Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Review ArticleClinical StudiesR

Cancer-induced Hypercalcemia

FRANCO LUMACHI, ANTONELLA BRUNELLO, ANNA ROMA and UMBERTO BASSO
Anticancer Research May 2009, 29 (5) 1551-1555;
FRANCO LUMACHI
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: flumachi@unipd.it
ANTONELLA BRUNELLO
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ANNA ROMA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
UMBERTO BASSO
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Cancer-induced hypercalcemia (CIH) occurs in 5% to 30% of patients with cancer during the course of their disease, depending on the type of tumor. This review provides information on the pathophysiology and treatment of CIH. Enhanced bone resorption is the primary cause of CIH and the release of tumor-derived mediators induces this increase in osteoclast-mediated resorption. The interactions between osteoclasts and cancer cells are mainly mediated by parathyroid hormone-related protein (PTHrP), that activates osteoblasts to produce receptor activator of nuclear factor-κ ligand (RANKL) and osteoclast precursors, with subsequent bone osteolysis. Low parathyroid hormone serum levels together with high calcium levels in a cancer patient may suggest a CIH. There are two different therapeutic approaches for treating CIH, to increase the urinary excretion of calcium, or to inhibit osteoclastic bone resorption, RANKL or the action of PTHrP. In patients with CIH the first step of therapy is usually to restore renal function which is often impaired due to dehydration. Bisphosphonates administration is at present the main-stay of treatment, while calcitonin, gallium nitrate and mithramycin have limited activity and several side-effects. Anti-RANKL therapy (denosumab) and antibodies against PTHrP are promising therapies, but their clinical use should be further explored to more clearly document the effects.

  • Hypercalcemia
  • malignancy
  • cancer
  • PTHrP
  • RANKL
  • bisphosphonates
  • review

In 1941 Albright first proposed the term humoral hypercalcemia in patients with cancer and hypothesized that mechanisms different from direct bone resorption by tumor cells may cause such a complication (1). Cancer-induced hypercalcemia (CIH) occurs in 5% to 30% of patients with cancer during the course of their disease, depending on the type of tumor (2). CIH represents the most common paraneoplastic syndrome, with an incidence of 15 cases per 100,000 people per year (3, 4). Lung cancer, breast cancer and myeloma have the highest incidence of CIH, accounting for more than 50%, while the disease occurs rarely in patients with colorectal and prostate cancer (3). Except in patients with multiple myeloma and breast cancer, the prognosis of the cancer patients with CIH is usually poor, with a mean survival rate of 2-3 months (5). More than 30% of patients with multiple myeloma, 25% of those with squamous cell carcinoma and 20% of those with breast cancer may develop CIH (4). Enhanced bone resorption is the primary cause of hypercalcemia of malignancy and the release of tumor-derived mediators induces this increase in osteoclast-mediated resorption (4, 5). The mechanisms of osteoclast-mediated resorption are humoral effects of systemically elevated tumor-derived factors and local (autocrine or paracrine) effects of factors produced by the tumor cells metastasized to bone (i.e. direct bone resorption by lytic metastases), inducing osteolysis. Both normal and malignant bone and hemopoietic marrow cells interact together with a complex network of agents (i.e. interleukins [IL-1, IL-6], tumor necrosis factor alpha [TNF-α]), enhanced cancer growth and osteoclast activation as the ultimate outcome (2, 6).

Parathyroid Hormone-related Protein

Overall, about 80% of patients with CIH may have increased parathyroid hormone-related protein (PTHrP) serum levels. Other calciotropic hormones can also cause CIH, including parathyroid hormone (PTH) and 1-25(OH)2 vitamin D3 secreted by neuroendocrine tumors and increased 1α-hydroxilase activity in lymphoproliferative disorders, respectively (2, 4, 5). PTHrP is a distinct gene product with sequence homology to PTH only in a limited domain at the amino-terminal end of the molecule (5). Both produce humoral hypercalcemia by increasing the resorption of bone throughout the skeleton and the renal resorption of calcium (7). However, PTH stimulates bone resorption and formation, while PTHrP stimulates only osteoclasts, showing a very low osteoblastic activity (7, 8). The best established role of PTHrP is to stimulate the proliferation of chondrocytes in the growth plate and to delay the mineralization of hypertrophic cartilage (5, 8). During fetal life PTHrP is secreted from perichondrial cells and chondrocytes at the end of long bones (9). It stimulates the proliferation of chondrocytes and suppresses their terminal differentiation (Figure 1). Interactions between osteoclasts and cancer cells are mainly mediated by PTHrP, that activates osteoblasts to produce receptor activator of nuclear factor-κ ligand (RANKL). RANKL activates osteoclast precursors and subsequent bone osteolysis, leading to the release of several bone-derived growth factors, including insulin-like growth factor (IGF1) and transforming growth factor-β (TGF-β), and raises extra-cellular ionised calcium concentrations, with subsequent activation of a Ca++ pump (10). The growth factors bind to receptors on the tumor cells' surface and activate both cytoplasmic mediators of TGF-β and mitogen-activated protein kinase (MAPK). Signalling through this pathway promotes both cancer cell proliferation and PTHrP production, with subsequent increased calcium reabsorption (Figure 2).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Actions of the parathyroid hormone-related protein (PTHrP) during fetal life at the end of long bones. PTHrP stimulates the proliferation of chondrocytes and suppresses their terminal differentiation.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Interactions between osteoclasts and cancer-cells. PTHrP: parathyroid hormone-related protein, RANKL: receptor activator of nuclear factor-κ ligand, IGF: insulin-like growth factor, TGF-β: transforming growth factor-β, MAPK: mitogen-activated protein kinase.

Diagnosis and Treatment of Cancer-induced Hypercalcemia

Low PTH serum levels together with high calcium levels in a cancer patient suggest CIH. True ectopic secretion of PTH is rare and less than 5% of patients may have primary hyperparathyroidism (PHPT) together with CIH (11). Very high serum calcium levels are observed in patients with parathyroid cancer, but also the PTH levels are usually elevated (12). Unfortunately, the preoperative diagnosis of parathyroid cancer is difficult, because no sensitive tumor markers are available, although its localization is easy (13, 14). In patients with calcium concentrations over 3 mmol/L anorexia, nausea, polyuria, thirst and vomiting may be observed, while with serum calcium values above 4 mmol/L impairment of the conscious level usually occurs (15). Three different causes of hypercalcemia should be considered: PHPT, CIH and everything else (Table I). There are two different therapeutic approaches for treating CIH, to increase the urinary excretion of calcium, or to inhibit osteoclastic bone resorption, RANK ligand or the action of PTHrP (17). The first step of management of hypercalcemia should be to assess the hydration state and saline infusion is currently the standard of treatment, depending upon the severity of dehydration. However, if employed alone, volume expansion is ineffective in restoring normocalcemia because rehydration does not interfere with osteoclastic function. Loop diuretics (i.e. furosemide) enhance calcium excretion only after normovolemia has been reached (18). Bisphosphonates (BP) represent at present the drugs of choice for treating patients with CIH. They inhibit osteoclasts, induce apoptosis in these cells and bind to bone, blocking osteoclastic resorption and osteolysis (19, 20). Once inside osteoclasts, BPs hamper adhesion to the mineralized matrix, reduce lysosomial enzymes and activate a pro-apoptotic pathway (20, 21). Patients treated with BP have a delayed time to skeletal fracture, and a reduced need for radiation therapy and orthopedic surgery to treat bone metastases (20-23). Osteonecrosis of the jaw is a severe complication described in patients treated with BPs, especially in those with myeloma treated for a long time with pamidronate or zoledronate or in patients who have undergone teeth extractions or other invasive interventions on the jaw or maxilla bone (24). The first BPs etidronate and clodronate are now rarely used to treat CIH due to the availability of more potent compounds (25, 26). Pamidronate is able to normalize calcium levels in 80% to 100% of patients and the infusion time of 2-4 hours does not show a significant increment of nephrotoxicity (18). Randomized trials have proved that pamidronate is superior to clodronate, etidronate and mithramycin (26, 27). Zoledronate is a third-generation BP and can be administered in a dose 10 times lower than pamidronate (28, 29). It has been shown to be superior to pamidronate in the rate of normocalcemia, duration of control of CIH and time to relapse, therefore 4 mg zoledronate is the reference treatment for initial management of CIH, while higher doses can be used in relapsing or refractory patients (30). Its use is contraindicated if creatinine clearance is below 30 ml/min and/or if other nephrotoxic drugs are administered to the patient (28, 31). Ibandronate is especially useful in patients with breast or hematological cancer (18). A randomized trial comparing ibandronate and pamidronate showed a comparable activity of the two drugs in reducing calcium levels, while the median duration of response appeared to be longer for ibandronate (32). This drug has an extremely low rate of nephrotoxicity and represents the compound of choice for patients with moderate renal impairment or those treated with concomitant nephrotoxic therapies and no dose reductions are needed (28, 33). Other drugs are now considered of second choice, although some of them may still be used for salvage treatment of refractory patients. Mithramycin is a cytotoxic antibiotic that has tropism for the osteoclasts and inhibits bone resorption through the blocking of RNA synthesis, but it is less effective and convenient for patients compared to pamidronate (4, 27). Gallium nitrate may reduce solubilization of hydroxyapatite and tubular renal resorption, but does not inhibit the development or recruitment of osteoclasts and thus can be considered for the management of patients with CIH refractory to BP (34-36). Calcitonin may inhibit osteoclastic bone resorption and enhance renal excretion of calcium (25). Unfortunately, tachyphylaxis of receptors occurs frequently and it should be used only in selected cases, in combination with corticosteroids for patients with kidney failure (4, 37). The RANKL system is the central pathway leading to osteoclast differentiation and activation, and currently represents the most promising target for the treatment of CIH (4, 38, 39). An abnormal activation of RANKL (previously known also as osteoclastic differentiation factor [ODF]) is induced by circulating PTHrP or cytokines (i.e. IL-1, IL-6, TNF-α and TGF-β) secreted locally by metastatic cells (39, 40). Osteoprotegerin (OPG), a protein of the TNF family, specifically binds to RANKL and therefore prevents differentiation of osteoclasts and promotes their apoptosis, blocking bone resorption by depletion of mature osteoclasts (21, 41, 42). OPG has induced a more rapid effect on bone resorption compared to BPs in experimental models of PTHrP-dependent CIH (42). The human monoclonal antibody named denosumab is another agent able to interfere with RANKL-RANK pathways. This agent, when administered to postmenopausal osteoporotic women, showed a rapid and sustained dose-dependent decrease of bone turnover (41-43). It was able to induce an early and sustained decrease of bone resorption in patients with bone localizations of multiple myeloma or breast cancer, but unfortunately the role of denosumab in the management of CIH has not yet been confirmed (29). Another attractive strategy consists in the development of antibodies directed against human PTHrP. A humanized anti-PTHrP antibody was tested in animal models of CIH and was found to be able to improve bone metabolism and calcium renal excretion, achieving a complete normalization of calcium levels (44, 45). It could be particularly interesting for subjects experiencing BP-refractory CIH (45). In conclusion, in patients with CIH the first step of therapy is usually to restore renal function which is often impaired due to dehydration. Enhanced bone resorption represents the main cause of hypercalcemia and thus the second step is BP administration. Pamidronate, zoledronate and ibandronate are at present the main-stay of treatment. Non-BP drugs have limited activity and several side-effects. Anti-RANKL therapy and antibodies against PTHrP are promising therapies, but their clinical use should be further explored to more clearly document the effects.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

Differential diagnosis of hypercalcemia (3).

Acknowledgements

Special thanks to Miss Francesca Bissolotti for help in preparing the manuscript and for reviewing the English.

Footnotes

  • ↵* Main speaker and chair person, 8th International Conference of Anticancer Research, Kos (Greece), October 17-22, 2008.

  • Received November 24, 2008.
  • Revision received January 23, 2009.
  • Accepted February 2, 2009.
  • Copyright© 2009 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved

References

  1. ↵
    Case records of the Massachusetts General Hospital: Case 27461. N Engl J Med 319: 225-227, 1941.
    OpenUrl
  2. ↵
    1. Grill V,
    2. Martin TJ
    : Hypercalcemia of malignancy. Rev Endocr Metab Disord 1: 245-263, 2000.
    OpenUrl
  3. ↵
    1. Greenspan FS,
    2. Strewler GJ
    1. Strewler GJ
    : Humoral manifestations of malignancy. In: Basic & Clinical Endocrinology. Greenspan FS, Strewler GJ (eds.). Stamford, CT, Appleton Lange, pp. 741-752, 1997.
  4. ↵
    1. Greenspan FS,
    2. Gardner DG
    1. Shoback D,
    2. Funk J
    : Humoral manifestations of malignancy. In: Basic & Clinical Endocrinology. Greenspan FS, Gardner DG (eds.). New York, NY, Lange Medical Book/McGraw-Hill, pp. 778-791, 2001.
  5. ↵
    1. Clark OH,
    2. Duh Q-Y,
    3. Kebebew E
    1. Strewler GJ
    : Hypercalcemia of malignancy and parathyroid hormone-related protein. In: Textbook of Endocrinesurgery. Clark OH, Duh Q-Y, Kebebew E (eds.). Philadelphia, PA, Elsevier Saunders, pp. 536-542, 2005.
  6. ↵
    1. Lumachi F
    : Medical treatment of malignancy-associated hypercalcemia. Curr Med Chem 15: 415-421, 2008.
    OpenUrlCrossRefPubMed
  7. ↵
    1. Rosol TJ,
    2. Capen CC
    : Mechanism of cancer-induced hypercalcemia. Lab Invest 67: 680-702, 1992.
    OpenUrlPubMed
  8. ↵
    1. Montell D
    : Metastasis movies, macrophages, molecules and more. Conference on Mechanisms of Invasion and Metastasis. EMBO Rep 4: 458-462, 2003.
    OpenUrlPubMed
  9. ↵
    1. Kronemberg HM
    : Developmental regulation of the growth plate. Nature 423: 332-336, 2003.
    OpenUrlCrossRefPubMed
  10. ↵
    1. Mundy GR
    : Metastasis to bone: causes, consequences and therapeutics opportunities. Nat Rev Cancer 2: 584-593, 2002.
    OpenUrlCrossRefPubMed
  11. ↵
    1. Wimalawansa SJ
    : Significance of plasma PTHrP in patients with hypercalcemia of malignancy treated with bisphosphonates. Cancer 73: 2223-2230, 1994.
    OpenUrlPubMed
  12. ↵
    1. Lumachi F
    : Parathyroid cancer: etiology, clinical presentation and treatment. Anticancer Res 26: 4803-4807, 2006.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Lumachi F
    : Technetium-99m sestamibi scintigraphy and helical CT together in patients with primary hyperparathyroidism: a prospective clinical study. Brit J Radiol 77: 100-103, 2004.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Lumachi F
    : PCNA-Li, Ki 67 immunostaining, p53 activity and histopathological variables in predicting the clinical outcome in patients with parathyroid carcinoma. Anticancer Res 26: 1305-1308, 2006.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Russell RGG,
    2. Kanis JA
    1. Heath DA
    : Hypercalcemia of malignancy. In: Russell RGG, Kanis JA (eds.). Tumor-induced Hypercalcemia and its Management. London, Royal Society of Medicine, pp. 29-32, 1991.
    1. Greenspan FS,
    2. Strewler GJ
    1. Strewler GL
    : Mineral metabolism and metabolic bone diseases. In: Basic and Clinical Endocrinology, 5th Edition. Greenspan FS, Strewler GJ (eds.). Stamford, CT, Appleton Lange, pp. 263-316, 1997.
  16. ↵
    1. Compston JE
    : Investigation of hypocalcemia. Clin Endocrinol 42: 195-198, 1995.
    OpenUrlPubMed
  17. ↵
    1. Ralston SH,
    2. Coleman R,
    3. Fraser WD
    : Medical management of hypercalcemia. Calcif Tiss Int 74: 1-11, 2004.
    OpenUrlCrossRefPubMed
  18. ↵
    1. Roges MJ
    : New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9: 2643-2658, 2003.
    OpenUrlCrossRefPubMed
  19. ↵
    1. Ross JR
    : Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. Brit Med J 327: 469-471, 2003.
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Lumachi F,
    2. Basso SM
    : Apoptosis: life through planned cellular death. Regulating mechanism, control systems, and relations with thyroid diseases. Thyroid 12: 27-34, 2002.
    OpenUrlCrossRefPubMed
    1. Fleisch H
    : Bisphosphonates: mechanisms of action. Endocr Rev 19: 80-100, 1998.
    OpenUrlCrossRefPubMed
  21. ↵
    1. Brown EJ,
    2. Coleman RE
    : The role of bisphosphonates in breast cancer: The present and future role of bisphosphonates in the management of patients with breast cancer. Breast Cancer Res 4: 24-29, 2002.
    OpenUrlPubMed
  22. ↵
    1. Weitzman R
    : Critical review: updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients-May 2006. Crit Rev Oncol Hematol 62: 148-152, 2007.
    OpenUrlCrossRefPubMed
  23. ↵
    1. Fatemi S
    : Effect of salmon calcitonin and etidronate on hypercalcemia of malignancy. Calcif Tissue Int 50: 107-109, 1992.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Vinholes J
    : Evaluation of new bone resorption markers in a randomized comparison of pamidronate or clodronate for hypercalcemia of malignancy. J Clin Oncol 15: 131-138, 1997.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Thürlimann B
    : Plicamycin and pamidronate in symptomatic tumor-related hypercalcemia: a prospective randomized crossover trial. Ann Oncol 3: 589-590, 1992.
    OpenUrlPubMed
  26. ↵
    1. Santini D
    : The antineoplastic role of bisphosphonates: from basic research to clinical evidence. Ann Oncol 14: 1468-1476, 2003.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Body JJ
    : A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12: 1221-1228, 2006.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Major P
    : Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 19: 558-567, 2001.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Body JJ
    : A dose-finding study of zoledronate in hypercalcemic cancer patients. J Bone Min Res 14: 1557-1561, 1999.
    OpenUrlCrossRefPubMed
  30. ↵
    1. Percherstrofer M
    : Efficacy and safety of ibandronate in the treatment of hypercalcemia of malignancy: a randomized multicentric comparison to pamidronate. Suppl Care Cancer 11: 539-547, 2003.
    OpenUrl
  31. ↵
    1. Zojer N
    : Bisphosphonate treatment does not affect serum levels of osteoprotegerin and RANKL in hypercalcemic cancer patients. Anticancer Res 25: 3607-3612, 2005.
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Bockman R
    : The effects of gallium nitrate on bone resorption. Semin Oncol 30: 5-12, 2003.
    OpenUrlPubMed
    1. Cvitkovic F
    : Randomized, double-blind, phase II trial of gallium nitrate compared with pamidronate for acute control of cancer-related hypercalcemia. Cancer 12: 47-53, 2006.
    OpenUrl
  33. ↵
    1. Leyland-Jones B
    : Treating cancer-correlated hypercalcemia with gallium nitrate. J Support Oncol 2: 509-516, 2004.
    OpenUrlPubMed
  34. ↵
    1. Diskin CJ
    : Malignancy-related hypercalcemia developing on a bisphosphonate but responding to calcitonin. Clin Lung Cancer 8: 434-435, 2007.
    OpenUrlPubMed
  35. ↵
    1. Tanaka S
    : Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immun Rev 208: 30-49, 2005.
    OpenUrlPubMed
  36. ↵
    1. Morony S
    : The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia in malignancy. Endocrinology 146: 3235-3243, 2005.
    OpenUrlCrossRefPubMed
  37. ↵
    1. Stewart AF
    : Clinical practice. Hypercalcemia associated with cancer. N Engl J Med 352: 373-379, 2005.
    OpenUrlCrossRefPubMed
  38. ↵
    1. Bekker PJ
    : A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Min Res 19: 1059-1066, 2004.
    OpenUrlCrossRefPubMed
  39. ↵
    1. Morony S
    : The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia in malignancy. Endocrinology 146: 3235-3243, 2005.
    OpenUrlCrossRefPubMed
  40. ↵
    1. McClung MR
    : Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354: 821-831, 2006.
    OpenUrlCrossRefPubMed
  41. ↵
    1. Sato K
    : Treatment of malignancy-associated hypercalcemia and cachexia with humanized anti-parathyroid hormone-related protein antibody. Semin Oncol 30: 167-173, 2003.
    OpenUrlCrossRefPubMed
  42. ↵
    1. Onuma E
    : Increased renal calcium reabsorption by parathyroid hormone-related protein is a causative factor in the development of humoral hypercalcemia of malignancy refractory to osteoclastic bone resorption inhibitors. Clin Cancer Res 11: 4198-4203, 2005.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Anticancer Research: 29 (5)
Anticancer Research
Vol. 29, Issue 5
May 2009
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)
  • Back Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cancer-induced Hypercalcemia
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Cancer-induced Hypercalcemia
FRANCO LUMACHI, ANTONELLA BRUNELLO, ANNA ROMA, UMBERTO BASSO
Anticancer Research May 2009, 29 (5) 1551-1555;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Cancer-induced Hypercalcemia
FRANCO LUMACHI, ANTONELLA BRUNELLO, ANNA ROMA, UMBERTO BASSO
Anticancer Research May 2009, 29 (5) 1551-1555;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Parathyroid Hormone-related Protein
    • Diagnosis and Treatment of Cancer-induced Hypercalcemia
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Risk Factors for Developing Skeletal-Related Events in Breast Cancer Patients With Bone Metastases Undergoing Treatment With Bone-Modifying Agents
  • Carboxy-terminal Telopeptide (CTX) and Amino-terminal Propeptide (PINP) of Type I Collagen as Markers of Bone Metastases in Patients with Non-small Cell Lung Cancer
  • Denosumab and Anti-angiogenetic Drug-related Osteonecrosis of the Jaw: An Uncommon but Potentially Severe Disease
  • Serum N-Telopeptide of Type I Collagen and Bone Alkaline Phosphatase and Their Relationship in Patients with Non-small Cell Lung Carcinoma and Bone Metastases. Preliminary Results
  • L'hypercalcemie reliee au cancer
  • Cancer-related hypercalcemia
  • Google Scholar

More in this TOC Section

  • Clinical Outcomes of Metastasis-directed Therapy for Oligo-metastatic Prostate Cancer Diagnosed Using PSMA-PET/CT or Whole-body MRI
  • Blood Concentrations of Osimertinib and Its Active Metabolites: Impact on Treatment Efficacy and Safety
  • Randomized Study of Short-time Continuous Saline Irrigation After Transurethral Resection in Non-muscle Invasive Bladder Cancer
Show more Clinical Studies

Similar Articles

Anticancer Research

© 2025 Anticancer Research

Powered by HighWire