Hilden, Germany) was used to isolate total
RNA according to the manufacturer’s instructions. Elution of RNA
was performed in 50 μl RNase-free water. The Quality and
concentrations of total RNA were measured with a NanoDropND-
1000 photometer (NanoDrop Technologies, Wilmington, Delaware,
USA). In addition, the RNA integrity number (RIN) was determined
using the Agilent RNA 6000 Nano Kit (Agilent Technologies, Santa
Clara, California, USA) and the Agilent 2100 Bioanalyzer (Agilent
Technologies, Waldbronn, Germany) according to the
manufacturer’s instructions. Only RNA samples with a RIN >9 were
used for experiments. RNA was stored at –80˚C until use. 

cDNA synthesis and mRNA expression. Complimentary DNA was
obtained via reverse transcription of 1.5 μg total RNA in a 20 μl
reaction mix (42˚C, 50 min) using the SCRIPT Reverse
Transcriptase kit (Jena Bioscience, Jena, Germany). The samples
were heated to 72˚C for 15 min to stop the reaction and remaining
RNA was removed by treatment with RNaseH (37˚C, 20 min). For
further experiments, cDNA samples were diluted (1:50) in RNase
free water. The mRNA expression of antioxidant and phase II
enzymes (CAT, SOD2, GPx1 and GSTP1) was analyzed by RT-
qPCR as described previously using the GoTaq® qPCR Master Mix
(Promega, Mannheim, Germany) and the iCycler iQ Real time PCR
Detection System (Bio-Rad Laboratory, Munich, Germany) as well
as gene specific primers (23). The expression of CAT, SOD2, GPx1
and GSTP1 was normalized to the geometric mean of two reference
genes β-actin and GAPDH based on the equation of Pfaffl et al.
(29) and expressed as fold change (fc). 
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Determination of cell growth. To analyze growth inhibitory
effects of hazelnut FS, LT97 colon adenoma cells were treated
with different concentrations of FS from raw and roasted
hazelnuts (2.5, 5, 10 and 20%) for 24, 48 and 72 h. The DAPI
(4’,6-diamidino-2-phenylindol) assay was used to determine the
time- and dose-dependent effects on growth of LT97 cells as
described previously (30).

Detection of apoptosis. LT97 cells were grown to a confluence of
about 70% and treated with different concentrations (2.5 and 5%)
of FS from raw and roasted hazelnuts and controls as well as
butyrate (4 mM) for 12 and 24 h. Quantification of early apoptotic
cells was performed via flow cytometry (Cell Lab Quanta™ SC
MPL 1.0, Beckman Coulter, Krefeld, Germany) using the annexin
V-FITC/7-AAD (fluorescein isothiocyanate/7-aminoactinomycin D)
kit (Beckman Coulter, Krefeld, Germany) according to the
manufacturer’s instructions. In addition, caspase-3 activity as
marker of advanced apoptosis was analyzed in LT97 cells treated
with hazelnut FS and fermentation controls (2.5 and 5%) for 24 and
48 h as well as butyrate (4 mM) as described by Borowicki et al.
(31). Relative caspase activities were calculated as fold changes on
the basis of the medium control, which was set to 1.

Statistical analysis. Means and standard deviations of three
independent experiments were calculated. Statistical differences
were analyzed by one- or two-way ANOVA including Bonferroni
post-test or Student’s t-test for comparison of two groups using
GraphPad Prism® version 5 for Windows (GraphPad Software, San
Diego, California, USA). 

Results

Determination of genotoxic and antigenotoxic effects.
Genotoxic and antigenotoxic effects of FS from raw and
differentially roasted hazelnuts in LT97 colon adenoma cells
were determined via Comet Assay. With an average tail
intensity of 1.8±0.5% hazelnut FS proved to be non-
genotoxic (Figure 1a). These results were comparable to tail
intensities determined for cells treated with FS from the
blank control (1.6±0.8%), FS from Synergy1® (1.9±0.1%) as
well as the negative control (PBS, 1.4±0.9%). In comparison,
the tail intensity was significantly higher after treatment with
the positive control (17.7±6.4%). These results indicate, that
no DNA damage was induced by hazelnut FS and that the
roasting process had no impact on a potential genotoxicity
of hazelnut FS. Co-incubation of LT97 cells with FS from
raw and roasted hazelnuts and controls together with H2O2
reduced the levels of H2O2-induced DNA damage (Figure
1b). Especially, treatment with 2.5% FS from Synergy1®
(17.7±2.5%), hazelnut raw (17.6±5.7%) as well as RC2
(16.5±1.7%) and RC3 (21.2±9.5%) resulted in significantly
reduced levels of DNA damage compared to the positive
control (40.5±6.8%) and the FS from the blank control
(35.4±9.1%). Significantly lower tail intensities compared to
the positive control could also be observed after treatment
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Figure 1. Genotoxic (a) and antigenotoxic (b) effects of fermentation supernatants (FS, 2.5 and 5%) of raw and roasted hazelnuts (RC1=140.6˚C/25 min,
RC2=155.1˚C/20 min and RC3=180.4˚C/21 min) and controls (blank, Synergy1®) for 1 h in LT97 colon adenoma cells (mean+SD, n=3). Significant
differences between FS from raw and roasted hazelnuts as well as Synergy1® and the positive control (PC, 75 μM H2O2, *p≤0.05, **p≤0.01, ***p≤0.001),
the negative control (NC, PBS, ap≤0.05) and the blank control (#p≤0.05, ##p≤0.01) were obtained by two-way Anova/Bonferroni post-test.



with 5% FS from raw and roasted hazelnuts (23.0±2.6% on
average, except RC1) as well as the FS of the blank
(25.1±6.8%) and FS of the Synergy1® control (21.5±7.5%). 

Modulation of selected target genes in LT97 cells by
hazelnut FS. Expression levels of mRNA of CAT, SOD2,
GPx1 and GSTP1 were examined in LT97 cells treated with
FS from raw and differentially roasted hazelnuts and
controls using RT-qPCR. A significant induction of CAT
mRNA levels in comparison to the medium control (set as
1) could be measured after treatment with FS from raw and
roasted hazelnuts (FS 2.5% fc: 2.5±0.5, FS 5% fc: 3.0±0.9,
on average) and FS from blank (FS 2.5% fc: 2.3±0.6, FS 5%
fc: 2.7±0.4) as well as Synergy1® (FS 2.5% fc: 2.6±0.8, FS

5% fc: 2.8±0.6) (Figure 2a). Butyrate (4 mM), which served
as a positive control, also significantly increased levels of
CAT mRNA (fc: 3.8±0.9) in a similar manner. Levels of
SOD2 mRNA were also significantly induced by all
hazelnut FS (FS 2.5% fc: 2.0±0.3, FS 5% fc: 2.6±0.8, on
average) and FS obtained from Synergy1® (FS 2.5% fc:
2.1±0.5, FS 5% fc: 2.6±0.4) as well as butyrate (fc: 2.9±0.2)
in comparison to the medium control (Figure 2b). In
particular, treatment with 5% FS from raw hazelnuts (fc:
3.1±0.2), RC1 (fc: 3.2±0.1) and RC2 (fc: 2.6±0.4) as well
as Synergy1® resulted in dose-dependently and significantly
higher SOD2 mRNA levels compared to the blank control
(fc: 1.7±0.2). These SOD2 mRNA levels were also
significantly higher compared to the treatment with FS
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Figure 2. Relative mRNA expression of a) CAT (catalase), b) SOD2 (superoxide dismutase 2), c) GSTP1 (glutathione S-transferase P1), and d)
GPX1 (glutathione peroxidase 1) in LT97 colon adenoma cells after incubation with fermentation supernatants (FS, 2.5 and 5%) of raw and roasted
hazelnuts (RC1=140.6˚C/25 min, RC2=155.1˚C/20 min and RC3=180.4˚C/21 min) and controls (4 mM butyrate, blank, Synergy1®) for 24 h
(mean+SD, n=3). Values represent fold changes on the basis of a medium control (set as 1, dashed line). Significant differences compared to the
medium control (*p≤0.05, **p≤0.01, ***p≤0.001), to the blank control (##p≤0.01, ###p≤0.001) and between FS (a-fp≤0.05, equal letters represent
significant differences) were obtained by two-way Anova/Bonferroni post-test. Significant differences between 2.5 and 5% were obtained by unpaired
Student’s t-test (†p≤0.05, ††p≤0.01, †††p≤0.001).



obtained from the most intensively roasted hazelnuts (FS
RC3 5% fc: 1.6±0.6). Similar results could be obtained for
GSTP1 mRNA expression (Figure 2c). Here, treatment with
5% FS from raw (fc: 2.4±0.6) and roasted hazelnuts RC1
(fc: 2.0±0.0) and RC2 (fc: 1.9±0.6) led to a significant
increase of GSTP1 mRNA levels compared to the medium
control as well as the respective FS from the blank control
(fc: 1.1±0.3), Synergy1® (fc: 1.2±0.3) and the most
intensively roasting condition RC3 (fc: 1.1±0.3). In general,
the induction of GSTP1 by hazelnut FS was comparable to
the induction caused by butyrate (fc: 1.8±0.4). In contrast
to all other genes, GPx1 mRNA expression was significantly
reduced by almost all FS, especially after treatment with 5%
FS from raw and roasted hazelnuts (fc: 0.6±0.1, on
average), butyrate (fc: 0.6±0.2), Synergy1® (fc: 0.6±0.2)
and also the blank control (fc: 0.6±0.1) (Figure 2d).
Treatment of LT97 cells with 2.5% FS from Synergy1® (fc:
0.9±0.2) and particularly FS from raw (fc: 0.6±0.1) and
roasted hazelnuts RC1 (fc: 0.7±0.1) and RC2 (fc: 0.6±0.1)
resulted in significantly reduced GPx1 levels compared to
the respective blank control (fc: 1.2±0.1) as well as FS RC3
(fc: 1.0±0.2). 

Inhibition of LT97 cell growth by hazelnut FS. Treatment of
LT97 cells with FS from raw and roasted hazelnuts as well
as controls led to a significant reduction of cell growth in a
time- and dose-dependent manner (Figure 3). After 24 h, the
average LT97 cell number was already significantly reduced
to 63.2±4.0% and 48.5±5.0% upon treatment with 2.5 and
20% FS from raw and roasted hazelnuts, respectively in
comparison to the medium control which was set to 100%
(Figure 3a). In comparison, especially FS from Synergy1®
exhibited stronger growth inhibitory effects which ranged
from 62.3±6.1% to 11.4±10.8% after treatment with 2.5 to
20%, respectively. The strongest growth inhibitory potential
of hazelnut FS were detectable after 48 and 72 h. Treatment
of LT97 cells with 2.5-20% hazelnut FS for 48 h resulted in
an average growth reduction ranging between 44.3±6.2% and
11.5±4.1% (Figure 3b). Almost similar cell numbers could
be measured after treatment with FS (2.5-20%) from
Synergy1® (48.3±1.7% to 1.9±1.1%), while the blank FS
reduced cell growth in the range from 62.6±1.5% and
3.1±1.7% (2.5 and 20%, respectively). In addition, treatment
with 2.5% and 5% FS from Synergy1® resulted in
significantly lower cell growth (14.4% and 12.6%,
respectively) than the respective blank control. Similar
results were obtained after treatment with 2.5% and 5% FS
from hazelnuts which led to significantly lower cell numbers
(18.3±3.1% and 12.3±1.4%, respectively) than the respective
blank control. Comparable results were obtained after
treatment with 2.5% and 5% FS from Synergy1® and
hazelnuts for 72 h, which also led to significantly lower cell
numbers in comparison to FS from the respective blank

control (Figure 3c). In general, cell growth at this time point
ranged between 64.0±3.4% and 0.7±0.6% after treatment
with FS blank (2.5-20%), between 52.7±4.6% and 1.8±0.7%
after treatment with FS Synergy1® (2.5-20%) and between
49.4±6.4% and 1.9±1.8% on average after treatment with
hazelnut FS (2.5-20%). In general, no differences between
raw or roasted nuts could be observed regarding their growth
inhibitory potential.

Induction of apoptosis in LT97 cells by hazelnut FS.
Examination of early apoptotic processes mediated by
fermented hazelnut samples via annexin V-FITC/7-AAD
staining and flow cytometry revealed that FS from roasted
hazelnuts RC1 (FS 5%: 7.9±3.3%) and RC2 (FS 2.5%:
6.7±2.7%) were able to significantly enhance the number of
apoptotic cells after treatment for 12 h (Figure 4a) in
comparison to the medium control (2.4±1.3%) as well as the
respective FS from the blank control (FS 2.5%: 3.1±1.6%, FS
5%: 3.8±0.3%) and Synergy1® (FS 2.5%: 2.9±0.5%, FS 5%:
4.1±2.3%). The increase of early apoptotic cells was more
pronounced after 24 h and largely dose-dependent (Figure 4b).
At this time point, mainly 5% FS from raw and roasted
hazelnuts (9.6±0.9%, on average), the blank control
(6.8±3.1%) and Synergy1® (6.6±1.0%) as well as butyrate
(5.8±0.8%), which served as positive control, significantly
increased the number of early apoptotic cells in comparison
to the medium control (2.9±1.0%). In addition, 2.5% and 5%
FS from roasted hazelnuts RC1 and RC2 also significantly
enhanced the number of apoptotic cells compared to the
respective blank control.

In addition, caspase-3 activity as a marker of advanced
apoptosis was significantly enhanced in a dose-dependent
manner in LT97 cells after treatment with FS from raw and
roasted hazelnuts (FS 2.5% fc: 3.3±0.8, FS 5% fc: 6.4±1.4,
on average) as well as Synergy1® (FS 2.5% fc: 3.4±0.4, FS
5% fc: 5.8±0.6) and butyrate (fc: 6.5±0.9), especially after
24 h (Figure 5a). In contrast, FS from the blank control was
not able to induce caspase-3 activity (FS 2.5% fc: 1.4±0.2,
FS 5% fc: 1.7±0.2) resulting in significantly increased
caspase-3 activities after treatment with all fermented
hazelnut samples (except FS RC3 2.5%) in comparison to
the FS of the blank. Levels of caspase-3 activity were
significantly higher after treatment with hazelnut FS from
the most intense roasting condition than after incubation with
FS from raw or more weakly roasted hazelnuts RC1.
Treatment of LT97 for 48 h resulted in lower caspase-3
activities compared to the 24 h treatment (Figure 5b). But,
butyrate (fc: 4.9±1.0) and 5% FS from hazelnuts (fc:
4.4±1.0, on average) and Synergy1® (fc: 4.3±1.3) were able
to significantly enhance caspase-3 activity compared to the
medium and also to the respective blank control (fc:
0.9±0.3), whereas in general no induction of caspase-3 was
detectable for treatment with 2.5% FS. 
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Figure 3. Growth inhibition of LT97 colon adenoma cells after incubation with fermented samples of raw and roasted hazelnuts (RC1=140.6˚C/25 min,
RC2=155.1˚C/20 min and RC3=180.4˚C/21 min) and controls (blank, Synergy1®) in concentrations of 2.5-20% for a) 24 h, b) 48 h, and c) 72 h
(mean±SD, n=3). Significant differences between blank and fermentation supernatants (FS) of Synergy1® or hazelnuts (#p≤0.05, ##p≤0.01, ###p≤0.001)
were obtained by two-way Anova/Bonferroni post-test. Significant differences between different concentrations (**p≤0.01, ***p≤0.001) were obtained
by one-way Anova/Bonferroni post-test. All fermentation samples were significantly different compared to the medium control which was set to 100%
(dashed line).



Discussion

The influence of different roasting conditions on potential
chemopreventive effects of in vitro digested and fermented
hazelnuts regarding colon cancer development was examined
in the present study. An initial step of chemoprevention is the
reduction of potential carcinogens like reactive oxygen
species (ROS) that can cause DNA damage in colon cells
(32). The results from the present study demonstrate that FS
from hazelnuts are able to reduce the level of DNA damage

in LT97 colon adenoma cells challenged with H2O2. The
reduction of DNA damage after short-term treatment could
be the result of antioxidant active compounds from hazelnuts
or metabolites formed during fermentation. In general, nuts
and especially hazelnuts are rich in bioactive phytochemicals
like phenolic acid, proanthocyanidins, flavonoids and α-
tocopherol, which each exert antioxidant activities (2).
Studies indicate that roasting of nuts (33) or hazelnuts (34),
respectively, is associated with a loss of these bioactive
compounds resulting in lower antioxidant capacities. In the
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Figure 5. Caspase-activity in LT97 cells after incubation with
fermentation supernatants (FS, 2.5 and 5%) of raw and roasted hazelnuts
(RC1=140.6˚C/25 min, RC2=155.1˚C/20 min and RC3=180.4˚C/21 min)
and controls (4 mM butyrate, Synergy1®, blank) for a) 24 h and b) 48 h
(mean+SD, n=3). Values represent fold changes on the basis of a medium
control (set as 1, dashed line). Significant differences compared to the
medium control (*p≤0.05, **p≤0.01, ***p≤0.001), to the blank control
(#p≤0.05, ###p≤0.001) and between FS (a-cp≤0.05, equal letters represent
significant differences) were obtained by two-way Anova/Bonferroni post-
test. Significant differences between 2.5 and 5% were obtained by
unpaired Student’s t-test (†p≤ 0.05, ††p≤0.01).

Figure 4. Number of early apoptotic LT97 cells in percent after
incubation with fermentation supernatants (FS, 2.5 and 5%) of raw and
roasted hazelnuts (RC1=140.6˚C/25 min, RC2=155.1˚C/20 min and
RC3=180.4˚C/21 min) and controls (4 mM butyrate, Synergy1®, blank)
for a) 12 h and b) 24 h (mean+SD, n=3). Significant differences
compared to the medium control (*p≤0.05, **p≤0.01, ***p≤0.001), to
the blank control (#p≤0.05, ##p≤0.01) and between FS (a-cp≤0.05, equal
letters represent significant differences) were obtained by two-way-
Anova/Bonferroni post-test. Significant differences between 2.5 and 5%
were obtained by unpaired Student’s t-test (†p≤0.05, ††p≤0.01).



present study, no distinct influence of the roasting process
could be observed regarding the reduction of DNA damage.
This is in line with results from a former study showing
relative stable hydrophilic antioxidant capacities for hazelnuts
after roasting with different time and temperature ranges (18).

Protection from excessive ROS accumulation is also
mediated by antioxidant and phase II enzymes. The present
study showed that hazelnut FS are able to significantly induce
gene expression of such enzymes like CAT, SOD2 and GSTP1
in LT97 colon cells. Especially, SOD2 and GSTP1 were
inducible by hazelnut FS in comparison to the blank control,
whereas GPx1 was mostly significantly down-regulated.
Similar results were obtained in a recent study which
analyzed the expression of theses enzymes in LT97 cells after
treatment with FS from different raw nut varieties (23).
Levels of mRNA after treatment with hazelnut FS were
similar to that after butyrate treatment, indicating that the
induction of these enzymes may be mainly mediated by this
fermentation product of hazelnut dietary fiber. In a recent
study we have demonstrated the production of short chain
fatty acids (SCFA) and especially butyrate in fermented nut
samples (35). Former studies also indicated that butyrate as
the key fermentation product of dietary fiber is responsible
for the induction of genes encoding CAT, GSTs or SOD (36-
39). An induction of CAT and GSTP1 in HT29 colon
carcinoma cells upon incubation with fermentation products
from fiber rich sources like wheat aleurone was also observed
by Stein et al. (40). The induction of antioxidant and phase
II enzymes by butyrate may be mainly mediated by its
function as histone deacetylase inhibitor (38, 39, 41) or via
association with increased levels of NF-E2-related factor 2
(42). This transcription factor, which can be activated by
many dietary compounds such as flavonoids and polyphenols,
regulates the expression of many antioxidant and phase II
enzymes via antioxidant response elements (ARE) (32).
Therefore, in addition to butyrate, other hazelnut compounds
like flavonoids or polyphenols may contribute to the
induction of antioxidant and phase II genes. Metabolites of
phenolic compounds resulting from fermentation in the colon
might also induce antioxidant or phase II enzymes.
Metabolites of quercetin and chlorogenic acid/caffeic acid
(3,4-dihydroxyphenylacetic acid and 3-(3,4-
dihydroxyphenyl)-propionic acid, respectively) for example,
induced GSTT2 gene expression in LT97 cells and also
reduced cumene hydroperoxide-induced DNA damage (43).

The impact of hazelnut FS on gene expression of SOD2,
GSTP1 and GPx1 was lower for FS resulting from hazelnuts
which were roasted with the most intense condition (RC3).
This reduction could be due to the loss of antioxidants like
phenolic compounds which could activate ARE. Such
antioxidants are predominantly located in the pellicle of
hazelnuts, which can be removed upon roasting with high
roasting temperatures and duration (34, 44).

Mechanisms of secondary chemoprevention include the
induction of apoptosis and reduction of proliferation of
initiated cells (39). The present study demonstrates that
fermented hazelnuts are able to significantly reduce the
growth of LT97 adenoma cells in a time- and dose-dependent
manner independently of the roasting process. These results
are confirmed by former studies, which revealed growth
inhibitory effects of FS from different raw nut varieties
including hazelnuts in LT97 (23) and HT29 cells (24). In
addition, the FS from other dietary fiber sources like wheat
aleurone (31, 45) or bread (30) also exhibited growth-
inhibitory potential on LT97 cells. These growth inhibitory
effects of nuts and other dietary fiber rich foods are to a
large part mediated by metabolites like butyrate and to some
extend also propionate, which are formed during
fermentation of dietary fiber (30, 41, 45, 46). In a recent
study we have confirmed that fermentation of hazelnuts
results in the formation of these SCFA (35). In contrast, the
blank control representing the pure feces matrix, contained
only minor amounts of SCFA or butyrate, respectively. Here,
the growth inhibitory effects might be mediated by high
concentrations of bile acids like deoxycholic acid measured
especially in the FS blank (35, 47).

The present study also revealed an induction of apoptosis
in LT97 cells by FS from raw and roasted hazelnuts as
shown by an increase in early apoptotic cells and an
induction of caspase-3 activity. These apoptotic effects may
be mainly responsible for the observed growth inhibition
triggered by hazelnut FS. Similar results were obtained in a
recent study with FS from different raw nut varieties
including hazelnuts (23). In addition, results from other
studies show an induction of apoptosis in HT29 and LT97
cells by FS from different dietary fiber rich sources (30, 31,
45). The apoptotic effects, caused by hazelnut FS were
similar to or even higher than levels observed for butyrate
or the fermentation control Synergy1®, indicating that
butyrate is mainly responsible for the induction of apoptosis.
Butyrate can exhibit pro-apoptotic potential via several
mechanisms including its function as a histone deacetylase
inhibitor (38, 39, 41), activation of the death receptor 5 (48),
TGF-β1 (49), the JNK MAP (50) and mitochondrial
pathways (51), as well as the induction of the WNT pathway
(52). In addition to butyrate, several compounds can be
formed during in vitro digestion and fermentation of
hazelnuts, which may contribute to the apoptotic potential
such as phenolic acids, flavonoids, lignans or phytosterols
(33, 53-55).

In summary, the results from the present study demonstrate
the chemopreventive potential of in vitro digested and
fermented hazelnuts. While genes involved in elimination of
ROS or carcinogens are only induced by raw or mildly
roasted hazelnuts, the inhibition of cell growth as well as the
induction of apoptosis in colon adenoma cells was not
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affected by the roasting process. The proof that roasting has
no concrete diminishing effect on chemopreventive properties
of hazelnuts is an important finding since hazelnuts are often
consumed roasted.

In conclusion, the consumption of raw and also moderate-
roasted hazelnuts might be associated with a lower risk for
colon cancer development. 
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