Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies

Inhibition of Cell Proliferation by Potential Peroxisome Proliferator-activated Receptor (PPAR) Gamma Agonists and Antagonists

MICHAEL A. LEA, MONALI SURA and CHARLES DESBORDES
Anticancer Research September 2004, 24 (5A) 2765-2772;
MICHAEL A. LEA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MONALI SURA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CHARLES DESBORDES
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

This study was initiated to determine if potential PPAR gamma antagonists could block the inhibition of cell proliferation caused by 4-phenylbutyrate. The action of 4-phenylbutyrate differed from other PPAR gamma ligands examined in that it induces histone acetylation. Proliferation of DS19 mouse erythroleukemia cells was inhibited by PPAR gamma agonists (4-phenylbutyrate, rosiglitazone, ciglitazone and GW1929) and by potential PPAR gamma antagonists: BADGE (Biphenol A diglycidyl ether), GW9662, PD068235 and diclofenac. Combined incubations tended to exhibit additive inhibitory effects. Potential PPAR gamma agonists and antagonists inhibited the incorporation of thymidine into DNA of human prostate (PC3), colon (Caco-2) and breast (T47D) cancer cells but also affected NIH3T3 cells that have little or no expression of PPAR gamma. Lipid accumulation in T47D cells was seen after incubation with 4-phenylbutyrate and both potential PPAR gamma agonists and antagonists. The extent to which the effects of 4-phenylbutyrate on cell proliferation are mediated through PPAR gamma or induction of histone acetylation remains an open question. We conclude that potential PPAR gamma antagonists may fail to reverse the growth inhibitory effect of PPAR gamma ligands and may themselves act as growth inhibitory agents.

Footnotes

    • Received July 12, 2004.
    • Accepted July 30, 2004.
  • Copyright© 2004 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved
PreviousNext
Back to top

In this issue

Anticancer Research
Vol. 24, Issue 5A
September-October 2004
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of Cell Proliferation by Potential Peroxisome Proliferator-activated Receptor (PPAR) Gamma Agonists and Antagonists
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 12 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Inhibition of Cell Proliferation by Potential Peroxisome Proliferator-activated Receptor (PPAR) Gamma Agonists and Antagonists
MICHAEL A. LEA, MONALI SURA, CHARLES DESBORDES
Anticancer Research Sep 2004, 24 (5A) 2765-2772;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Inhibition of Cell Proliferation by Potential Peroxisome Proliferator-activated Receptor (PPAR) Gamma Agonists and Antagonists
MICHAEL A. LEA, MONALI SURA, CHARLES DESBORDES
Anticancer Research Sep 2004, 24 (5A) 2765-2772;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • MGMT Promoter Methylation in Glioblastoma Stem Cells: Stability During Differentiation and Comparison With Surgically-resected Tumors
  • JI-CJ002, a Natural Herbal Formula, Enhances the Antitumor Efficacy of FOLFOX in Colorectal Cancer by Suppressing the DDR Pathway
  • Pulsed Electromagnetic Field Promotes Doxorubicin-induced Apoptosis by Increasing Caspase-2 Activation in MDA-MB-231 Breast Cancer Cells
Show more Experimental Studies

Similar Articles

Anticancer Research

© 2025 Anticancer Research

Powered by HighWire