
Abstract. Background/Aim: Quinone-containing compounds
can induce cell death in cancer cells and are, therefore,
promising lead compounds for the development of novel
anti-cancer drugs. Materials and Methods: In the present
study, we evaluated the cytotoxic effects of fifteen novel
synthetic quinone-containing compounds in cell cultures in
an attempt to establish structure/activity relationships for
these compounds. The compounds were clustered into four
groups (1, 2, 3, 4) based on common structural features. In
vitro cell cultures were treated for 24 h with the compounds,
after which cell viability was assessed by flow cytometry.
The APOPercentage™ assay, the Terminal deoxynucleotidyl
transferase mediated dUTP Nick End Labeling (TUNEL)
assay and the caspase-3 assay was used to investigate the
activation of apoptosis in the cells. Results: Compounds
from groups 2 and 4 were highly toxic to the cells. The
compounds induced apoptosis in some human cancer cell
cultures and exhibited low toxicity towards the non-
cancerous cell line, KMST-6. The induction of apoptosis in
CHO cells was associated with the activation of caspase-3
cleavage, DNA fragmentation and the reactive oxygen
species (ROS) generation. Conclusion: The present study
demonstrates that five of the quinone-containing compounds
induced apoptosis in human cancer cells and are therefore
promising lead compounds for the development of novel
anticancer drugs.

The quinone moiety is comprised of an unsaturated benzene
ring to which two oxygen atoms are bonded as carbonyl
groups. Quinone compounds are sub-classified based on their
ring structure as 1,4-benzoquinone (cyclohexadienedione),
1,2-benzoquinone (ortho-quinone), 1,4-naphthoquinone or
9,10-anthraquinone. Naturally occurring quinones are present
in bacteria, fungi, lichens, gymnosperms and angiosperms
(1). In the animal kingdom, quinones occur in echinoderms

(e.g. isoprenoid quinones in sea urchins) (2) and arthropods
(e.g. anthraquinones in insects such as cochineal) (3).
Asterriquinone, mitomycin C, doxorubicin and diospyrin,
are examples of naturally-occurring quinones that were
isolated from Aspergillus terreus, Streptomyces caespitosus,
Streptomyces peucetius, and Euclea natalensis, respectively
(4-13). Various biological activities, which include anti-
fungal, anti-protozoal, anti-bacterial, and anti-cancer
activity, have been demonstrated for quinone-containing
compounds (14). 

The cytotoxicity of quinone compounds is not fully
understood, but two general mechanisms of cytotoxicity have
been described in the literature. One of these mechanisms is
mediated through quinone redox cycling and the other
through the effects these compounds have on biomolecules
(DNA, RNA, lipids and proteins) (15, 16). Quinones are
easily reduced to semiquinones and hydroquinones.
Semiquinones can be oxidised by molecular oxygen, leading
to the production of superoxide anion radicals. This process
is known as quinone redox cycling (17-19) which in turn
leads to the production of reactive oxygen species (ROS), in
particular hydrogen peroxide and hydroxyl radicals (20). The
production of ROS leads to an oxidant-antioxidant imbalance
or oxidative stress. ROS can interact with lipids, proteins,
RNA, and DNA causing irreversible damage to these
molecules. Oxidative stress can cause DNA strand breaks,
DNA intra-strand breaks and DNA-protein cross-linking (21-
23). It is well-known that these DNA lesions can activate
apoptosis through p53, checkpoint kinase-1, and checkpoint
kinase-2 (24). ROS can also damage mitochondrial
membranes, causing the release of pro-apoptotic agents
(cytochrome c and Apoptosis Inducing Factor) from the
mitochondria, with consequent activation of apoptosis (25-
30). These cellular nucleophiles can be thiols on cysteine
residues of cellular proteins or glutathione (GSH). High
intra-cellular concentrations of quinones may deplete the
levels of GSH, leading to increased alkylation of SH-
dependent proteins (31-34). It was shown that arylating
quinone compounds activate the pancreatic endoplasmic
reticulum (ER) kinase pathway resulting in ER-stress-
induced cell death (35, 36). It is thus evident that quinone
compounds can activate several intra-cellular signalling
pathways that trigger apoptosis. 
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Apoptosis is a genetically-controlled physiological process,
which prevents the proliferation of damaged cells by activating
cell death (37). Apoptosis is a form of cell death that is
characterised by a set of biochemical and physiological
changes involving the endoplasmic reticulum cytoplasm,
mitochondria, nucleus and plasma membrane. Apoptotic cells
eventually breaks-up into apoptotic bodies, which are removed
by macrophages. Failure to remove damaged cells can lead to
the development of cancer. Compounds that are able to induce
apoptosis in cancer cells are therefore promising lead
compounds for the development of novel anti-cancer drugs.
Quinone-based anticancer drugs such as doxorubicin,
daunorubicin and mitomycin C are used extensively in the
treatment of cancer (38-40). However, there are limitations
associated with the use of these drugs, which include toxicity
to surrounding non-cancerous cells (e.g. chronic cardiotoxicity
associated with doxorubicin), acquired drug resistance in
cancer cells, and adverse side effects (41, 42). Consequently
there is a continued search for new and novel anticancer drugs
displaying reduced side-effects.

We have previously described the synthesis of quinonoid
analogues (43, 44). Here we describe the cytotoxicity
screening of fifteen novel quinone-containing compounds.
We show that some of these compounds induce apoptosis in
human cancer cells and are therefore promising lead
compounds for the development of novel anti-cancer drugs.

Materials and Methods
Cell culture. CHO cells were cultured in Hams F-12 medium
containing 1 mM L-glutamine, 5% (v/v) foetal calf serum and 0.2%
(v/v) streptomycin-penicillin. HEpG2, KMST6, MCF7, and HT-29
cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) medium with GlutaMAX-1, 10% (v/v) foetal calf serum,
and 0.2% (v/v) streptomycin-penicillin. Jurkat T cells were cultured
in Roswell Park Memorial Institute (RPMI) medium with
GlutaMAX-1, 10% (v/v) foetal calf serum, and 0.2% (v/v)
streptomycin-penicillin. HEpG2, KMST6, MCF7, HT-29, and Jurkat
T cell lines used in this study were kindly provided by Prof Denver
Hendricks (Department of Clinical and Laboratory Medicine,
University of Cape Town - South Africa). CHO cells were kindly
provided by Dr. Jasper Rees (Sir William Dunn School of
Pathology, Oxford University – United Kingdom). All cell culture
reagents were supplied by Invitrogen Ltd. (Carlsbad, California,
USA). All cell lines were maintained at 37˚C in an atmosphere of
5% CO2. Cells were plated in 6-well tissue culture plates (Greiner
Bio-One GmbH, Frickenhausen, Germany) at a cell density of
2.5×105 cells per well or in 24 well tissue culture plates (Greiner
Bio-One GmbH, Frickenhausen, Germany) at a cell density of
1×105 cells per well. After 24 h the medium was replaced with
medium containing the test compounds. The cells were treated for
the indicated times, after which they were harvested and the extent
of apoptosis was assessed. 

APOPercentage™ assay. Cells were plated in 24 well tissue culture
plates at a cell density of 1×105 cells per well. After 24 h the
medium was replaced with medium containing the compounds. As

a positive control, the cells were treated with 20 μM doxorubicin.
All treatments were performed in triplicate. The cells were treated
for 24 h, after which they were harvested and the extent of
apoptosis was assessed using the APOPercentage™ assay (Biocolor
Ltd., Newtonabbey, Northern Ireland, United Kingdom) as
described previously (45). Briefly, the cells were removed by
trypsinization, washed with PBS, and stained with APOPercentage
dye for 30 min at 37˚C. The cells were washed with PBS and
analysed by flow cytometry at 670 nm on a Becton Dickinson
FACScan instrument (BD Biosciences Pharmingen, San Diego,
USA). A minimum of 10,000 cells per sample were acquired and
analysed using CELLQuest PRO software (BD Biosciences
Pharmingen, San Diego, USA).

Caspase-3 assay. The activation of caspase-3 was detected using a
phycoerythrin-conjugated rabbit anti-active caspase-3 monoclonal
antibody specific for the cleaved caspase-3 (BD Biosciences
Pharmingen San Diego, California, USA). CHO cells were plated
in 6 well tissue culture plates and treated for 24 h with 5 μM of
the compounds. As a positive control, the cells were treated for 24
h with 20 μM doxorubicin. All the treatments were performed in
triplicate. The cells were removed by trypsinization, washed twice
with cold PBS and re-suspended in Cytofix/Cytoperm buffer (BD
Biosciences Pharmingen San Diego, California, USA). Following
20 min of incubation on ice, the cells were washed twice with
Perm/Wash buffer (BD Biosciences Pharmingen San Diego,
California, USA). and stained for 30 min at room temperature with
a phycoerythrin conjugated monoclonal antibody specific for
active caspase-3 (BD Biosciences Pharmingen San Diego,
California, USA). Cell staining was measured by flow cytometry
at 670 nm on a Becton Dickinson FACScan instrument (BD
Biosciences Pharmingen San Diego, California, USA). A
minimum of 10,000 cells per sample were acquired and analysed
using CELLQuest PRO software (BD Biosciences Pharmingen San
Diego, California, USA).

Terminal deoxynucleotide transferase dUTP Nick End Labeling
(TUNEL) assay. To analyse the occurrence of DNA fragmentation,
the TUNEL assay (BD Biosciences Pharmingen San Diego,
California, USA) was used. CHO cells were plated in 6 well tissue
culture plates at a cell density of 2.5×105 cells per well. The cells
were treated for 24 h with the compounds. As a positive control, the
cells were treated for 24 h with 20 μM doxorubicin. The cells were
removed by trypsinization, washed twice with PBS and fixed for 1
h in 1% paraformaldehyde. The cells were washed twice with PBS
and permeabilized for 48 h in 70% ethanol at –20˚C. Subsequently
the cells were labelled with FITC-dUTP and propidium iodide (PI)
as described in the manufacturer’s manual (BD Biosciences
Pharmingen San Diego, California, USA). Cell staining was
measured by flow cytometry at 530 nm and 585 nm using a Becton
Dickinson FACScan instrument (BD Biosciences Pharmingen San
Diego, California, USA). A minimum of 10,000 cells per sample
were acquired and analyzed using CELLQuest PRO software (BD
Biosciences Pharmingen San Diego, California, USA). Dual
parameter analysis (side scatter on the X-axis and FITC-dUTP on
the Y-axis) was used to analyze the cells.

Reactive oxygen species (ROS) assay. CHO cells were plated in 24-
well tissue culture plate at a density of 1×105 cells per well. After
24 h, the medium was replaced with medium containing 5 μM of
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quinone compounds or 20 μM of doxorubicin (positive control) and
incubated at 37˚C in a humidified atmosphere of 5% CO2 for 24 h.
All the treatments were performed for 24 h in triplicate. Following
treatment, the cells were removed by trypsinization and gently
washed with PBS. The cells were stained with 2’,7’-
dichlorofluorescin diacetate (DCFH-DA), and incubated for 30 min
at room temperature in the dark. After the incubation, the cells were
analyzed at 530 nm on Becton Dickinson FACScan instrument (BD
Biosciences Pharmingen San Diego, California, USA). A minimum
of 10,000 cells per sample was acquired and analyzed using
CELLQuest PRO software (BD Biosciences Pharmingen San Diego,
California, USA).

Results

Chemical structures of quinone compounds. The synthesis and
characterisation of the fifteen novel quinone-containing
compounds (named SK1 - SK15) were previously described
(43, 46). We grouped these compounds into four clusters
(Groups -1 - 4) based on structural features and oxidation
levels (Figure 1). Group 1 contains SK1: 2-(2’,5’-
dimethoxyphenyl)naphthalene-1,4-dione), SK2: 2-(3’,6’-
dioxoclyclohexa-1’,4’-dienyl)-7-methylnaphthalene-1,4-
dione), SK3: 2-(3’,6’-dioxoclyclohexa-1’,4’-dienyl)-5-
hydroxy-7-methylnaphthalene-1,4-dione), SK6: 2-(3’,6’-dio-
xoclyclohexa-1’,4’-dienyl)-5-methoxy-7-methylnaphthalene-
1,4-dione) and SK13: 2-bromo-6-methylnaphthalene-1,4-
dione. Group 2 contains SK7: 5-acetoxy-2-(2’-thianthrene)
naphthalene-1,4-dione), SK8: 5-methoxy-7-methyl-2-(2’-
thianthrene)naphthalene-1,4-dione) and SK11: 2-(2’-
thianthrene-5’,10’-doxo)naphthalene-1,4-dione, For group 3
we have SK4: 7,7’-dimethyl-2,2’-binaphthyl-1,1’,4,4’-
tetraone, SK5: 1’,4’-dimethoxy-7,7’-dimethyl-2,2’-binaphthyl-
1,4-dione, SK9: 7-methoxy2,2’-binaphthyl-1,4-dione, SK10:
6’-methoxy-2,2’-binaphthyl-1,4-dione and SK12: 5,6’-
dimethoxy-7-methyl-2,2’-binaphthyl-1,4-dione. Group 4
contains SK14: 6’-methoxy-1,4-dioxo-1,4-dihydro-2,2’-
binaphthyl-8-yl acetate and SK15: 5’-methoxy-1,4-dioxo-1,4-
dihydro-2,2’-binaphthyl-8-yl acetate.

Assessing the pro-apoptotic activity using the
APOPercentage™ assay. The cytotoxic effects of the quinone
compounds were assessed using the APOPercentage™ assay.
CHO cells were treated for 24 h with 5 μM of the
compounds, stained with APOPercentage dye and analyzed
by flow cytometry. Seven (SK1, SK7, SK8, SK11, SK12,
SK14 and SK15) of the fifteen quinone-compounds screened
in the present study induced significant levels (between 50%
and 90%) of apoptosis in CHO cells (Figure 2). The quinone
compounds induced apoptosis in a dose- and time-dependent
manner (data not shown). Since the chemical stability of SK1
was not very good, this compound was subsequently removed
from the study. The bioactivities of the other six compounds
(SK7, SK8, SK11, SK12, SK1 and SK15) were further

investigated on a panel of human cell lines, which included
four human cancer cell lines (HEpG2, HT-29, Jurkat T and
MCF7) and one non-cancerous human cell line (KMST6).
The compounds demonstrated selectivity towards certain
cancer cell lines. Two of the human cancer cell lines (Jurkat
T and MCF7) were highly sensitive to the effects of the
quinone compounds, with Jurkat T cells being more
susceptible. Figure 3 shows a cell death rate of between 80%
and 95% for Jurkat T cells treated with five (SK7, SK8,
SK11, SK14 and SK15) of the six compounds. A similar cell
death rate was observed for MCF7 cells, however, these cells
appeared to be more resistant to SK12. HEpG2, HT-29 and
the non-cancerous KMST6 cells were less susceptible to the
effects of the compounds. The cell death rate observed for
HEpG2, HT-29 and KMST6 cells treated with four of the
compounds (SK7, SK8, SK11 and SK12) were between 10
and 40%. In general, the toxicity of SK12 was very low in all
five cell lines with the rate of cell death in the least sensitive
cell line (KMST6) being 10% and the most sensitive cell line
(Jurkat T) was 40%. SK14 and SK15 displayed the highest
toxicity, with SK15 inducing apoptosis in about 60% of the
more resistant cell lines (HEpG2, HT-29 and KMST6),
compared to the other compounds, which induced apoptosis
in about 20% to 40% of the cells.

Assessing caspase-3 cleavage and DNA fragmentation. Two
additional assays (the caspase-3 assay and DNA
fragmentation assay) were used to further characterize the
induction of apoptosis in CHO cells. Cells were treated for
24 h with 5 μM of the most active compounds (SK7, SK8,
SK11, SK12, SK14 and SK15). The activation of caspase-3
was assessed using a phycoerythrin-conjugated anti-active
caspase-3 monoclonal antibody and flow cytometry. Figure
4 shows that four of these compounds (SK7, SK11, SK14
and SK15) induce caspase-3 cleavage in 60% to 80% of
CHO cells, whereas the other two compounds (SK8 and
SK12) could only induce caspase-3 cleavage in 10 to 30%
of the cells. The TUNEL assay (Figure 5) shows that three
of the compounds (SK7, SK8 and SK11) induced DNA
fragmentation in approximately 25% of CHO cells. In
comparison SK15, SK14 and SK12 induced low levels of
DNA fragmentation in these cells.

Evaluating production of reactive oxygen species (ROS). The
reactive oxygen species assay was used to further evaluate
the production of ROS in cells treated with the active
quinone compounds. CHO cells were treated with 5 μM of
the quinone compounds (SK7, SK8, SK11, SK12, SK14,
SK15 and SK16) for 24 h. A DCFH-DA probe was used to
evaluate the production of ROS. Figure 6 shows that five of
the compounds (SK7, SK8, SK11, SK14 and SK15) induced
the production of ROS in 62% to 83% of CHO cells, while
SK12 produced little or no ROS in CHO cells.
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Figure 1. Chemical structures of the synthetic quinone-containing compounds. The compounds were clustered into 4 groups based on their structure.



Discussion 

In the present study we tested the cytotoxicity of fifteen
novel quinone-containing compounds. A preliminary screen
of the fifteen compounds using the APOPercentage™ assay
showed that seven of these compounds (SK1, SK7, SK8,
SK11, SK12, SK14 and SK15) induce significant levels of
apoptosis (more than 50%) in CHO cells. The rodent cell
line, CHO, is one of the best-characterized mammalian cell
lines. It is often used for the production of recombinant
therapeutic proteins, but has also been used in toxicology
studies to evaluate the induction of apoptosis (45-47).

The APOPercentage™ assay detects apoptosis at the stage
of phosphatidylserine externalization and is a specific assay
for the quantification of apoptosis. Since the bioactivity of
the other eight compounds (SK2, SK3, SK4, SK5, SK6,
SK9, SK10 and SK13) was low, these compounds were not
further studied. Even though the bioactivity of SK1 was
high, this compound was unstable in solution and was
consequently excluded from further investigations. 

Three additional bioassays, which detect three different
markers of cytotoxicity (caspase-3 cleavage, DNA
fragmentation and ROS production), were used to investigate
the bioactivity of the most active quinone-containing
compounds (SK7, SK8, SK11, SK12, SK14, and SK15). The
cleavage and activation of caspase-3 as well as DNA
fragmentation are known markers of apoptosis (47). The
compounds in Groups 2 and 4 were generally more active
than the compounds in Groups 1 and 3. All the compounds
in Groups 2 and 4 (SK7, SK8, SK11, SK14 and SK15)
induced significant levels of apoptosis (as measured by the

APOPercentage™ assay) and ROS production (as measured
by DCFH-DA) in CHO cells. Except for SK8, all these
compounds also induced caspase-3 cleavage in CHO cells.
This may suggest that this compound induces apoptosis in a
caspase-3-independent manner.

Interestingly, only compounds from Group 2 (SK7, SK8
and SK11) induced DNA fragmentation in CHO cells. SK14
and SK15 (Group 4 compounds) and SK12 were not able to
induce DNA fragmentation in these cells. It does, therefore,
appear that DNA fragmentation is a function of the presence
of the dithianthrenyl ring system in Group 2, which is absent
in Group 4.

The APOPercentage™ assay was also used to evaluate the
pro-apoptotic activity of the most active compounds (SK7, SK8,
SK11, SK12, SK14 and SK15) on a panel of five human cell
lines. SK12 showed very low activity on the five cell lines. The
panel of cell lines included KMST-6 (non-cancerous fibroblast
cells), Jurkat T (acute T-cell leukaemia), MCF7 (human breast
adenocarcinoma), HEpG2 (hepatocellular carcinoma) and HT-
29 (colon adenocarinoma). Two of the cell lines, MCF7 and
Jurkat T, were highly sensitive to the effects of the compounds.
Between 70% and 95% cell death was observed in these two
cell lines when the cells were treated for 24 h with 5 μM of the
compounds (SK7, SK8, SK11, SK14 and SK15). HEpG2, HT-
29 and KMST-6 cells were less sensitive to the effects of the
compounds. This demonstrates selective toxicity towards MCF7
and Jurkat T cells with very low toxicity to the non-cancerous
KMST-6 cells. However, more studies are required to determine
the selective index for these compounds.

Although SK12 induced significant levels of apoptosis in
CHO cells, the human cell lines (KMST-6, Jurkat T, MCF7,
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Figure 2. The pro-apoptotic activity of synthetic quinone compounds in CHO cells. CHO cells were treated with 5 μM of the different quinone
compounds. After 24 h, the cells were stained with the APOPercentage dye and analyzed by flow cytometry. The graphs indicate the percentage of
cells staining positive for the presence of the dye.



HEpG2 and HT-29) were resistant to the effects of this
compound. Compared to SK7, SK8, SK11, SK14 and SK15,
the ability of SK12 to induce DNA fragmentation and
generate ROS in CHO cells was also very low. This could in

part be due to the fact that there are no free hydroxyl groups
present since both oxygens are present as methyl ethers and
their demethylation is not easily achieved as is the
deacetylation in viz., SK14. This may also be explained by
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Figure 3. Evaluating the pro-apoptotic activity of quinone compounds on a panel of human cancer cell lines. Four human cancer cell lines (HEpG2,
HT-29, MCF7 and Jurkat T) and one non-cancerous human cell line (KMST6) were treated for 24 h with the compounds (5 μM). Apoptosis was
assessed by flow cytometry using the APOPercentage™ assay.

Figure 4. Evaluating the activation of caspase-3 in CHO cells. Caspase-3 cleavage was assessed using a phycoerythrin-conjugated rabbit anti-
active caspase-3 monoclonal antibody. CHO cells were treated for 24 h with 5 μM of the compounds. Cell fluorescence was measured by flow
cytometry. The bar graph indicates the percentage of cells staining positive for active caspase-3.
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Figure 5. Assessing DNA fragmentation in CHO cells treated with quinone compounds. CHO cells were treated for 24 h with 5 μM of the indicated
compounds. DNA fragmentation was assessed using the TUNEL assay. Cell fluorescence was measured by flow cytometry. The dot plots is a
comparison of the side scatter (X-axis) and FITC-dUTP (Y-axis) fluorescence detected in the cells. The numbers on the plots refer to the number of
cells with fragmented DNA.



the fact that CHO is a rodent cell line, while the other cells
lines are human. Interestingly, SK12 also failed to induce
high levels of ROS in CHO cells, while the toxicity of SK7,
SK8, SK11, SK14 and SK15 was associated with high levels
of oxidative stress.

The quinone-containing compounds (in particular SK7, SK8,
SK11, SK14 and SK15) described in this study were toxic to a
number of human cancer cell lines. However, the selective
cytotoxicity of these compounds towards human cancer cells
must be further investigated. It was also demonstrated in CHO
cells that the toxicity of these compounds was due to the
activation of apoptosis through the generation of ROS, DNA
fragmentation and caspase-3 cleavage. However, it is not known
whether apoptosis activated by these quinone-containing
compounds in human cancer cell lines are also associated with
these processes. This study demonstrated that these novel
quinone-containing compounds are potential anticancer agents
and should therefore be subjected to further study.
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