
Abstract. The elevated dependence on methionine of tumor
cells is a cancer-specific metabolic defect. In current studies,
the recombinant L-methionine α,γ-lyase (rMETase), an L-
methionine depleting enzyme cloned from Pseudomonas
putida, was shown to have efficacy in a broad series of cancer
cell lines. Twenty-one different human tumor cell lines (4 lung,
4 colon, 4 kidney, 4 melanoma, 3 CNS, and 2 prostate) from
the NCI Human Tumor Cell Line Screen and 7 human normal
cell strains were treated with rMETase in vitro. We showed
that rMETase had mean IC50 (units rMETase/ml) for the
following cancer cell types: renal cancer, 0.07; colon cancer,
0.04; lung cancer, 0.12; prostate cancer, 0.01; melanoma,
0.19; and CNS cancer, 0.195, which was approximately one
order of magnitude lower than that for normal cell strains:
skin fibroblasts, 4; aortic smooth muscle cells, 0.88; aortic
endothelial cells, 0.8; keratinocytes, 0.75, and bronchial
epithelial cells, 0.75. rMETase was also conjugated with
polyethylene lycol (PEG). PEG-rMETase also had high cell-
kill activity. In vitro studies, animal studies and clinical trials
have now shown that methionine restriction is an effective
anticancer strategy. Cells from many different types of cancers
are methionine dependent. The most effective strategy to
deplete methionine is with the use of rMETase. PEG-rMETase
offeres additional advantages of increasing the circulating
half-life and reducing the immunogenicity of rMETase which
is a bacterial protein. The results of the current study
demonstrate the broad clinical potential for rMETase and
rMETase for cancer treatment. 

Methionine dependence, the elevated minimal methionine
requirement for cell growth relative to normal cells, has been
observed in many human cancer cell lines and cancer
xenografts in animal models (1-3). Methionine dependence is

a metabolic defect seen only in cancer cells and precludes the
cells from growing in medium in which methionine is
depleted (4, 5). Normal mammalian cells proliferate normally
in the absence of methionine as long as homocysteine is
present in the growth medium (1). Animals fed diets in which
methionine has been replaced by homocysteine also grow
normally (2, 3). However, most cancer cells are dependent on
exogenous, preformed methionine and grow, even in the
presence of homocysteine (5-8).

Dietary methioninase restriction causes tumor regression
of animal tumors, including cancer xenografts in nude mice
(9, 10) and inhibits metastasis (3, 11). One clinical trial of
chemotherapy combined with methionine restriction by total
parenteral nutrition showed preliminary evidence of activity
against gastric cancer (12). Tumors are more sensitive than
normal tissues to methionine restriction. In contrast,
restriction of other essential amino acids is either very toxic
or ineffective (13).

A phase I clinical trial of dietary methionine restriction for
adults with advanced solid tumors was carried out (14). All
patients on the trial were maintained on an external diet.
Plasma methionine declined 58%. The only side effect was
weight loss of approximately 0.5% of body mass index (0.5 kg)
per week. Thus, an enteral dietary methionine restriction is safe
and tolerable in adults with metastatic solid tumors and results
in significant reduction in plasma methionine levels.

Preclinical studies showed a better antitumour activity using
MET restriction plus 5-FU than either treatment administered
separately (15-18). A clinical trial in preoperative advanced
gastric cancer patients also demonstrated that MET-deprived
total parenteral nutrition with 5-FU gave a better histological
response than conventional total parenteral nutrition with 5-FU
(19). Moreover, Machover et al. (18) have demonstrated in
CCRF-CEM, human leukemia cell line, a cytotoxic synergism
of MET deprivation in combination with the association of 5-
FU and folinic acid. MET restriction also enhances cyotoxic
activity of platinum compound, cisplatin (20-22).

Current standard first-line regimens for metastatic colorectal
cancer are FOLFOX (infusional 5-FU/LV with oxaliplatin)
and FOLFIRI (infusional 5-FU/LV with irinotecan) (23). Since
MET deprivation can potentiate the different chemotherapeutic
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agents used in the FOLFOX regimen, MET restriction was
used in combinations with these regimens. A clinical trial
combining MET restriction with the FOLFOX regimen in
colorectal cancer patients was carried out. Plasma MET
concentration was reduced by dietary MET restriction, with a
depletion of 58% at the 1st day of the MET-free diet. MET-
free diet and FOLFOX regimen produced minimal toxicity.
Among the 4 evaluable patients for response, 3 experienced a
partial response and 1 patient a disease stabilization.

L-methionine α-deamino-γ-mercaptomethane lyase
(methioninase, METase), is a pyridoxal-L-phosphate (PLP)-
dependent enzyme that cleaves methionine. METase has
been demonstrated to be a powerful approach to methionine
depletion in vivo (24, 25). The enzyme has been cloned from
Pseudomona putida and produced in Escherichia coli (26,
27) (recombinant methioninase, METase) for extensive
preclinical testing.

rMETase alone or in combination with chemotherapeutic
agents such as cisplatin, 5-fluorouracil (5-FU), and 1,3-bis(2-
chloroethyl)-1-nitrosourea (BCNU) have shown efficacy and
synergy, respectively, in mouse models of colon cancer, lung
cancer, and brain cancer (21, 28-30). The findings from a pilot
Phase I clinical trial showed that METase depleted plasma
methionine levels without observed clinical toxicity over a period
up to ~24 hours in patients with advanced cancer (31, 32).

Conjugation of protein therapeutics with polyethylene
glycol (PEG) has been shown to confer important therapeutic
benefits, most importantly reduced antigenicity (33). The
Food and Drug Administration has approved the PEGylated
forms of several protein therapeutics for clinical use
including adenosine deaminase, asparaginase, α-interferon,
and a growth hormone antagonist (34-38).

To improve the rMETase therapeutic potential, rMETase
was coupled to methoxypolyethylene glycol succinimidyl
glutarate-5000 (MEGC-PEG-5000) (39). Pharmacokinetic
evaluation in mice showed that MEGC-PEG-rMETase
increased the serum half-life of the enzyme up to 20-fold and
increased methionine depletion time up to 12-fold compared
with unmodified rMETase. In addition, a further prolongation
of in vivo activity and effective methionine depletion by
MEGC-PEG-rMETase was achieved by the simultaneous
administration of pyridoxal-5’-phosphate (PLP) (40).

The current study investigated the efficacy of rMETase
and PEG-rMETase in a broad range of cancer cell lines in
vitro compared to normal cell strains.

Materials and Methods

Fermentation of E. coli expressing rMETase. Every production
fermentation was started with one vial from the Cell Bank. Ten
microliters of bacteria from the Cell Bank were seeded into 5 ml LB
medium with 100 μg ampicillin and grown at 37˚C at 400 rpm
overnight. This culture was transferred to 800 ml Terrific Broth (TB)
(38) in 6 L flasks and grown overnight at 37˚C at 400 rpm at which time

the OD600 was approximately 10. The 800-ml cultures were then
transferred into 10 800-ml TB-medium cultures in 6 L flasks and grown
at 37˚C at 400 rpm for 16 h at which time the OD600 was approximately
10. The medium was changed with fresh TB and the incubation was
continued for another 6 h. When the OD600 reached 20, the bacteria
were harvested by centrifugation at 4000g at 4˚C for 10 min (41). 

Purification of rMETase. 
(1) Precolumn treatment of the sample. The bacterial pellet was
suspended in extraction solution (20 mM potassium phosphate, pH
9.0, 10 μM pyridoxal phosphate and 0.01% β-mercaptoethanol)
and disrupted with a cavitator-type homogenizer (Microfluidics
Corp., Newton, MA, USA; model HC 8000). Heat treatment of the
homogenate was then carried out up to 50˚C for 1 min. The
suspension was centrifuged with an automatic refrigerated
centrifuge (SORVALL, superspeed RC 2-B) at 4˚C at 8000g for
30 min. The supernatant was then collected. This step was
followed by ultrafiltration by a Millipore (Bedford, MA, USA)
Prep/Scale-TFF PLHK 100k, 2.5 ft2 cartridge with buffer (10 Mm
potassium phosphate, pH 8.3). The pH was adjusted to 7.2 by
ultrafiltration (41). 

Chromatographic conditions.
First column: DEAE Sepharose FF (pH 7.2). The first column

was 100 mm diameter and 30 cm height, with a volume of 2400 ml
of DEAE Sepharose FF (Pharmacia, Uppsala, Sweden). The elution
flow rate was 15-50 ml/min. Forty to eighty grams of total protein
(10-20 mg/ml) was applied on the column. After loading, the
column was prewashed with 40 mM potassium chloride in PPM
buffer (10 mM potassium phosphate, pH 7.2, containing 10 mM
pyridoxal phosphate and 0.01% b-mercaptoethanol) for
approximately 10 vol, until the OD280 dropped below 0.1. The
protein was then eluted with a linear gradient of 40 to 300 mM
potassium chloride in PPM buffer. Elution fractions of 500 ml were
collected. The fractions containing rMETase were identified by
yellow color and activity assay (41). 

Second column: DEAE Sepharose FF (pH 8.3). The height of
the second column (XK 50/30) was 25 cm, with a volume of 500
ml. The elution flow rate was 6-8 ml/min. After 24 h dialysis in
80 mM potassium chloride and 10 mM potassium phosphate (pH
8.3), 5-10 g of total protein (2-5 mg/ml) were applied on the
second column. After loading, the column was prewashed with 80
mM potassium chloride and 10 mM potassium phosphate (pH 8.3)
for approximately 4 vol, until the OD280 dropped below 0.1.
rMETase was eluted with a linear gradient of 80 to 300 mM
potassium chloride in 10 mM potassium phosphate buffer (pH
8.3). Elution fractions of 300 ml were collected. The fractions
containing rMETase were identified by yellow color and activity
assay (41). 

Third column: ActiClean Etox. To eliminate endotoxin, purified
rMETase (10-20 mg protein/ml) in a volume of 200-300 ml was
applied on an 800-ml Acticlean Etox (Sterogen, Arcadia, CA)
column (25×60) with a bed height of 40 cm. The protein was eluted
with elution buffer (0.12 M sodium chloride in 10 mM sodium
phosphate, pH 7.2), at a flow rate of 1 ml/min. The enzyme fractions,
identified by yellow color and activity assay, were collected (41). 

The final eluant was concentrated with 30K Amicon (Lexington,
MA, USA) Centriprep concentrators by centrifugation at 4000g for
30 min at 4˚C. Sterilization was performed with 0.2 μm Nylon filter
(Nalgene) (41). 
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Formulation of rMETase. rMETase in solution consisted of 0.12 M
sodium chloride, 10 mM sodium phosphate buffer (pH 7.2), at a
concentration of 10-20 mg/ml. This formulation was used in vivo.
rMETase lyophilization rMETase, in solution, was frozen on dry ice
and acetone and then lyophilized (Freeze mobil 24, Vertis) at –80˚C,
under a vaccum of 100 millibar for 72 h (41). 

(3) Analysis of rMETase.
HPLC. An Hitachi L-6200A Intelligent pump (Hitachi, Ltd, Tokyo,
Japan) with a Supelco Progel-TSK column (G3000 SWXL, 30 cm ×
7.8 mm) (Supelco, Bellefonte, PA, USA) was used for all HPLC
experiments. A sample of 20 μl (0.1-0.5 mg/ml) was loaded and
eluted with elution solution (0.12 M sodium chloride in 10 mM
sodium phosphate buffer, pH 7.2) at a flow rate of 1.0 ml/min. The
protein-containing fractions were identified with a spectrophotometer
(Hitachi U2000) at a wavelength of 280 nm. Bovine serum albumin
(MW 66,000) and sweet potato b-amylase (MW 200,000) (Sigma,
Louis, MO, USA) were used as MW standards (41). 

Electrophoresis. Electrophoresis was carried out in 7.5%
polyacrylamide-precasted plates in 0.2 M Tris–glycine buffer, pH 8.3,
both with and without 0.1% SDS. Molecular weight standards used
were Kaleidoscope Prestained Standards (Bio-Rad, Hercules, CA) (41). 

Activity assay. The assay was carried out in a 1-ml vol of 50 mM
phosphate buffer, pH 8.0, containing 10 μM pyridoxal phosphate
and 10 mM methionine for 10 min at 37˚C, with varying amounts of
enzyme. The reaction was stopped by adding 0.5 ml of 4.5% TCA.
The suspension was centrifuged by eppendorf centrifuge at 13 krpm
for 2 min. One-half milliliter of supernatant was added to 0.5 ml of
0.05% 3-methyl-2-benzothiazolinone hydrazone in 1 ml of 1 M
sodium acetate, pH 5.2, and incubated at 50˚C for 30 min. The
amount of reaction product was determined by spectrophotometry
at OD335. The amount of protein was determined with the Lowry
Reagent kit (Sigma) with bovine serum albumin as a standard. The
specific activity was calculated as units/mg protein, with one unit
of enzyme defined as the amount that catalyzes the formation of 1
μmol of a-ketobutyrate (41). 

Endotoxin assay. The endotoxin level was measured by the Limulus
Amebocyte Lysate (LAL) test (BioWhittaker, Walkersville, MD,
USA). A sample was mixed with the LAL and incubated at 37˚C
for 10 min. A substrate solution supplied with the kit was then
mixed with the sample and incubated at 37˚C for an additional 6
min. The reaction was stopped with stop reagent supplied with the
kit. The absorbance of the sample was determined with a
spectrophotometer (Hitachi, U 2000) at 410 nm. The concentration
of endotoxin was calculated from a standard curve which was
constructed from the endotoxin supplied in the kit at concentrations
from 0.1 EU/ml to 1 EU/ml (41). 

Preparation and purification of PEGylated rMETase. Methoxy-
polyethylene glycol succinimidyl glutarate-5000 (MEGC-50HS-
PEG or MEGC-PEG) (NOF Corporation, Kawasaki-shi, Kanagawa,
Japan, Lot No. M21514) had a polydispersity of 1.02, substitution
94.2%, dimer content 0.84% and purity by 1H-NMR of 98.4%. The
average molecular weight was 5461 Da. (42). 

The activated PEG derivative was used at a molar excess (1-4
fold) of PEG to free lysines in rMETase (32 per rMETase molecule),
which corresponds to molar ratios of PEG to rMETase of 30-120/1.
For each reaction, 120 mg/ml rMETase in 100 mM borate buffer

(pH 8.8) was used. Based on 30-120/1 molar ratios of activated PEG
versus rMETase (equal to 0.87-3.5/1 weight ratio of activated PEG
versus rMETase), a given amount of the activated PEG was added to
the rMETase solution with three stepwise additions at 30 min
intervals. The PEGylation reactions were carried out at 20-25˚C
under gentle stirring for 90 min (42). 

To eliminate an excess of unreacted activated PEG, the resulting
PEGrMETase conjugate was applied on a Sephacryl S-300 HR gel
filtration column (HiPrep 26/60, Amersham Pharmacia Biotech,
Piscataway, NJ, USA) immediately after the PEGylation reaction.
PEG-rMETase was eluted with 80 mM sodium chloride in 10 mM
sodium phosphate, pH 7.4, containing 10 μM PLP at a flow rate of
120 ml/h (42). 

The fractions containing the PEG-rMETase conjugate were further
purified by DEAE Sepharose FF column (XK 16/15, Amersham
Pharmacia Biotech) to remove trace amounts of un-PEGylated
rMETase. The column was equilibrated and eluted with 80 mM
sodium chloride in 10 mM sodium phosphate pH 7.2, containing 10
μM PLP at a flow rate of 180 ml/h. The fractions containing the
PEG-rMETase conjugate were collected. PEG-rMETase-containing
fractions were concentrated with an Amicon centriprep YM-30
(Millipore Corp, Bedford, MA, USA) and sterilized by filtration with
a 0.22 μM membrane filter (Fisher Scientific, Tustin, CA, USA).
Storage was at –80˚C (42). 

Determination of protein content. Protein was measured with the
Wako Protein Assay Kit (Wako Pure Chemical, Osaka, Japan)
according to the instruction manual with slight modification (43).
50 μl of each sample or standard protein (BSA) was added to 3 ml
of chromophore solution (pyrogallol red-molybdate complex) and
vortexed well. The mixture was incubated at room temperature for
20 min without shaking and then measured for absorbance at 600
nm. The protein content of the sample was determined from the
BSA standard calibration curve.

Determination of PEGylation degree of rMETase. The degree of
modification of PEGylated rMETase was estimated both by the
fluorescamine assay (44) and by MALDI. For the fluorescamine
assay, various amounts of rMETase and PEGylated rMETase in 2
ml of 0.1 M sodium phosphate buffer, pH 8.0 were mixed with 1
ml fluorescamine solution (0.3 mg/ml in acetone) and incubated for
5 min at room temperature. Samples were then assayed with a
fluorescence spectrometer at 390 nm excitation and 475 nm
emission. Results were plotted as fluorescence units versus
concentration, with the slope of the line being determined by linear
regression. The percent of PEGylated primary amines was
determined according to the following formula: 1- (slope
PEGylated rMETase/slope naked rMETase) ×100. MALDI analysis
of naked and PEG-rMETase was performed at the Scripps Research
Institute using a PerSeptive Biosystems Voyager-Elite mass
spectrometer.

Inhibition of human cancer cells by rMETase and PEG-rMETase in
vitro. Human lung, colon, kidney, brain, prostate, and melanoma
cancer cells and various types of normal cells were incubated in
methionine-containing RPMI 1640 medium supplemented with 10%
FBS. Various concentrations (0.1-4 units/ml) of rMETase or
PEGrMetase were added to the medium and incubated with the cells
for 4 days at 37˚C, 5% CO2. The relative growth inhibition was
calculated from cell counts.
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Results

Tumor-selective growth inhibitory effect of rMETase on
human cancer cells in vitro: IC50 studies. The elevated
dependence on methionine of tumor cells is a cancer-specific
metabolic defect. In current studies, the recombinant L-
methionine α,γ-lyase (rMETase), an L-methionine depleting
enzyme cloned from Pseudomonas putida, was shown to have
efficacy in a broad series of cancer cell lines. Twenty-one
different human tumor cell lines (4 lung, 4 colon, 4 kidney, 4
melanoma, 3 CNS, and 2 prostate) from the NCI Human
Tumor Cell Line Screen and 7 human normal cell strains
were treated with rMETase in vitro. We showed that rMETase
had mean IC50 (units rMETase/ml) for the following cancer
cell types: renal cancer, 0.07; colon cancer, 0.04; lung cancer,
0.12; prostate cancer, 0.01; melanoma, 0.19; and CNS cancer,
0.195 (Table I). In contrast, normal cell strains had a much
higher IC50: skin fibroblasts, 4; aortic smooth muscle cells,
0.88; aortic endothelial cells, 0.8; keratinocytes, 0.75, and
bronchial epithelial cells, 0.75 (Table II).

rMETase was also conjugated with polyethylene lycol
(PEG). PEG-rMETase also had high cell-kill activity. The
PEG-rMETase IC50 (units/ml) for human colon cancer was
0.28; for brain cancer, 0.25; for liver cancer, 0.17; for prostate
cancer, 0.17; for lung cancer, 0.09; for pancreatic cancer, 0.17;

for melanoma, 0.19; for kidney cancer, 0.22; for ovarian cancer,
0.25; for breast cancer, 0.14; for submaxillary cancer, 0.35, for
mouse breast cancer, 0.08; for melanoma, 0.11. In contrast, the
IC50 for human normal fibroblasts was 72 (Table III). 

Discussion 

In vitro studies, animal studies and clinical trials have now
shown that methionine restriction is an effective anticancer
strategy. Cells from many different types of cancers are
methionine dependent. The most effective strategy to deplete
methionine is with the use of rMETase. PEG-rMETase offers
additional advantages of increasing the circulating half-life
and reducing the immunogenicity of rMETase which is a
bacterial protein. The results of the current study
demonstrate the broad clinical potential for rMETase and
rMETase for cancer treatment. 
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