
Abstract. Background/Aim: Patients with prostate cancer
treated with neoadjuvant androgen ablation experience less
radiation-induced intestinal toxicity, mostly due to a
reduction of the volume of normal tissue exposed to high
radiation doses. We aimed to evaluate if the anti-androgenic
drug leuprorelin itself exerts a protective effect on irradiated
bowel. Materials and Methods: Female, intact and castrated
male C57BL/6J mice underwent 12-Gy total body
irradiation, with or without a three-month leuprorelin (0.054
mg/kg/month i.p.) pre-treatment. After 24-72 h, mice were
sacrificed and intestinal segments collected for histological,
immunohistochemical and molecular analyses. Results:
Leuprorelin markedly reduced radiation-induced jejunal and
colonic histological alterations in mice, increased the
number of regenerating crypts vs. irradiation, and reduced
radiation-induced nitrotyrosine immunoreactivity. Leuprorelin
significantly reduced radiation-induced matrix metallo-
proteinase-2 (Mmp2) and -13, collagen 1 and -3, transforming
growth factor-beta (Tgfb), p53, interleukin 6 (Il6), and B-cell
lymphoma 2 (Bcl2)-associated X protein (Bax) gene
expressions, and nuclear factor-kappa B (NFĸB) and TGFβ
protein expression, and hampered radiation-induced BCL2
protein down-regulation. Conclusion: Leuprorelin protects
mice from radiation-induced intestinal injury, likely through a
reduction of tissue oxidative stress. These findings give a
biological interpretation to clinical observations of improved
intestinal tolerance in patients undergoing androgen ablation
before RT.

Androgen deprivation therapy (ADT) is a well-established
modality for the treatment of patients with prostate
carcinoma. ADT with luteinizing hormone-releasing
hormone (LHRH) agonists is administered in combination
with radiotherapy (RT) as primary treatment for localized or
locally advanced prostate cancer. Randomized phase III
studies demonstrated an improved disease-specific and
overall survival with combined therapy for high-risk patients
(1). ADT exerts a cytoreductive effect, leading to a reduction
in tumor bulk and improved tumor control by RT. Moreover,
ADT in combination with RT has a potentiating effect
through enhancing induction of apoptosis (2).

New techniques have allowed the RT dose to be increased
while keeping morbidity acceptable. However, radiation-
induced intestinal toxicity remains the major dose-limiting
side-effect in abdominal and pelvic RT (3). In the mid-
1990s, neoadjuvant ADT was thought to increase radiation-
induced toxicity (4). Liu et al. observed that short-term (<2
months) neoadjuvant ADT, but not treatment of longer
duration, increases the risk of developing toxicity (5).
During the course of ADT, the volumes of prostate gland
and seminal vesicles shrink; the volume is reduced by 20-
50% after 3 months of ADT, after which shrinking occurs
at a slower rate (6). Patients who undergo planning
computed tomography (CT) shortly after starting ADT can
have a significantly larger reduction in prostate volume than
patients with longer duration of ADT. This might lead to an
unexpected increase of the percentage of rectal wall exposed
to intermediate RT doses (7). 

The European Organisation for Research and Treatment of
Cancer (EORTC) trial 22863, comparing whole-pelvic
irradiation with or without a LHRH agonist, did not find any
significant differences in all-grade gastrointestinal toxicity
between treatment arms (8). However, a lower incidence of
grade 3-4 gastrointestinal toxicity in the LHRH agonist-
treated arm was reported (6.4% vs. 10.9% in patients not
treated with LHRH). 
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Moreover, a recent study on high-dose RT in combination
with anti-androgens starting 2 months before external-beam
radiation therapy did not associate ADT with additional RT-
related gastrointestinal or genitourinary toxicity (9). Rather,

the reduction in tumor bulk due to ADT potentially seems
to provide an improvement in treatment planning and
normal tissue-sparing (10) by optimizing the geometry of
the target volume prior to RT (11). 
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Figure 1. Leuprorelin (Leu) reduced histological signs of radiotherapy (RT)-induced damage to the jejunum in male mice. Full-thickness images of jejunal wall
of intact male mice treated with saline (Control), Leu, 12 Gy RT, Leu plus RT or Cetrorelix (Cetro) plus RT, 24-72 h after irradiation. Bars=100 μm.



Despite several studies on the timing of ADT and shrinkage
rate, the histological and molecular effects of ADT on irradiated
bowel remain uninvestigated. The aim of the study was to
evaluate whether ADT exerted any effect on irradiated bowel in
a murine model of radiation-induced intestinal damage.

Materials and Methods

Animals and experimental protocol. Male and female C57BL/6J
mice (Charles River Laboratories, Milan, Italy) were housed at

controlled temperature (22±2˚C), lighting (12 hours) and humidity
(60±10%). Some of the male mice underwent castration by bilateral
orchiectomy. Mice were anesthetized with Avertin® (25 ml/kg of a
1.25% w/v 2,2,2-tribomoethanol solution, i.p.) and testes were
removed at laparotomy. Animals were allowed to recover for 2
weeks before further treatments. Male (castrated/intact) and female
mice underwent 12 Gy total body irradiation (TBI), as described
elsewhere (12, 13), with or without 3 months pretreatment with
leuprorelin acetate (0.054 mg/kg/month i.p.; Enantone®; Takeda
Italia, Rome, Italy). To test the effect of the inhibition of LH release,
a group of intact male mice was pretreated with the LHRH
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Figure 2. Leuprorelin (Leu) reduced histological signs of radiotherapy (RT)-induced damage to the jejunum in female and castrated male mice.
Full-thickness images of jejunal wall of female (upper panels) and castrated male (lower panels) mice treated with saline (Control), 12 Gy RT or
Leu plus RT, 24-72 h after irradiation. Bars=100 μm.



antagonist Cetrorelix acetate (0.5 mg/kg/day s.c.; Sigma-Aldrich,
St. Louis, MO, USA) for 7 days before TBI. Non-irradiated mice
were used as control. After 24-72 hours, mice were sacrificed and
jejunum and colon segments collected. 

Histology and assessment of nitrotyrosine. Representative 5 μm-
thick sections were cut from formalin-fixed, paraffin-embedded
jejunum and colon and stained with hematoxylin-eosin for histology
or used for immunohistochemistry. 

Nitrotyrosine immunohistochemistry was performed on samples
from intact male mice as described elsewhere (14). Photomicrographs
of tissue were taken using a digital photomicroscopy apparatus with
a ×20 objective. On digitized images, measurements of surface area
and optical density (OD) of nitrotyrosine-immunostained tissue was
obtained using the ImageJ 1.33 software (US National Institutes of
Health, Bethesda, MD, USA) upon selection of a threshold to include
only the immunolabeled tissue surface area. Values are reported as
arbitrary units (surface area×OD×10-6). 

Microcolony survival assay. The degree of regeneration of jejunal
crypts from intact male mice was assessed by microscopic

examination of slides prepared for histological analysis, as
previously described (15). 

Real-time polymerase chain reaction (PCR). RNA extraction,
retrotranscription and gene expression measurement by real-time PCR
(TaqMan) were performed on samples from intact male mice as
previously reported (16). The amount of target gene (transforming
growth factor-beta 1 (Tgfb1), interleukin 6 (Il6), B-cell lymphoma 2
(Bcl2)-associated X protein (Bax), transformation-related protein 53
(Trp53), collagen type I/III (Col1, Col3), matrix metalloproteinase-2 and
-13 (Mmp2, Mmp13); Applied Biosystems, Foster City, CA, USA),
normalized to that of an endogenous reference (glyceraldehyde 3-
phosphate dehydrogenase, Gapdh), was given by 2-ΔΔCt calculation (17). 

Western blot analysis. Western blot was performed on samples from
intact male mice as described elsewhere (16) using anti-BCL2, anti-
nuclear factor kappa B (NFĸB), anti-TGFβ (1:400) and anti-GAPDH
(1:1500) antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

Statistics. Statistical analysis was performed using SPSS software
12.0 (SPSS Inc, Chicago, IL, USA). One-way analysis of variance
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Figure 3. Representative images of the protective effect of leuprorelin in jejunal wall of irradiated male mice. Representative images of jejunal wall
of intact male mice treated with 12 Gy radiotherapy (RT) or Leu plus RT, 24-72 h after irradiation. Arrows: Apoptotic cells, asterisks:
apoptotic/necrotic tubular glands, m: muciparous cells, p: serozymogenic Paneth cells. Bars=20 μm.
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Figure 4. Leuprorelin (Leu) reduced histological signs of damage to colon induced by radiotherapy (RT) in male mice. Representative full-thickness
images of colon wall of intact male mice treated with saline (Control), Leu, 12 Gy RT, Leu plus RT or Cetrorelix (Cetro) plus RT, 24 h or 72 h after
irradiation. Bars=100 μm.



was applied, a p-value less than 0.05 (two-sided test) was considered
statistically significant. Data are expressed as the mean±SEM.

Results

Histological analysis. Histological analysis of jejunal
specimens of male mice (Figure 1) showed that control mice
exhibited normal features, with long villi lined with a
continuous columnar epithelium containing numerous goblet

cells and well-developed tubular glands composed of
muciparous cells and serozymogenic Paneth cells. RT caused
a time-dependent hypoplasia of tubular glands, occurrence
of a marked inflammatory infiltrate and shortening of villi,
with loss of normal histological structure. Leuprorelin
dampened the RT-induced changes, both 24 and 72 h after
RT, resulting in histological features similar to those of
controls. Cetrorelix showed a substantially lower protective
activity as compared to leuprorelin. The ability of leuprorelin
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Figure 5. Leuprorelin reduced histological signs of damage to colon induced by radiotherapy (RT) in female and castrated male mice. Representative
full-thickness images of colonic wall of female (upper panels) and castrated male (lower panels) mice treated with saline (Control), 12 Gy RT, or
Leu plus RT, 24 h or 72 h after irradiation. Bars=100 μm.



to reduce RT-induced jejunal damage was also confirmed in
female and castrated male mice (Figure 2).

The protective effect of leuprorelin on jejunal mucosa was
better-appreciated in images at higher magnification (Figure
3). RT caused edema of the villous stroma, thinning of
columnar epithelial cells, with disappearance of striated

border; numerous apoptotic cells were detected in tubular
glands and the staminal ring (arrows in Figure 3); a marked
inflammatory infiltrate was present, especially around the
glands (asterisks in Figure 3). Conversely, columnar
epithelium of mice pre-treated with leuprorelin mostly
exhibited normal features, with continuous striated border
and intercalated goblet cells. Tubular glands still showed
apoptotic cells (arrows), especially at the 24-h time point,
while the inflammatory infiltrate in the mucosal/submucosal
stroma was markedly reduced. Although some tubular glands
appeared apoptotic/necrotic, others contained a normal cell
population of muciparous and serozymogenic Paneth cells.

These findings were confirmed in colon sections of intact
male (Figure 4), castrated male and female mice (Figure 5):
RT caused mucosal ulceration, reduction of goblet cells,
shortening or total disappearance of microvilli, submucosal
edema and diffuse inflammatory infiltrate, leading to
mucosal structure disruption after 72 h. Leuprorelin
maintained mucosal histological architecture similar to that
of controls, the only remarkable alteration being the
occurrence of apoptotic cells in the gland wall. 

The analysis of colon sections from Cetrorelix-pretreated
mice again showed a weaker protective effect of Cetrorelix
against radiation-induced intestinal damage compared to
leuprorelin (Figure 4).

Microcolony survival assay. Microcolony assay was performed
to evaluate leuprorelin radioprotective effect on radiation-
induced damage to crypts. RT time-dependently reduced the
number of regenerating crypts in the jejunum compared to
healthy controls (control=93.3±2.9; RT at 24 h=65.4±3.3,
p<0.001; RT at 72 hours=33.2±1.1, p<0.001). Leuprorelin
hindered the reduction of crypt number at both time points. In
particular, 24 h after irradiation, the number of regenerating
crypts in leuprorelin-pre-treated mice was comparable to that
of controls (Leu+RT at 24 h=93.8±2.7, p<0.001 vs. RT;
Leu+RT at 72 h=56±2.7, p<0.001 vs. RT, p<0.001 vs. control).

Evaluation of nitrotyrosine. Excess superoxide anion and nitric
oxide induced by irradiation react to form peroxynitrite, which
causes DNA damage, membrane lipid peroxidation and cell
injury. RT-induced nitroxidative injury to jejunal tissue was
determined by immunostaining for nitrotyrosine, a marker of
protein nitrosylation by peroxynitrite (Figure 6). In cross
sections of jejunal tissue from control mice, nitrotyrosine
immunoreactivity was very weak and scanty. RT significantly
increased the area of nitrotyrosine-immunoreactive tissue at
both time points (p<0.05 vs. control). Leuprorelin markedly
reduced RT-induced nitrotyrosine immunoreactivity (p<0.05). 

Molecular analysis. We assessed the modulation of markers
of fibrosis (Tgfb1,Col1, Col3, Mmp2 and Mmp13),
inflammation (Il6 and Nfkb) and apoptosis (Trp53, Bax and
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Figure 6. Effect of leuprorelin (Leu) on radiotherapy (RT)-induced
nitrotyrosine levels in the jejunal wall. a: Nitrotyrosine levels were
determined in jejunum specimens of intact male mice treated with saline
(Control), 12 Gy RT or Leu+RT, 24-72 hours after irradiation. Results
are shown as arbitrary units (mean); error bars indicate the standard
error of the mean (SEM) for three independent experiments. *p<0.05
vs. control; #p<0.05 vs. RT. b: Representative images of nitrotyrosine-
immunostained jejunum sections. Bars=50 μm.



Bcl2) by real-time PCR and western blot analysis of jejunal
and colonic tissues of intact male mice.

In jejunal specimens, RT significantly increased gene
expression of Mmp2 at 24 h after irradiation, and of Mmp2,
Mmp13, Col1, Col3, Tgfb, Trp53 and Il6 72 h post-
irradiation (p<0.05 vs. control, Figure 7a). In colonic tissues,
RT significantly increased gene expression of Mmp2, Col1
and Col3 at 24 hours post-irradiation, and Mmp2, Mmp13,
Col1, Col3, Tgfb, Trp53 and Bax at 72 hours post-irradiation
(p<0.05 vs. control, Figure 7c). Leuprorelin significantly
reduced radiation-induced overexpression of the above genes
in both jejunum and colon (p<0.05 vs. RT). 

In samples of jejunum (Figure 7b) and colon (Figure 7d),
RT caused enhanced protein expression of NFĸB and TGFβ,
and a reduced expression of the anti-apoptotic protein BCL2
vs. controls. Leuprorelin reduced RT-induced overexpression
of these markers of inflammation and fibrosis, at both time

points. RT-induced Bcl2 down-regulation was inhibited in
jejunal tissues at only 72 hours post-irradiation, while in
colonic tissues at both 24 and 72 hours after RT.

Discussion

On the basis of clinical evidence of decreased RT-induced
intestinal toxicity in patients with prostate cancer undergoing
ADT before RT (10), we used a previously developed murine
model of radiation-induced intestinal toxicity (12, 13) to
evaluate whether ADT exerted a protective effect against
radiation-induced bowel injury and to elucidate the
mechanisms involved.

As ADT we used the LHRH agonist leuprorelin,
administered using a therapeutic protocol similar to that for
patients with prostate cancer (18). In mice pre-treated with
leuprorelin, we observed a marked reduction of RT-induced
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Figure 7. Leuprorelin (Leu) reduced radiation (RT)-induced overexpression in markers of fibrosis, inflammation and apoptosis in jejunum and colon.
mRNA expression of matrix metalloproteinase-2 (Mmp2), and -13 (Mmp13), collagen 1 (Col1), and -3 (Col3), transforming growth factor-beta
(Tgfb), transformation-related protein 53 (Trp53), interleukin 6 (Il6) and B-cell lymphoma 2 (Bcl2)-associated X protein (Bax) in jejunum (a) or colon
(c) tissues of intact male mice treated with saline (control), 12 Gy RT or Leu plus RT, measured as fold increase (f.i.) vs. expression in control (taken
as 1). Error bars indicate the SEM for 10 independent experiments. *p<0.05 vs. control, #p<0.05 vs. RT. Jejunum (b) and colonic (d) tissue
homogenates from intact male mice treated with saline (Control), 12 Gy RT or Leu plus RT were immunoblotted with specific antibodies to assess
nuclear factor-kappa B (NFκB), TGFβ and BCL2 protein expression at 24-72 h after irradiation. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as a loading control.



jejunal and colonic injury, as demonstrated by histological
analysis, and confirmed by microcolony assay.

It is well-known that ionizing radiation triggers a cascade of
molecular events that eventually lead to destruction of intestinal
tissue. The activation of the transcription factor NFĸB induces
the local release of pro-inflammatory cytokines, such as IL6
and TNFα, which are involved in intestinal damage (19). 

The fibrogenic cytokine TGFβ, in particular, is one of the
key mediators of radiation-induced intestinal fibrosis, as it
induces collagen and extracellular matrix deposition (20, 21),
stimulates the expression of the fibrosis marker α-smooth
muscle actin (22), and the synthesis of MMPs, shown to
promote tissue injury and inflammation in several
gastrointestinal diseases (23). The damage induced then
leads to apoptosis of the mucosal cells, thus further
amplifying destruction of intestinal tissue (19). 

Hence, the protective activity of leuprorelin against intestinal
damage can be explained, at least in part, by the inhibitory
effect we observed on the radiation-induced expression of
tissue markers of fibrosis, inflammation and apoptosis. In order
to elucidate the mechanisms underlying the radioprotective
effect of leuprorelin, we evaluated whether this was hormone-
mediated or not. Leuprorelin causes its anticancer effect by
interfering with the normal pulsatile release of LHRH from the
hypothalamus. During the first 1-3 weeks of treatment, there is
an increase of testosterone but subsequently down-regulation
of LH secretion occurs, eventually resulting in low testosterone
levels typical of castration (24). LHRH and its receptor have
been detected in rodent digestive tract (25) and LHRH mRNA
has been shown to be expressed in human intestine (26). Thus,
we can suppose that LHRH may have a functional regulatory
role in the gut. Clinical and experimental evidence supports the
hypothesis that the beneficial effects of leuprorelin on radiation
injury are hormone-mediated. Leuprolide has been shown to
reduce symptoms in patients with irritable bowel syndrome and
chronic intestinal pseudo-obstruction (27, 28), and it has been
hypothesized to act through the down-modulation of LH
secretion (29). Indeed, gonadotropins and gonadal hormones
have known antagonistic effect on gastrointestinal motility (30,
31). In order to exclude a concomitant influence of gonadal
hormones on bowel radioprotection, we repeated the
experiment in castrated male and female mice. Since we did
not observe any significant differences among the groups, we
can exclude a role for gonadal hormones on the observed
protective effect.

To test the effect of the inhibition of LH release we used
the LHRH antagonist Cetrorelix, but we only observed a
weak protective effect on irradiated bowel, lower than that
obtained with leuprorelin. This difference may be due to the
potent gonadotropin-lowering activity and the peculiar
mechanism of action of LHRH antagonists. 

There is evidence that LHRH agonists are able to
modulate oxidative stress, e.g. by the inhibition of nitric

oxide synthesis and peroxynitrite generation (32-34). We
observed that leuprorelin significantly reduced radiation-
induced nitrotyrosine immunostaining in intestinal mucosa,
thus we can hypothesize that its radioprotective effect
involves the reduction of tissue oxidative stress.

Conclusion

Our findings provide a mechanistic background to clinical
observations of improved intestinal tolerance in patients
undergoing ADT before RT. The radioprotective effect
appears to be related to the reduction of oxidative stress in
intestinal tissues expressing LHRH receptors. 
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