
Abstract. Background: Clinical and experimental observations
indicate that resistance to anticancer drugs may be
spontaneously reversible over time. Materials and Methods:
This work is a mathematical and statistical analysis of the
relationship, during a 9-month experiment, between the
resistance of repeatedly re-seeded hepatoma cells to
methotrexate (MTX) or to cisplatin (cisP) and untreated cell
proliferation, telomere length and telomerase activity. Results:
All variables showed complex oscillations, as previously
published. In this work, cell proliferation was modelized by the
logistic model, and the proliferation rates (a-values) together
with their variations (va-values) were calculated. Conclusion:
Significant correlations were discovered between cell resistance
to treatments and a-values, va-values, telomere length and
telomerase activities. These results open new insights into the
handling of chemotherapy in the treatment of cancers.

Cell resistance to anticancer drugs is a major problem in

chemotherapy. Generally, the cellular toxicity of anticancer

drugs is, directly or indirectly, associated with the

proliferation status of the cells (1, 2). Cell sensitivity also

depends both on the drug active principle and metabolism

and on the permeability and other properties of the various

cell types. For a long time, resistance has been considered as

an invariant characteristic of the tumor and of the drug

used. However, recent reports indicate that resistance to

treatment, which depends on genetic alterations and

epigenetic traits, may change over time. This reversibility

was reported for different tumor cells, both in vivo and in

vitro (3-7). Various cell functions and characteristics,

including telomere length and cell growth rate, show

marked fluctuations over time and may contribute to the

reversibility of resistance to anticancer drugs. We previously

reported the long-term oscillating growth pattern of

cultured Fao hepatoma cells, repeatedly re-seeded at fixed

6-day intervals for 9 months, and the oscillations of

telomere length and telomerase activity, which were

measured at the beginning of each reseeding. We

demonstrated that these apparently disordered oscillations

of the 3 variables were regulated and probably chaotic in

nature (8, 9). The resistance of these cell populations

submitted to the anticancer drugs methotrexate (MTX) and

cisplatin (cisP) at each passage varied markedly, with a

different pattern for each drug (10). We also showed that,

when MTX resistance and variations of proliferation rate

were plotted versus telomere length (MLT), the peaks of

resistance and growth accelerations were associated with

specific telomere lengths, separated by 350 bp intervals, thus

incriminating a periodic telomere structure (10). In the

present report, the relationships between resistance to MTX

or to cisP and cell proliferation rate, telomere length and

telomerase activity were investigated, in order to portray the

cell state at a given time-point, as a predictive tool for

chemosensitivity to anticancer drugs.

Materials and Methods

The experimental methods for obtaining the previously published

data (8-10) are briefly described below.

Culture conditions. Cells of the rat hepatoma Fao clone are stably

differentiated and tumorigenic (11, 12). The protocol included 43

cell reseedings over passages of 6 days each. On day 1, cells were

seeded at a density of 105 cells/8.5 cm diameter dish in Ham 

F-12/Coon medium containing 5% fetal calf serum. The medium

was changed every other day. On day 6, the cells were detached

with trypsin, counted and re-seeded in duplicate dishes at the same

initial density. The proliferation data (number of population

doublings per passage) and their analysis have been reported (8).
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Treatment with anticancer drugs. At the beginning of each passage,

samples of the cell population were inoculated in triplicate dishes and

subjected to cisP and MTX. The cell density and drug dosage were the

same for all passages. The modes of treatment were : i) short exposure

to cisP and a seeding density of 105 cells/dish. The next day, samples

were incubated for 2 h in medium containing 50 ÌM cisP. Cells

proliferated afterwards under standard conditions (with no cisP) for 3

weeks. ii) Continuous exposure to MTX with a seeding density of 5.105

cells/dish. Cells were continuously cultured in medium containing 15

nM MTX for 3 weeks. Drug resistance was defined as the number of

colonies observed at week 3 after treatment / number of treated cells.

Telomere length and telomerase activities. Briefly, at each passage,

DNA and cell extracts were prepared for telomere length analysis

by Southern blotting and telomerase assay. The mean length of

telomeres (MTRL) was calculated by integrating the signal

intensity above background over the entire Telomere Restriction

Fragment (TRF) distribution as a function of TRF lengths:

MTRL=™ CPMi: ™[CPMi : (Lii – X)]

where CPMi, Li and X are the signal (counts/minutes) at passage i,

the TRF length at passage i and the mean sub-telomeric length,

respectively.

Telomerase activity was determined using the TRAPeze

Telomerase Detection Kit (Oncor, Gaithersburg, USA) and the

Telomeric Repeat Amplification Protocol (TRAP). Three assays

were performed for each sample, using from 0.25 to 1 Ìg of protein

extract, which provided a linear range response. Controls included

heat-inactivated extract, internal PCR amplification controls and

PCR contamination controls.

Problems of interest; method of analysis. The apparent disorder of

cell growth fluctuations, telomere length and telomerase activities

over the 43 passages made it difficult to directly analyze the

properties of cell resistance to anticancer drugs for the observed

data. Therefore, we proceeded in several steps. First, cell

proliferation within each passage was modelized by a population

kinetic model and the model proliferation rate, ai-values (see

below) calculated. Changes in proliferation rate from passage to

passage are discussed in the Results section. As these changes

might be related to gene amplification events and drug resistance

(see below), the variation of proliferation rate from one passage to

the next, vai=ai–1—ai–2, was also defined. In the second step, the

relationships between ai , vai and the resistance to drugs, telomere

length and telomerase activities were analyzed.

The classic Pearson correlation, r-values, were calculated. To

test the statistical significance of the r-values, two methods were

employed. The first method read the p-values in standard

statistical tables. As the variables implied in the analyses, i.e. the

resistances to drugs, cell proliferation rate, cell genetic

amplification, telomerase length and telomerase activities, are not

all normally distributed, some transformations of these variables

were first performed to obtain variables that are normally

distributed (see details below). The second method used was the

Monte Carlo simulation. Briefly, to estimate the dependence

between 2 variables x and y, the Pearson correlation coefficient

r(1) between the observed data x and y was calculated first. The

order of the variables was randomly perturbed over 1, 2,…, n-1

times and the correlation coefficients r(2), r(3), …r(n) of the

randomized series were calculated. In the actual calculations,

perturbations were repeated up to 4999 times to get a total of

5000 r-values. Let n1 be the cases where the r-values are more

extreme than r(1) [larger than r(1), if r(1 )>0 and lower than r(1),

if r(1) <0]. If n1 is small (n1/5000<0.05), the probability that

random series can give an r-value more extreme than the

observed value r(1) is low; we thus conclude that the observed

data are significantly correlated.

Calculations of the cell proliferation rate and the determination

of the transformations to normalize the statistical distribution of

an observed variable are presented below.

Model of the proliferation dynamics. We assumed that the hepatoma

cell dynamics in each 6-day period obey the classical logistic model,

dN(t)/dt=aN(t)(1-N(t)/K), where N(t) is the number of cells at time

t, and a and K are constants. Constant a is the rate of cell

proliferation, while K reflects the maximum capacity of the culture

medium to support the cell population. From the culture conditions,

we assume that K is the same for all 43 passages. The solution of the

logistic equation is N(t)=K/(1+(K/N0-1)exp(-at)), where N0 is the

number of initial cells. We used 106 as the unit for the cell
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Figure 1. Time-patterns of cell growth rate, telomere length and telomerase
activity. Abcissa: passage number. Ordinates: A : proliferation rate (a-
values), B : va-values, C : mean telomere length calculated as described in
the text, and D : telomerase activities. Mean telomere lengths are in kilobase
pairs (kbp), telomerase activity in arbitrary units and a-values and va-values
are in day-1. Experimental data shown are mean±SD of 3 measures.



population, and day as the time unit. The 43 passages were indexed

by the letter i, and the model constant a in passage i was denoted by

ai. At day t=0, we started with N0=0.1 unit, then N1(t) increases

following the logistic model, with constants K and a1, until day t=6

where N1(6) was measured. On day 6, we took a portion N0=0.1 of

N1(6) and recommenced the same procedure until the next sixth day.

The dynamic N2(t) again follows the model equation, with constants

K and a2. The protocol continued until passage 43. From the

knowledge of N0 and Ni(6), the constant ai can be determined if K is

known. Since the highest observed Ni(6) is about 13.5, we first chose

the level K=15 for K, and with this K-value, we calculated the ai.

The a-values are the rate of cell proliferation at the beginning

of the passage. The variation of a-values was defined by taking the

change in proliferation rates in the preceding passages:

vai=ai–1–ai–2. The a-values (and therefore the va-values) depend

on the choice of K.

Transformation of variables. There are many possibilities for

transforming the variables. The most commonly used are y=exp(x)

and y=log(b+x), where x is the observed data and b is a constant. The

first equation is used when the histogram of x is shifted to the right,

and the second equation is used when the histogram of x is shifted to

the left. When the logarithm is taken, we looked for constant b to

ensure a normal distribution of y. The normalcy of y was tested by the

Chi-square test. A positive constant b was used to avoid calculating

the logarithm of zero (when some x values were zero).

Results

Proliferation of kinetic, telomere length and telomerase activities.
The a-values of cell proliferation, va-values, telomere length

and telomerase activities over the 43 passages of cell cultures

are provided in Figure 1A-D. The 4 series show quite complex

variations. It should be noted that the va-values include

positive and negative figures. The data in parts C and D have

been previously reported and discussed (9). The complex

relationships between the dynamics of cell proliferation,

telomere length and telomerase activities will be modelized

and discussed elsewhere. Here, we focused on the

relationships between cell dynamics and resistance to drugs.

Resistance to drugs. Drug resistance is shown in Figure 2.

The resistance varied along the passages with quite different

patterns for the 2 drugs (note that the 2 treatments are also

different). After continuous exposure to MTX, resistant

cells presented several persistent, ungrouped potent peaks.

After short exposure to cisP, resistant cells developed a

grouped bundle of consecutive peaks. The outcome of the

patterns after the 43rd passage is unknown.

Transformation of the variables. The histograms of the 6

variables are provided in Figure 3. The histogram

corresponding to a-values was slightly shifted to the right,

while the va-values had an apparently normal histogram. The

histogram of telomere length was between normal and

exponential, while the 3 remaining histograms were clearly
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Figure 2. Time-pattern of resistance to MTX and cisP. At each passage,
aliquots of the cells were seeded in a series of dishes and subjected to
various drug treatments. Abcissa: passage number. Ordinates: A: number of
cells resistant to the permanent treatment with MTX per 5 105 cells tested;
B: number of cells resistant to the short treatment with cisP per 104 cells
tested. Data are means and standard deviations for 3 dishes. The tests
started at passage (p) 5 for the MTX series and at p7 for the cisP series.

Figure 3. Histograms of the a-values, va-values, telomere length,
telomerase activity, MTX and cisP resistance. Units of the variables are
indicated in Figures 1 and 2.



decreasing exponentials, with low and comparable slopes for

telomerase activity and resistance to MTX, and a very high

slope for cisP resistance. The va-values were kept unchanged,

an exponential transformation was tested for the a-values and

a logarithmic transformation was tested for the 3 other cases.

No logarithmic transformation could improve the histogram

of telomere length and, thus, this variable was not

transformed. After some tests, we used the equation

y=log(b+x), with b=6 for telomerase activity, b=2 for the

resistance to MTX and b=0.01 for the resistance to cisP. We

have verified, by Chi-square, that the distributions of 

va-values, telomere length and the 4 transformed variables

are not significantly different from a Gaussian variable.

Resistance to treatment and cell characteristics. The

relationships between drug resistances and cell proliferation,

telomere length and telomerase activities are shown in Table

I, where Pearson r-values are displayed, with probability

levels obtained from statistical tables given in the

parentheses. As expected, the relationships are quite different

for the 2 drugs. MTX resistance was not correlated to 

a-values, but was correlated to va-values, while resistance to

cisP was correlated to a-values, but not to va-values. In

addition, MTX resistance was correlated to both telomere

length and telomerase actitivies, while resistance to cisP was

correlated only to telomerase activities. Some scatter plots

are given in Figure 4. It can be observed that the data points

are regularly displaced along the regression lines, and the

significant relationships are rather convincing.

By using the Monte Carlo simulation, the probability 

p-values of the 8 above relationships (p=n1/5000, see

Methods) were obtained (see Table I, psim values). It is clear

that the results of the simulation method are entirely

consistent with the Pearson method.

Note on the role of the constant K used in the kinetic modelization.
In the Methods section (modelization of the proliferation

dynamic), we indicated that the calculation of the proliferation

rate, ai, and hence, the vai, depends on the choice of the

constant K. We verified that, by using K values from 13.5 up to

values as large as 20, all ai’s were only very slightly modified and

this did not change the statistical significance of the correlation

study, implying the a-series or va-series in Table I.

Discussion

Our data indicate that cell resistances to MTX and cisP are

not constant, but rather exhibit time fluctuations with large

amplitudes. Furthermore, the time-pattern of these

fluctuations define different windows of resistance for the 2

drugs (10). The present analysis disclosed several significant

relationships between cell resistance to MTX and cisP and

some characteristics of the cell kinetics.

Although the Pearson statistic is commonly used, the

normalcy of the variables involved is not always discussed. It

can be seen in Figure 3 that some variables included in the

proposed correlation analysis were not normally distributed.

Of course, the Pearson r-value between variables that are not

Gaussian can be calculated, but the corresponding p-value (to

assess the so-called H0 hypothesis of no correlation) must be

calculated by a specific method corresponding to the given

distribution of the variables. Standard tables of statistical

significance (p-values) have been constructed for normal

variables, and should not be used when the variables are not

distributed normally. In addition, the data used in our study

are time-series and may be auto-correlated. It is difficult to

isolate the part due to such auto-correlation in the meaning

of the p-value read from statistical tables. Therefore, we have

used the simulation method to estimate the significance of

the correlation. In the randomly perturbed series, not only

the pairing between the two variables, but also the serial

correlation in the variables was destroyed. The consistency of

the 2 methods suggests that auto-correlation in the data, if

any, may not play a significant role in our relationships. This

consistency, together with the scatter plot of the data in

Figure 4, should be convincing to the reader.
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Table I. Correlation coefficient for the relationship between (i) drug resistance to MTX or to cisP and (ii) cell proliferation rate (a-values), cell
proliferation rate variations (va-values), telomere length and telomerase activities. P-values read from tables are given in parentheses. The psim are p-values
calculated by the simulation method (see text for details)

a-values va-values telomere length telomerase activities

MTX resistance 0.20 (NS) 0.40 (p<0.001) –0.36 (p<0.05) 0.35 (p<0.05)

psim (0.23) (0.016) (0.034) (0.033)

cisP resistance 0.42 (p<0.01) 0.15 (NS) 0.07 (NS) –0.39 (p<0.01)

psim (0.012) (0.39) (0.67) (0.020)



It is not surprising that cell resistance is not the same

against MTX and cisP. First, the two modes of treatment are

different. Permanent and short treatments with cisP were

also performed on other shorter series. The results indicate

that the fluctuations of the frequency of resistant cells

evolved in parallel (data not shown). Therefore, the different

time-patterns of resistance to MTX and cisP reported herein

are not relevant to the protocols. Second, the modes of

action are not the same. MTX inhibits the dihydrofolate

reductase (dhfr) enzymatic activity and thus the replicative

process (S-phase of the cell cycle). CisP interacts with DNA

and arrests cells in G2/M. Resistance to cisP has been

associated with drug efflux, overexpression of topoisomerase,

mismatch repair system, glutathione mediated detoxification

or amplification of a series of genes (including ABC-

transporter encoding genes) (see ref. 13 for a review).

Resistance to MTX has been associated with mutations

which affect cell permeability to the drug, mutant alleles of

the dhfr gene encoding an enzyme with a lower affinity for

the drug and overexpression of dhfr associated with

amplification of the gene (see ref. 14 and 15 for reviews). In

fact, during the experimental procedure, 2- to 3-fold
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Figure 4. Correlations between resistance to MTX and cisP versus cell growth rate, variations of growth rate, telomere length and telomerase activity. Left:
MTX resistance. Right: cisP resistance.



amplification of the dhfr gene was observed for 3 clones and

2 pools of resistant cells selected at different passages (10).

The correlation between va-values and MTX resistance

involves the amplification of the dhfr gene as a major

mechanism of resistance to the drug. In this context, our

results may be compared with a series of studies which

demonstrate that resumption of cell growth after an

inhibition enhances the frequency of amplification events

including the dhfr gene (16-20).

Cell resistance belongs to a complex system involving

several factors, including telomere length regulation. No

clear cut, highly significant relationships should be expected

from our qualitative observations of such a complex system.

We have demonstrated a negative correlation of MTX

resistance with MTL, and a positive correlation with

telomerase activity. This must be compared to our previous

analysis, which indicated that peaks of MTX resistance are

associated with periodic telomere structures of 350 bp and

180 bp, presumably linked to the nucleosomic organization

(10). In a preceding report (9), we showed that the

fluctuations of telomere length and telomerase activities

along the whole protocol have an inverse timing. Telomeric

structure affects sub-telomeric and other gene transcription

rates in yeast and human cells (21-23). This may set up a

cascade of regulatory effects, ultimately leading to the

genesis of resistant cells. Furthermore, telomerase modulates

the expression of genes controlling cell proliferation (24, 25),

and c-myc, a transcription factor involved in the control of

cell proliferation, activates telomerase expression (26, 27).

Integrating our results leads to the following

interpretation of the connection between telomeres and

MTX resistance. The replicative telomere erosion alters

nucleosomes, and nucleosomal content affects the

transcription of genes as a result of cis or trans effects (21-

23). For instance, the promoter of c-myc, which includes

myb sites, may be up-regulated by myb domains of telomeric

proteins (28). Intermittent telomere repair would, thus, lead

to fluctuations in cell proliferation and, ultimately, to gene

amplification events.

The search for a correlation between telomerase activity

and cisP resistance in different tumoral cell systems has

been the topic of a series of reports with contradictory

results. Some data reveal a positive correlation between

enzymatic activity and cell resistance (29-31). Authors

interpreted this link by a better restoration of cell cycle

progression and cell recovery from drug-induced damage by

fast growing cells with telomerase activity (29). The inverse

correlation has also been reported (32, 33). However, these

correlations were established either by comparing different

tumor cell lines, or cell lines with inhibition or trans-genesis

restoration of telomerase activity. Our own analysis

established positive and negative correlations between cisP

resistance and cell growth rate and telomerase activity,

respectively, in the same cells in fixed conditions over a long

period of time.

It is important to note that the data was considered as a

set of interrelated time-series. Thus, the dynamic aspect of

the whole system must be studied by an appropriate modeling

of the 5 sequences (cell proliferation over the 43 passages,

telomere length, telomerase activities and effects of the 2

treatments) as components of a dynamic system in 5

dimensions. Our present results reveal some correlations

between cell growth rate, telomere length, telomerase activity

and resistance to the drugs. In this complex system,

telomerase activity presents characteristics that deserve

further investigation, such as: i) positive and negative

correlations, respectively, with cisP and MTX sensitivity that

give this cell trait a potential predictive value for cell response

to the drugs, and ii) a relatively simple and fast assay.
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