Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies

Gene Variability Between Perineural-positive and Perineural-negative Squamous Cell Skin Cancers

ASHLEY C. MAYS, JEFF CHOU, ANN L. CRADDOCK, LANCE MILLER and JAMES D. BROWNE
Anticancer Research August 2016, 36 (8) 4007-4011;
ASHLEY C. MAYS
1Department of Otolaryngology, Wake Forest University School of Medicine, Winston Salem, NC, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ashleycmays@gmail.com
JEFF CHOU
2Center for Public Health Genomics, Department of Biostatistical Sciences, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston Salem, NC, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ANN L. CRADDOCK
3Comprehensive Cancer Center of Wake Forest Baptist Health, Winston Salem, NC, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LANCE MILLER
4Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston Salem, NC, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JAMES D. BROWNE
1Department of Otolaryngology, Wake Forest University School of Medicine, Winston Salem, NC, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Aim: To identify differentially expressed genes (DEGs) between perineural invasion-positive (PP) and -negative (PN) cutaneous squamous cell cancers (CSCC). Materials/Methods: Forty CSCC samples with and without perineural invasion were processed for RNA isolation and hybridization to Affymetrix-U219 DNA microarrays. Raw gene expression data were normalized by Robust Multi-array Averaging (RMA) and log2 transformed. Gene expression-based classification models were created and accuracies evaluated using leave-one-out cross-validation. Results: At a stringent limma p-value (p<0.001), 24 genes were differentially expressed between PP and PN samples. The cross-validated performance of the eight classification models exhibited a mean accuracy of 85-95%. Diagonal linear discriminant was most accurate at 95%, followed by Bayesian compound covariate at 94%. The poorest accuracy (85%) was observed for 1-Nearest neighbor and Support vector machines. Conclusion: Gene expression may distinguish between PP and PN CSCC. Understanding these gene patterns may potentiate more timely diagnosis of perineural invasion and guide comprehensive therapies.

  • Squamous cell skin cancer
  • perineural invasion
  • genetic markers
  • molecular markers

Cutaneous squamous cell carcinoma accounts for approximately 20% of new cases of non-melanoma skin cancer diagnosed each year (1). Some 2.5-14% of these cancers have perineural invasion and with simple excision have been found to recur 46% of the time (2). Many who present with clinical signs of perineural invasion, such as paresthesias or facial weakness, have a history of previous cutaneous squamous cell carcinoma (CSCC) resection with reported negative margins (3, 4). These recurrences often require skull base or sub-cranial resections in order to obtain negative margins. The morbidity of such resections and the subsequent adjuvant radiotherapy is certainly much greater than a local excision at the primary site. Identifying lesions with perineural invasion at the time of primary excision could direct more extensive surgical management at that time or radiotherapy to limit recurrences and poor outcomes.

Molecular markers of perineural invasion have been investigated in multiple cancer types; however, no consensus has been determined for CSCC of the head and neck. Markers in the head and neck, including membrane type-1 matrix metalloproteinase (MT1-MMP) (5), p75 nerve growth factor receptor (6), tyrosine kinase receptor 4 (7-9), foxp3 (10), alpha heat shock protein (11), Ecad proteins (12), CD44 (13) and nerve growth factor (NGF), as well as tropomyosin receptor kinase A (TrkA) overexpression in adenoid cystic carcinoma (14) have all been identified to be associated with perineural invasion; however, there has been limited replicability. To date there have been no gene expression profiling studies aimed at profiling cancer tissue with perineural invasion to find specific genes implicated in the disease. This study aims to identify gene signatures linked to perineural invasion using microarray analysis in order to build an initial framework of genes with the hope of better honing these signatures to a more specific signature in future studies. This signature could potentially be used to create a diagnostic or screening assay to be used in the clinical setting for identifying samples that are high-risk for perineural invasion.

Materials and Methods

Sample acquisition. The contents of the Tumor Tissue Shared Resource (Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, USA) were searched for cases of CSCC of the head and neck after Institutional Review Board approval. All samples within the tumor bank had previously been placed into the bank after patient consent. Fresh frozen samples were utilized for microarray expression analysis. Additional samples were collected in a prospective fashion by identifying patients in our outpatient head and neck oncologic clinics, as well as a private dermatologic surgery clinic. These patients were consented for use of their tissue samples in this study.

Confirmation of tumor. All eligible samples underwent review by a faculty or fellow dermatopathologist in order to confirm the presence or absence of perineural invasion and to assess the adequacy of cancer tissue versus benign stromal tissue. Perineural invasion was determined histologically by using hematoxylin and eosin stain. Tumor samples were macrodissected (1 to 4 cores, approximately 2 mm2, were punched from each block) to obtain tissue with >80% cellularity of malignant epithelium. Tumors with sparse cancer cellularity were excluded from analysis.

RNA processing and quality analysis. Tumor tissue samples were disrupted under liquid nitrogen and homogenized according to the Qiagen QiaShredder protocol (Valencia, CA, USA). Total RNA (approximately 1-10 μg per sample) was isolated from each tumor sample according to the Qiagen RNeasy Microarray Tissue Mini Kit protocol. Once adequate mass was confirmed using an Eppendorf BioPhotometer (Hauppauge, NY, USA), the quality of the RNA was assessed using an Agilent 2100 Bioanalyzer (Santa Clara, CA, USA). RNAs suitable for microarray processing were selected using the following criteria: (i) RNA integrity number (RIN) >8.0; and (ii) absorbance ratio (A260/A280) between 1.8 and 2.1.

Expression microarray analysis. Forty samples (21 perineural-positive (PP) and 19 perineural-negative (PN)) that met tissue and RNA quality criteria were profiled on the Affymetrix GeneAtlas U219 human genome array strip in the Comprehensive Cancer Center's Cancer Genomics Shared Resource. For each sample, 250 ng of total RNA was used as a starting template for the reverse transcription and labeling reactions. Exogenous PolyA controls were spiked into each sample to monitor quality of amplification reaction. The amplified and biotinylated cRNA targets were hybridized to the microarrays, stained, washed and scanned according to standard Affymetrix protocols. Log intensity distributions and pair-wise correlations between arrays were examined to assess quality of each microarray hybridization. The resultant raw data (CEL files) were normalized using the Robust Multi-array Average (RMA) algorithm (15) as implemented in the Affymetrix GeneAtlas Instrument Control Software and log2 transformed for downstream statistical analyses.

Analytical plan. Differentially expressed genes (DEGs) between PN and PP samples were identified by using random variance model for univariate tests implemented in BRB-Array Tools (16). At two different significant thresholds of p-values 0.001 and 0.005, we obtained 24 and 130 probe sets, respectively. In addition, we used Significant Analysis of Microarray (SAM) with target proportion of false discoveries of 0.05 to obtain 134 probe sets. The above selected sets of genes were used in pathway enrichment analyses using the National Institute of Allergy and Infectious Diseases (NIAID's) DAVID microarray resource (17) and construction of classification models.

BRB-Array Tools software (16) was used to develop gene expression-based sample classification models. Using leave-one-out cross-validation, the resulting accuracies of eight different classification algorithms were evaluated. They are (i) The Prediction Analysis for Microarrays (PAM), using the shrunken centroid algorithm (18); (ii) The Compound Covariate Predictor, using a weighted linear combination of log-intensities for genes that are univariately significant at the specified level (19); (iii) The Diagonal Linear Discriminant Analysis (DLDA), using linear discriminant analysis but ignoring correlations among the genes to avoid over-fitting the data (20); (iv-v) The 1 or 3 Nearest Neighbor Predictor, using Euclidean distance as the distance metric to predict the class of test samples; (vi) Nearest Centroid Prediction, predicting a test sample belonging to a class corresponding to the nearest centroid; (vii) Support Vector Machine (SVM), with linear kernel functions, to separate the data subject to penalty costs on the number of specimens misclassified (21); (viii) The Bayesian compound covariate predictor, using weighted average of the log expression values of the selected genes, with the weights being the t statistics of differential expression in that training set (22). For each outcome of the eight methods, accuracy=((A+B)/n), sensitivity=(A/(A+C)) and specificity=(B/(D+B)) were calculated. N represents the total number of samples, A represents the number of perineural samples predicted as perineural, C represents the number of perineural samples predicted as non-perineural, D represents the number of non-perineural samples predicted as perineural and B presents the number of non-perineural samples predicted as non-perineural.

Results

Twenty-one PP and 19 PN samples were analyzed and deemed adequate for analysis. At a stringent p-value threshold of p<0.001, 24 genes were differentially expressed between PP and PN specimens (Table I). At a p-value threshold of p<0.005, 130 genes were differentially expressed between PP and PN specimens. Gene expression-based classification models were developed using both p-value thresholds, p<0.001 and p<0.005.

At the p-value threshold of p<0.001, the cross-validated performance of the eight classification models exhibited a mean accuracy of 85-95%. DLDA was most accurate at 95%, followed by Bayesian compound covariate at 94%. The poorest accuracy (85%) was observed for 1-Nearest neighbor and Support vector machines. For all eight methods, the sensitivities and specificities ranged from 79%-95% (Table II).

At the p-value threshold of p<0.005, the cross-validated performance of the eight classification models exhibited a mean accuracy of 82-92%. PAM was most accurate at 92%, followed by the Compound covariate predictor, DLDA and Bayesian compound covariate predictor 90%. The poorest accuracy (82%) was observed for 1-nearest neighbor, 3-nearest neighbors and Support vector machines. For all eight methods, the sensitivities and specificities ranged from 63%-90%.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

Differentially expressed genes between perineural invasion-positive (PP) and perineural invasion-negative (PN) tumors at p-value threshold p<0.0001.

We performed gene ontology/pathway enrichment analysis on selected DEGs at both p-value thresholds of p<0.001 and p<0.005; however, no significant enrichments were observed.

Discussion

Perineural invasion of the head and neck has been identified as a marker of poor outcomes, decreased survival, increase locoregional recurrence and shorter time-to-recurrence (4). In the head and neck, cancer cells may spread along the entire cranial nerve network in a retrograde or anterograde fashion in a relatively low resistance manner. Once patients become symptomatic, many times with facial paresthesias or facial paresis, the tumor has often spread into larger named nerves or to the skull base, making surgical options more morbid. Though new excision techniques, such as Mohs micrographic surgery, are being utilized to allow serial frozen sectioning to track margins, these techniques generally treat smaller and less advanced skin cancers with more subtle perineural invasion (1). The presence of inflammatory cells and peritumoral fibrosis, as well as artifacts from sectioning, have contributed to the underreporting of perineural invasion in Mohs surgery (23). Therefore, diagnostic or screening methods utilizing gene markers of perineural invasion or more aggressive subtypes would decrease underreporting and identify high risk cancers at an earlier stage.

To our knowledge, expression profiling studies, seeking to identify genes involved in perineural invasion, have not been reported. However, there is published work on markers of aggressive subtypes and progression of squamous cell carcinoma. Kivisaari et al. used tissue microarrays and immunohistochemistry in order to find MMP-7 up-regulation in epidermolysis bullosa-associated CSCC, known to be an aggressive subtype, suggesting a potential therapeutic effect of epidermal growth factor receptor antagonists in treatment of advanced CSCC (24). Farshchian et al. found elevated expression of serpin peptidase inhibitor clade A member 1 (Serpin A1) in more aggressive subtypes of CSCC (25). Nathan et al. investigated markers of the MEK/ERK pathway in metastasis in patients undergoing elective parotidectomy with CSCC. They found increased expression of pS6 in CSCC with parotid metastasis compared to those without parotid metastasis. Though this work is useful in helping to differentiate between aggressive subtypes, we wanted to look at specifically perineural invasion and the gene markers associated with this process.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table II.

Gene-based classification models for p-value threshold of p<0.001, 24 differentially expressed genes.

This study is unique in that we used DNA microarrays to examine the differential expression patterns of over 20,000 genes in PP and PN tissues. By testing classification models whose gene features were selected based on multiple significance thresholds, we found that the threshold of p<0.001 (24-gene set) demonstrated the best predictive performance overall, likely owing to the statistical power of using the top 24 statistically significant genes versus the top 130. Of these 24 genes, none could be identified in the literature as having previously been associated with perineural disease in CSCC. By using leave-one-out cross validation to control for overfitting, we were able to develop classification models with high accuracy with a range of 85-95%. In developing these classification models we found that these 24 genes have a robust ability to distinguish PP and PN tissues regardless of the classification algorithm used, though some perform better than others.

A weakness of this study was the small sample size analyzed. As the goal of this project was to create pilot data that could serve as a groundwork for future studies, we estimated that forty samples would be adequate to identify a number of lead genes capable of discriminating PP and PN. We believe the findings presented here provide a strong rationale for subsequent and larger population-based studies aimed at honing and validating the prognostic performance of the 24-gene classifier towards identifying PP disease at the time of primary excision.

Conclusion

Our work shows that gene expression patterns can distinguish PP and PN SCSC. Internally cross-validated classification models based on these gene patterns distinguish PP and PN cancers with high sensitivity and specificity. Gene-based classification models may potentiate more timely and objective diagnosis of perineural invasion and may have utility in guiding more comprehensive adjuvant therapies.

Acknowledgements

John Albertini, MD - Role: Dermatologic Mohs surgeon responsible for collection of samples in the outpatient dermatology clinic. James Cappellari, MD - Role: Faculty dermatopathologist responsible for design of histologic plan for confirmation of perineural disease. Kyle Mills, MD - Role: Dermatopathology fellow responsible for screening samples for perineural disease and presence of malignant tissue. Sara E West, MD - Role: Dermatopathology fellow responsible for screening samples for perineural disease and presence of malignant tissue. Greg Kucera, PhD - Role: Director of Advanced tumor bank who assisted with tissue sample procurement .

Footnotes

  • Conflicts of Interest

    The Authors declare that they have no competing interests.

  • Received June 16, 2016.
  • Revision received July 6, 2016.
  • Accepted July 7, 2016.
  • Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved

References

  1. ↵
    1. Green JS,
    2. Tournas JA,
    3. Allen EJ,
    4. Youker SR,
    5. Fosko SW
    : Mohs frozen tissue sections in comparison to similar paraffin-embedded tissue sections in identifying perineural tumor invasion in cutaneous squamous cell carcinoma. J Am Acad Dermatol 67(1): 113-21, 2012.
    OpenUrlPubMed
  2. ↵
    1. Geist DE,
    2. Garcia-Moliner M,
    3. Fitzek MM,
    4. Cho H,
    5. Rogers GS
    : Perineural invasion of cutaneous squamous cell carcinoma and basal cell carcinoma: Raising awareness and optimizing management. Dermatol Surg 34: 1642-1651, 2008.
    OpenUrlCrossRefPubMed
  3. ↵
    1. Solares CA,
    2. Lee K,
    3. Parmar P,
    4. O'Rourke P,
    5. Panizza B
    : Epidemiology of clinical perineural invasion in cutaneous squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg 146(5): 746-751, 2012.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Liebig C,
    2. Ayala G,
    3. Wilks J,
    4. Berger D,
    5. Albo D
    : Perineural invasion in cancer: A review of the literature. Cancer 115(15): 3379-3391, 2009.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Germani RM,
    2. Civantos FJ,
    3. Elgart G,
    4. Roberts B,
    5. Franzmann EJ
    : Molecular markers of micrometastasis in oral cavity carcinomas. Otolaryngol Head Neck Surg 141: 52-58, 2009.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Chan MM,
    2. Tahan SR
    : Low-affinity nerve growth factor receptor (P75 NGFR) as a marker of perineural invasion in malignant melanomas. J Cutan Pathol 37: 336-343, 2010.
    OpenUrlPubMed
  7. ↵
    1. Chen-Tsai CP,
    2. Colome-Grimmer M,
    3. Wagner RF
    : Correlations among neural cell adhesion molecule, nerve growth factor, and its receptors, TrkA, TrkB, TrkC, and p75NGFR, in perineural invasion by basal cell and cutaneous squamous cell carcinomas. Dermatol Surg 30: 1009-1016, 2004.
    OpenUrlCrossRefPubMed
    1. Kolokythas A,
    2. Cox D,
    3. Dekker N,
    4. Schmidt B
    : Nerve growth factor and tyrosine kinase A receptor in oral squamous cell carcinoma: Is There an Association With Perineural Invasion? J Oral Maxillofac Surg 68: 1290-1295, 2010.
    OpenUrlCrossRefPubMed
  8. ↵
    1. Kelso RL,
    2. Colome-Grimmer M,
    3. Uchida T,
    4. Wang HQ,
    5. Wagner RJ
    : p75NGFR immunostaining for the detection of perineural invasion by cutaneous squamous cell carcinoma. Dermatol Surg 32(2): 177-183, 2006.
    OpenUrlPubMed
  9. ↵
    1. Tallon B,
    2. Bhawan J
    : FoxP3 expression is increased in cutaneous squamous cell carcinoma with perineural invasion. J Cutan Pathol 37: 1184-1185, 2010.
    OpenUrlPubMed
  10. ↵
    1. Solares CA,
    2. Boyle GM,
    3. Brown I,
    4. Parsons PG,
    5. Panizza B
    . Reduced alpha-crystallin staining in perineural invasion of head and neck cutaneous squamous cell carcinoma. Otolaryngol Head Neck Surg 142: S15-S19, 2010.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Wang SJ,
    2. Wong G,
    3. de Heer A,
    4. Xia W,
    5. Bourguignon LY
    : CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope 119: 1518-1530, 2009.
    OpenUrlCrossRefPubMed
  12. ↵
    1. Zhang C,
    2. Mao L,
    3. Li L,
    4. Tian Z,
    5. Zhou XJ,
    6. Zhang ZY,
    7. Li J
    : Promoter methylation as a common mechanism for inactivating E-cadherin in human salivary gland adenoid cystic carcinoma. Cancer 110: 87-95, 2007.
    OpenUrlCrossRefPubMed
  13. ↵
    1. Kobayashi K,
    2. Ando M,
    3. Saito Y,
    4. Kondo K,
    5. Omura G,
    6. Shinozaki-Ushiku A,
    7. Fukayama M,
    8. Asakage T,
    9. Yamasoba T
    : Nerve growth factor signals as possible pathogenic biomarkers for perineural invasion in adenoid cystic carcinoma. Otolaryngol Head Neck Surg 153(2): 218-224, 2015.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Irizarry RA,
    2. Hobbs B,
    3. Collin F,
    4. Beazer-Barclay YD,
    5. Antonellis KJ,
    6. Scherf U,
    7. Speed TP
    : Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2): 249-264, 2003.
    OpenUrlAbstract
  15. ↵
    1. Simon R,
    2. Lam A,
    3. Li MC,
    4. Ngan M,
    5. Menenzes S,
    6. Zhao Y
    : Analysis of gene expression data using BRB-ArrayTools. Cancer Inform 3: 11-7, 2007.
    OpenUrlPubMed
  16. ↵
    1. Huang DW,
    2. Sherman BT,
    3. Tan Q,
    4. Kir J,
    5. Liu D,
    6. Bryant D,
    7. Guo Y,
    8. Stephens R,
    9. Baseler MW,
    10. Lane HC,
    11. Lempicki RA
    : DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35(Web Server issue): W169-75, 2007.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Tibshirani R,
    2. Hastie T,
    3. Narasimhan B,
    4. Chu G
    : Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99(10): 6567-6572, 2002.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Radmacher MD,
    2. McShane LM,
    3. Simon R
    : A paradigm for class prediction using gene expression profiles. J Comput Biol 9(3): 505-511, 2002.
    OpenUrlCrossRefPubMed
  19. ↵
    1. Dudoit S,
    2. Fridlyand J,
    3. Speed TP
    : Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97: 77-87, 2002.
    OpenUrlCrossRef
  20. ↵
    1. Vapnik V
    : The Nature of Statistical Learning. Springer-Verlag, New York, 1995.
  21. ↵
    1. Wright G,
    2. Tan B,
    3. Rosenwald A,
    4. Hurt EH,
    5. Wiestner A,
    6. Staudt LM
    : A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100(17): 9991-9996, 2003.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Shimizu I,
    2. Thomas VD
    : Evaluation of nerves in Mohs micrographic surgery: histologic mimickers of perineural invasion and nervous tissue on frozen section. Dermatol Surg 40(5): 497-504, 2014.
    OpenUrlPubMed
  23. ↵
    1. Kivisaari AK,
    2. Kallajoki M,
    3. Mirtti T,
    4. McGrath JA,
    5. Bauer JW,
    6. Weber F,
    7. Königová R,
    8. Sawamura D,
    9. Sato-Matsumura KC,
    10. Shimizu H,
    11. Csikós M,
    12. Sinemus K,
    13. Beckert W,
    14. Kähäri VM
    : Transformation-specific matrix metalloproteinases MMP-7 and MMP-13 are expressed by tumour cells in epidermolysis bullosa-associated squamous cell carcinomas. Br J Dermatol 158: 778-785, 2008.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Farshchian M,
    2. Kivisaari A,
    3. Ala-Aho R,
    4. Riihilä P,
    5. Kallajoki M,
    6. Grénman R,
    7. Peltonen J,
    8. Pihlajaniemi T,
    9. Heljasvaara R,
    10. Kähäri VM
    : Serpin peptidase inhibitor clade A member 1 (serpina1) is a novel biomarker for progression of cutaneous squamous cell carcinoma. Am J Pathol 179(3): 1110-1119, 2011.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Anticancer Research: 36 (8)
Anticancer Research
Vol. 36, Issue 8
August 2016
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gene Variability Between Perineural-positive and Perineural-negative Squamous Cell Skin Cancers
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Gene Variability Between Perineural-positive and Perineural-negative Squamous Cell Skin Cancers
ASHLEY C. MAYS, JEFF CHOU, ANN L. CRADDOCK, LANCE MILLER, JAMES D. BROWNE
Anticancer Research Aug 2016, 36 (8) 4007-4011;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Gene Variability Between Perineural-positive and Perineural-negative Squamous Cell Skin Cancers
ASHLEY C. MAYS, JEFF CHOU, ANN L. CRADDOCK, LANCE MILLER, JAMES D. BROWNE
Anticancer Research Aug 2016, 36 (8) 4007-4011;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The Prognostic Significance of p16 and its Role as a Surrogate Marker for Human Papilloma Virus in Oral Squamous Cell Carcinoma: An Analysis of 281 Cases
  • Diagnostic Value of Circulating Cell-free DNA in Patients With Papillary Thyroid Cancer
  • Changes in Lysophospholipid Components in Ulcerative Colitis and Colitis-associated Cancer
Show more Experimental Studies

Similar Articles

Keywords

  • squamous cell skin cancer
  • perineural invasion
  • genetic markers
  • molecular markers
Anticancer Research

© 2022 Anticancer Research

Powered by HighWire