
Abstract. Genome-wide transcriptional profiling is now
feasible, and profiling of the proteome, although technically
challenging, is advancing rapidly. Expression profiling provides a
tool to accelerate discovery in a broad range of sciences, but its
greatest impact on human health may be on the process of drug
discovery and therapy development, and investigation of the
functional networks underlying drug responses of diseased and
normal tissue. For anticancer agents in particular, antitumor
effects and toxicities to critical normal tissues may rest in a
delicate balance that is governed by complex pharmacokinetic
(PK) and pharmacodynamic (PD) inter-relationships. Recent
advances in the development of mechanistic computational PD
models promise to promote an understanding of these inter-
relationships, provided suitable quantitative PD effect markers
will be identified. Here we describe both advances toward the
unsupervised application of PD models to complex expression
profiling datasets, as well as approaches to address the technical
requirement of these models for quantitative assessment of
protein expression levels. Together, these models and analytical
approaches may contribute to the rational design of more
effective pharmacotherapies.

The development of optimal therapeutic regimens can be
challenging for many classes of drugs. The challenge is
particularly acute for antineoplastic agents, given their
frequently narrow therapeutic index and complex spectrum
of cellular effects, which may not be fully understood in a

comprehensive and mechanistic fashion. One example is
paclitaxel (taxol), the first of the taxanes to receive clinical
approval. Although its primary mechanism of action,
stabilization of cellular microtubules, was described a
quarter of a century ago (1), a more complete
understanding of its action at a cellular level continues to
evolve (2). Most recent is the finding that effects of the
taxanes on non-tumor cell targets, such as tumor vascular
endothelium, may contribute to their therapeutic efficacy,
and that intriguing cellular responses can be elicited at
ultra-low concentrations or protracted exposure times (3-6).
Clearly, a detailed understanding of the complex direct and
indirect responses of cells and tissues to antineoplastic
agents, such as the taxanes, could provide insight that might
enable the design of more effective and less toxic therapies.

Gene and protein expression profiling has the potential to
reveal the complex response patterns of cells and tissues to
pharmacophores. Expression profiling at the transcriptional
level is feasible using numerous approaches, and proteome-
wide profiling is advancing rapidly (7). For those drugs that act
at the transcriptional level, the regulation of gene expression
constitutes the basis for their pharmacological action. For the
majority of drugs however, transcriptional changes may
represent indirect responses to the pharmacophore, reflecting
cellular adaptation to the cascading effects of the drug
biosignal through various signal transduction pathways, or
compensatory responses as cells seek to reestablish
homeostasis in reaction to the drug’s primary mechanism of
action. Thus the interpretation of expression profiling data, as
it relates to understanding the cellular mechanisms of
pharmacophore action, can present challenges.

Here we discuss progress in utilizing pharmacodynamic
(PD) models to mine expression-profiling data sets. The
approach was to develop generic, semi-mechanistic
pharmacodynamic models that are intended to reveal PD
relationships, thereby assisting in the identification of drug
responses at the transcriptional and translational level. We
also describe progress in the development of analytical
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strategies that should enable highly sensitive and selective
quantification of protein-level pharmacodynamic effect
markers, which is essential for the type of PD analysis
envisioned. The results provide proof-of-concept for
quantifying expression changes of key effector proteins in
pharmacological response networks.

Semi-mechanistic pharmacodynamic models for mining
pharmacogenomic data. The analysis of expression profiling
data to reveal pharmacodynamic mechanisms presents
several challenges. Typical datasets are highly dimensional;
they capture complex patterns of responses in large
numbers of genes or gene products, and response patterns
are not only drug-, tissue- and disease-specific, but also
temporally inter-dependent. One recent transcriptional
profiling study found approximately 1500 corticosteroid-
responsive genes in rat liver out of nearly 9000 probed genes
(8). Furthermore, the magnitude, time-course and pattern
of pharmacodynamic responses can vary with the drug
concentration and exposure profile (i.e., pharmacokinetics).
Biological and pharmacological variability are also
fundamental features of such datasets and cells can develop
pharmacodynamic tolerance. These factors complicate the
discovery and validation of drug-responsive gene or protein
level expression changes in genome-wide data sets. Relating
the observed temporal responses in tissues to drug
concentration and/or exposure profile represents an even
greater challenge.

Various approaches have been applied to the analysis of
expression data, particularly for transcriptional profiling (9-
11). Frequently used methods of analysis can yield variable
performance with noisy or sparse data and few approaches
are designed specifically to reveal systems-level
pharmacological relationships that represent a fundamental
objective of PD analysis.

Quantitative pharmacodynamic models have been
developed to assist in the understanding of drug
concentration-time profiles (PK) and the magnitude and
time-course of the pharmacological effects observed (12).
Some PD models are mechanistic in nature, incorporating
and in some cases inter-relating the multiple temporally-
separated responses that may be observed in complex
biological systems (8, 13-16). Statistical engines and
methods for the comparison of PD models comprise an
intrinsic component of the analysis.

For these reasons, certain types of models are well suited
for the extraction of pharmacodynamic relationships from
expression profiling data sets. However, PD model
development, testing and selection is often an iterative and
time-consuming task and generally neither the models nor
the software in which they are implemented are easily
applied to large data sets. Furthermore, expression profiling
on genomic or proteomic scales may reveal unanticipated

responses for which the mechanistic connections between
drug and response are not yet understood in detail. This
lack of information can complicate the development of PD
models that are mechanistically realistic.

Our approach was to develop PD models that utilize
generic response elements; these elements capture
commonly-observed characteristics of different types of
pharmacological responses and are applied wherever more
explicit mechanistic details are not available. The use of
generic response elements enables the models to be used as
tools for seeking features in expression profile data sets that
resemble characteristic responses to pharmacological
agents. To enable the application of multiple PD models to
large data sets without supervision, a flexible software
framework was prototyped, with the results of each iterative
model fitting captured in a relational database. By
exploiting both statistical descriptors and model comparison
descriptors to identify those types of model that best fit a
particular gene or protein level response, a range of models
representing different types of PD responses can be applied
to a large number of individual expression responses. The
overall hypothesis is that the models that best fit a particular
response pattern contain generic response elements that
may underlie the observed response.

Three types of pharmacological response elements were
used to construct the generic PD model described here:
direct effect, indirect response and signal transduction. An
excellent recent review provides a more thorough
description of these individual elements (16).

Direct effect models assume that drug concentration at the
affected site directly controls the magnitude of the response.
A Hill-type Emax model of the form 

Emax
Á*CÁ

E=E0±
EC50

Á+CÁ

often fits the concentration-effect (E) relationships
observed in many biological systems (17). Characteristics of
responses that are captured well by this model element
include a sigmoidal, log-linear concentration-effect
relationship, drug potency (EC50), a baseline activation
threshold (E0) and a maximum achievable response (Emax).
In the equation, Á determines the steepness of the
concentration-effect relationship. For those cases in which
the time required for drug distribution to the affected site
causes a delay between the observed peak plasma
concentration (Cp) and the pharmacological response, an
Emax link model has been proposed (18). In this model, the
response is driven by drug concentration at the affected site
(Ce), and the relationship between Cp and Ce is described
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by first-order processes of distribution and elimination from
the affected site:
dCe

=k1eCp–ke0Ce
dt

where k1e and ke0 are first-order rate constants for
distribution and elimination, respectively.

Indirect response models (19-25) capture mechanisms of
action in which the drug alters a turnover process and were
inspired by the observation of cases in which the kinetics of
the turnover process temporally displace the time of peak
activity from the time of peak drug concentration. Drugs
that alter gene expression as a primary mechanism of action
can be well-characterized by indirect response models (13).
Such a model is shown in Figure 1, along with simulations of
its behavior. Turnover of the response variable (R) is
controlled by a zero-order production or synthesis rate (kin)
and a first-order elimination or degradation rate (kout). At
homeostasis, these are balanced. The action of the drug is
to alter one of these processes, either by inhibition or
stimulation. The result is a temporal decrease or increase in
the response. The Hill Emax function is used to describe the
drug concentration-effect relationship. Because a drug can
affect either production or elimination of the response, and
the effect can be inhibition or stimulation, the combination
of two possible states for two rate constants results in four
possible models; these represent prototypes of four different
mechanisms of drug action, two of which are shown in
Figure 1. In the indirect response model, the time of peak
response is delayed as dose increases (24); this behavior
contrasts with that of the direct effect model, thus the
presence of an indirect response element in an observed
pharmacological response can be tested experimentally.

Signal transduction models were developed to describe
situations in which a series of intervening processes are
interposed between the initial action of the drug and the
observed response, as in a signal transduction network (26,
27). Such models have considerable potential to account for
delay between drug/receptor interaction and pharmacological
response and to interrelate pharmacological responses that
are linked but temporally separated.

A basic signal transduction or ‘transit compartment’
model, along with simulations that illustrate model behavior
are shown in Figure 2. In this example, the transduction
model consists of 3 elements in the response cascade, with Ù
representing the average signal transduction time through
each step in the cascade. Unless other mechanistic detail is
available, Ù is considered constant for all steps. As additional
information about a pathway is obtained, models describing
those components can be substituted for the appropriate

intermediate theoretical component (8, 13-15, 19, 28-30).
Because the time-course and intensity of the biosignal is
calculated explicitly for each compartment, this type of
model could be used to search for gene expression events
that are linked pair-wise but separated temporally. The
response magnitude, shape and peak time vary in a
characteristic manner, dependent upon input drug
concentration (27) and (Figure 2), and thus the existence of
this type of response element can be tested experimentally.

In Figure 2, the simulations show model behavior with
the drug concentration at steady-state. In Model A, the
response continues to increase until a maximal value is
achieved. This type of model would be PK-driven, in the
sense that it requires elimination of the drug to terminate
the pharmacological response. Implementation of this
model would require the incorporation of an accurate
pharmacokinetic model that describes the drug
concentration-time profile at the target tissue site. Model B
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Figure 1. Indirect response models. Top panel shows model in schematic
format. The magnitude of the response (R) is determined by kin, the zero
order rate constant responsible for production of the response, and kout, the
first order rate constant responsible for removal of the response. A drug
affects the rate constants either by inhibition (filled bars designated I and
II) or stimulation (open bars designated III and IV); thus 4 distinct response
patterns are possible. Middle panel shows the equations describing the
model: R, magnitude of the response; C, drug concentration in the effect
compartment; H(C), the Hill Emax function described in the text. Lower
panels show simulations for 2 of 4 possible response patterns; Model I, kin
is inhibited, H1(C) is subtracted, H2(C)=0; Model II, kout is inhibited,
H2(C) is subtracted, H1(C)=0. Not shown: Model III temporal behavior is
similar to Model II; H1(C) is added, H2(C)=0. Model IV temporal behavior
is similar to similar to Model I; H2(C) is added, H1(C)=0.



(Figure 2) incorporates a simple regulatory process in which
a feedback loop terminates propagation of the biosignal
through the cascade. An example would be the case in
which down-regulation of a drug receptor is the result of
drug action, as in the corticosteroid system (13). Overall,
signal transduction models can be simple yet flexible enough
to capture a variety of biological responses and can yield
explicit hypotheses that are testable by experimentation.

Generic semi-mechanistic PD models. Because the
mechanistic details linking drug concentration and an
observed change in abundance of a specific mRNA or
protein often are unknown, we developed a PD model
(Figure 3) that represents a simplified hybrid of two
approaches. It includes: i) the indirect-response element of
Figure 1 as the engine that models the observed response
(R) (29), and ii) parallel signal transduction cascades

(designated A and I in Figure 3) (26, 27) that modulate the
indirect response element. In this model, the drug triggers a
biosignal that is propagated through the signal transduction
pathways and impinges on the indirect response element,
altering the rates of production and loss (ksyn and kdeg) of
response R. The modulation may be negative (down-
regulation) or positive (up-regulation). As noted above, the
combination of two possible states for two rate constants
yields four possible temporal response patterns.

Figure 4 shows the equations and simulations of the four
response patterns that can be derived from the model shown
in Figure 3. Although it appears complex, the model contains
only 6 independent parameters and, in practice, only 5
parameters need to be estimated. In the absence of any drug,
the gene or protein abundance is at baseline level R0. The
biosignal is triggered simultaneously (for simplicity) by the
initial drug/receptor interaction and propagates with mean
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Figure 2. Signal transduction models. Top panel shows model in schematic form; drug-receptor interaction elicits biosignal that transits with average time
Ù through several steps or secondary messengers (labeled M1-3). Middle, bottom panels: equations and simulations for two similar models (A, B). E*
represents the response model (e.g. the Hill Emax function described in text). For simplicity, Ù=4 h in the simulations, the drug concentration is assumed
constant and E*=10. Thus the response in each of the compartments M1-3 plateaus to a maximum (Model A). Model B: same as Model A, except a
feedback loop (dashed line, top panel) inhibits response to drug when a threshold is reached (variable Z transitions from 1 to 0).



transit time Ù through N compartments in the two
independent transduction pathways, A and I. Differing
propagation times in pathways A and I can be accomplished
by independently varying N1 and N2, respectively. Ssyn is the
biosignal that impinges on ksyn, the zero-order process that
controls the production of the response R (i.e. the rate of
mRNA or protein synthesis). Similarly, Sdeg is the biosignal
that modulates kdeg, the first-order process that describes
mRNA or protein degradation (13, 29, 31, 32). Baseline values
for ksyn and kdeg are taken from literature when specific
information is not available. The peak response occurs at time
(N-1) * Ù, with peak height of ((N-1)/e)N-1/(N-1)!. The
significance of this feature of the model is that the signal is
delayed and weakened as N, the number of intermediate
compartments, increases (data not shown), thereby providing
an experimentally-testable signature for this model.

Our approach to applying this model to large datasets is
to vary N1 and N2 systematically as independent variables,
searching for combinations providing the best fits of the

model to the data. This reduces the number of fitted
parameters. If average transit time Ù is initially assumed to
be identical for each individual step in the transduction
cascade, a simplification that has worked well with data (26,
27), the number of simultaneously fitted parameters is
reduced to 5.

The flexibility of this type of model in producing output
behavior that fits remarkably well to complex temporal gene
expression responses observed in a publicly-available data
set (33) and appears to deal well with biological variability is
shown in Figure 4. An attribute of this approach is that the
model seeks to identify, within a temporal expression profile
data set, a pharmacologically plausible response pattern that
may underlie the data. Each of the mechanistic elements of
the model exhibits a characteristic response as conditions
(such as drug concentration and exposure time) are altered.
Thus the approach holds promise for mining genomic and
proteomic data sets to identify response patterns that
resemble combinations of underlying pharmacological
mechanisms. The application of these models to large-scale
expression data sets (34, 35) is currently under way.

Accurate and sensitive quantification of low-copy
pharmacodynamic effect marker proteins. An essential
requirement for the PD analysis discussed above is to
identify PD effect markers that are both relevant to the
therapeutic response and amenable to accurate
quantification. Data sets must be sufficiently rich to define
both temporal responses and the concentration/exposure-
effect relationship for the drug. Analytical sensitivity and
selectivity are often issues in quantifying PD effect markers,
because key signaling or effector molecules may exist in low
abundance against a background of higher-abundance,
irrelevant molecules. Transcriptional profiling, as performed
using a number of current techniques, meets these
requirements. However, important pharmacological
responses to many drugs may not be transcriptionally
regulated. For example, HIF-1 is a key signaling protein
that regulates angiogenesis and also plays a role in the
toxicity of microtubule-acting drugs such as the taxanes. It
has been shown that changes in HIF-1 abundance signal the
shift between norm-oxic and hypoxic conditions, and this
change occurs without significant alteration in HIF-1
mRNA levels (36). Other signaling pathways are regulated
by post-translational modifications such as phosphorylation
(2) that are not reflected in transcriptional changes
Therefore, direct quantification of PD markers at the
protein level is necessary.

Because of the diversity of their chemical and physical
properties, proteins are more difficult to analyze than nucleic
acids. Methods that are high in both sensitivity and selectivity
are required, given the large number of high-abundance
proteins in cells and tissues, and the generally low abundance
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Figure 3. Pharmacodynamic models for regulation of expression. Model
combines the Indirect Response (Figure 1) and Signal Transduction
models (Figure 2). A change in R (abundance of a specific mRNA or
protein) is the indirect response elicited by a drug. The model consists of
two signal transduction cascades, having A1-N and I1-N intermediate
elements. These cascades impinge upon ksyn and kdeg, the rate constants in
the indirect response model that regulate mRNA/protein synthesis or
degradation rates (see Figure 1 legend). The effect can be to increase
(open bar) or decrease (filled bar) the rate constants.



of many effectors in signaling cascades. Numerous
approaches have been employed for protein quantification,
including electrophoretic, chromatographic (37-39), immune-
(40, 41), and mass spectrometry (MS)-based methods (42-46).
Compared with more traditional techniques, liquid
chromatography (LC) coupled to MS improves the selectivity
and quantitative accuracy (47) of the electrophoretic
techniques, but does not completely overcome the tendency
to discriminate against lower abundance proteins.

LC/MS-based approaches are among the most promising
for quantification of PD effect markers, given their
sensitivity, selectivity and accuracy, but quantifying low-
abundance regulatory proteins against a background of
higher abundance proteins and peptides in tissues
nonetheless constitutes a major challenge. A series of
isotope-coded techniques has been developed for protein
expression profiling and quantification (47-49). Among
these, the isotope coded affinity tag (ICAT) approach is the
most prevalent. The ICAT reagent consists of an affinity

retrieval tag such as biotin, a hydrocarbon linker region that
functions as a heavy (13C) or light (12C) mass tag, and a
protein-reactive group specific for an amino acid such as
Cys (Figure 5). A chemical cleavage site may be
incorporated in the tag to permit removal of the retrieval
ligand after isolation of the tagged peptides. An advantage
of the ICAT approach is that the mass tags permit physical
mixing of an experimental and reference sample following
initial separate ICAT labeling. In this way, the reference
sample permits correction for sample-to-sample variations
that occur during processing steps such as protease
digestion and affinity retrieval. In principle, peptides labeled
with either mass tag have identical chromatographic
behavior and detection by MS consists of searching for
paired isotopic peaks that differ by 9 Da (or 4.5 for doubly
charged MS peaks, etc.). Differences in the abundance ratio
of the paired ICAT peaks between the reference and
experimental samples indicate relative differences in the
concentration of the target protein.
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Figure 4. Simulations of expression regulation models. Figure shows equations and simulations of the models based on the scheme shown in Figure 3.
Response R (mRNA or protein level for specific gene) is the indirect response elicited by the drug; Ás and Ád denote signal amplification factors. The
biosignals traveling through the signal transduction pathways (Ssyn and Sdeg) exert up- or down- regulation on the level of a specific mRNA or protein.
In the absence of drug stimulus (Ssyn= Sdeg= 0), the baseline expression is R0 = ksyn/kdeg. The selection of + or – signs corresponds to stimulation or
inhibition of ksyn and kdeg. Other symbols are as described in previous figures. Top row: four expression profiles predicted by the model based on the
balance of the second messenger systems modulating the response. Bottom row: Model fitted to two complex time profiles for single gene responses
resembling simulations B and C (top). Data taken from a publicly-available data set (33) in which serum-starved cells were stimulated with serum at
time=0, eliciting numerous transcriptional changes.



Hundreds of thousands of peptides may be generated as
a result of trypsin digestion of tissue homogenates. By
retrieving only the Cys-containing peptides that are tagged
by the ICAT reagent, this approach reduces the complexity
of biological matrices and thereby reduces the bias against
low-abundance target proteins. Nonetheless, a large number
of ICAT peptides are retrieved from tissue samples. This
hampers automatic LC-MS/MS strategies, which analyze
only a limited number of the highest intensity ions entering
the MS analyzer at each time point, and therefore are
biased against low-abundance peptides.

Our aim was to develop an approach that would permit
quantification of lower-copy protein targets of
pharmacological significance that were predicted by
transcriptional profiling. In this case, targets are known but
numerous, and are buried in a sea of peptides derived from
higher-abundance proteins. We employed an ICAT strategy
(50) and chose the well-characterized corticosteroid
induction system as proof-of-principle, given the large
number of drug-responsive transcriptional changes already
established (8, 14, 15).

Following cleanup of rat liver homogenates using strong
cation exchange (SCX) chromatography, a long, shallow
capillary LC gradient was used to reduce the number of co-
eluting peptides entering the MS detector (50). The chosen
targets were anticipated to be low in abundance; therefore
automatic LC-MS/MS strategies would likely fail.
Furthermore, pure protein was not available for most
targets. Our approach was to use published genomic data to
predict the m/z (mass-to-charge ratio) for all possible tryptic
ICAT peptides derived from each protein of interest, and
screen the entire ICAT-derivatized peptide mixture from
tissue homogenates for those target peptides.

In the first stage of the assay, an ion trap MS was used to
search for any detectable ICAT peptide having an m/z
matching one that could be derived from a target protein of
interest. All hits were sequenced to confirm identity, thus
ruling out a substantial number of isomeric peptides (data
not shown; (50)) that could be expected from the large
number of tryptic peptides that would be generated from

liver. Any positively identified target peptides that were
selected for quantification were then synthesized, in order
to verify the identification using LC retention time, verify
parent and product m/z, and also to permit optimization of
MS assay conditions for quantifying that peptide.

In the second stage of the assay, an identical LC gradient
was run into a triple quadrupole MS/MS instrument in
order to quantify target peptides. The intent was to take
advantage of the wide dynamic range, very high sensitivity
and selectivity of the triple quadrupole instrument when
operating in Multiple Reactions Monitoring (MRM) mode
(51, 52). 

In this proof-of-principle study, two peptides derived
from the target tyrosine aminotransferase (TAT), a
corticosteroid-induced enzyme, were successfully identified.
One, designated T7 (Figure 6), was selected for
quantification because of its significantly more intense MS
signal (data not shown). An assay for the T7 peptide was
developed. It showed good linearity over the range of 5-500
fmol on column with a detection limit of approximately 0.1
fmol (data not shown). Using the T7 peptide to quantify
TAT induction (Figure 6, top) a 5-fold increase in TAT
protein was observed within 4 h of corticosteroid treatment
of rats (50). TAT enzymatic activity was also assayed, and it
peaked 6 h after treatment (Figure 6, middle). An apparent
delay between the induction of TAT protein and TAT
activity was observed, suggesting that additional post-
translational processing may occur. In Figure 6 (bottom),
TAT activity was normalized by the amount of TAT protein
quantified in the same sample. It can be seen that the
variability of the data decreases considerably, indicating that
biological variability (animal to animal) is greater than
analytical variability (sample to sample).

The results with this ICAT-based approach suggests the
feasibility of identifying and quantifying low-abundance,
pharmacologically-relevant PD effect markers in tissues or
cells. Based on the results obtained, TAT abundance at
peak expression appeared to be only approximately 50 fmol
per 100 Ìg of total liver protein.

This approach also is amenable to quantification of
multiple targets simultaneously, and also permits re-
interrogation of processed samples in the event that
additional target proteins become of interest (50). The
processed ICAT samples used for TAT quantification were
stored frozen (–80ÆC) for 3 months and then re-analyzed to
quantify the induction of ornithine decarboxylase, another
corticosteroid-induced protein that was detected in the MS
data because of the change in relative abundance of ICAT
labels in liver samples from corticosteroid-treated rats (data
not shown). The current status of this research is to improve
the ability to discover quantifiable peptides from target
proteins of interest, thereby streamlining the process for the
quantification of large numbers of target protein proteins.
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Figure 5. Schematic representation of ICAT reagent. A functional group
reacting covalently with peptide side chains (such as Cys) links a tag to a
subset of peptides in a complex mixture. The affinity ligand (biotin)
permits retrieval of tagged peptides from mixture. The 9-carbon linker
region consists of heavy (13C) or light (12C) atoms. The cleavage site
permits removal of the affinity tag after retrieval of tagged peptides,
reducing perturbation of chromatographic behavior.



Conclusion

Quantitative, mechanistic, computational pharmacodynamic
models have progressed to the point where they can
integrate pharmacological responses in complex biological
systems. However, their use in the analysis of PD response
data often has been post-hoc, aiding in the mechanistic
understanding of response data and in the development of
experimentally testable hypotheses regarding mechanisms
underlying the observed responses. Generic PD models,
based on distinct types of observed pharmacological
responses, along with improvements in the ability to apply
models in an unsupervised manner to large data sets,
suggest the feasibility of employing PD models for the
primary analysis of temporal expression data. An advantage
of these models is that each is ‘prejudiced’ to discovering
plausible pharmacological response profiles within a data
set. These models should also be capable of integrating
higher-dimensional data, such as temporal responses
observed with different drug dosages or pharmacokinetic
profiles. Few other approaches for the analysis of expression
profiling data offer a capability grounded in pharmacological
principles.

The application of PD models to profiling data is most
successful when rich data sets are available that capture
temporal responses under multiple conditions of drug
concentration and exposure. Although transcriptional
profiling is routine, quantification of multiple targets at the
protein level remains a challenge. The approaches described
here suggest the promise of using quantitative liquid
chromatography/mass spectrometry techniques to provide
the data necessary for successful PD analysis of
pharmacological responses in biological systems.
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Figure 6. Quantification of TAT induction by MPL in rat liver. Peptide
T7 (R)VVITVPEVMMLEACSR(Q), derived from tyrosine amino
transferase (TAT), was identified in liver homogenates of rats treated i.v.
with 50 mg/kg methylprednisolone (MPL) and was used to quantify TAT
induction by MPL. Liver homogenates were prepared at each time point
indicated and 100 Ìg total protein was derivatized with 13C-ICAT (heavy
reagent). The reference homogenate, taken 4 h after MPL dosing, was
labeled with 12C-ICAT (light reagent) and spiked into each time point
sample. Samples were digested with trypsin, ICAT peptides were retrieved
by affinity chromatography, separated by reverse phase chromatography
using a long, shallow LC gradient, and analyzed in MRM mode using a
triple quadrupole MS/MS instrument. Top panel: induction of TAT as
determined by quantification of T7 peptide; each point represents a single
animal. Middle panel: induction of TAT as determined from enzymatic
activity; bottom panel: TAT activity normalized by the amount of detected
TAT protein. Top and middle panel redrawn with permission from (50).
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