Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-resident macrophages

Abstract

Tissue-resident macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These range from dedicated homeostatic functions, such as clearance of cellular debris and iron processing, to central roles in tissue immune surveillance, response to infection and the resolution of inflammation. Recent studies highlight marked heterogeneity in the origins of tissue macrophages that arise from hematopoietic versus self-renewing embryo-derived populations. We discuss the tissue niche-specific factors that dictate cell phenotype, the definition of which will allow new strategies to promote the restoration of tissue homeostasis. Understanding the mechanisms that dictate tissue macrophage heterogeneity should explain why simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origins and renewal of tissue-resident macrophages.
Figure 2: Functions of tissue-resident macrophages.
Figure 3: Microanatomy of the mouse spleen showing discrete localization of splenic macrophage populations.

Similar content being viewed by others

References

  1. Metchnikoff, E. Leçons sur la pathologie comparée de l'inflammation (Masson, 1892).

  2. Aschoff, L. Das reticuloendotheliale system. Erg. Inn. Med. Kinderheilk 26, 1–117 (1924).

    Google Scholar 

  3. Sabin, F.R., Doan, C.A. & Cunningham, R.S. Discrimination of two types of phagocytic cells in the connective tissues by the supravital technique. Contrib. Embryol. (Am) 16, 125–162 (1925).

    Google Scholar 

  4. Daems, W.T. & Brederoo, P. The fine structure and peroxidase activity of resident and exudate peritoneal macrophages in the guinea pig. The Reticuloendothelial System and Immune Phenomena: Advances in Experimental Medicine and Biology (eds., N. Di Luzio & K. Flemming) 15, 19–31 (1971).

    Article  CAS  Google Scholar 

  5. van Furth, R. & Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Parwaresch, M.R. & Wacker, H.H. Origin and kinetics of resident tissue macrophages. Parabiosis studies with radiolabelled leucocytes. Cell Tissue Kinet. 17, 25–39 (1984).

    CAS  PubMed  Google Scholar 

  8. Sawyer, R.T., Strausbauch, P.H. & Volkman, A. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab. Invest. 46, 165–170 (1982).

    CAS  PubMed  Google Scholar 

  9. Czernielewski, J.M. & Demarchez, M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J. Invest. Dermatol. 88, 17–20 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Melnicoff, M.J., Horan, P.K., Breslin, E.W. & Morahan, P.S. Maintenance of peritoneal macrophages in the steady state. J. Leukoc. Biol. 44, 367–375 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Naito, M. et al. Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J. Leukoc. Biol. 59, 133–138 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi, K. Development and differentiation of macrophages and related cells: historical review and current concepts. J. Clin. Exp. Hematop. 41, 1–31 (2000).

    Article  Google Scholar 

  13. Lichanska, A.M. & Hume, D.A. Origins and functions of phagocytes in the embryo. Exp. Hematol. 28, 601–611 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).This study demonstrates the early embryonic origins of adult microglia, which are maintained throughout life by local self renewal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).This work is a demonstration of the clear potential for widespread tissue seeding of macrophages from the yolk sac.

    Article  CAS  PubMed  Google Scholar 

  18. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).Studies in refs. 18 and 19 describe an important tissue-specific role for IL-34 in the development and maintenance of Langerhans cells and microglia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Satpathy, A.T., Wu, X., Albring, J.C. & Murphy, K.M. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bain, C.C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kanitakis, J., Petruzzo, P. & Dubernard, J.M. Turnover of epidermal Langerhans' cells. N. Engl. J. Med. 351, 2661–2662 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W. & Rossi, F.M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).This work is a demonstration of the autonomy of adult microglia from potential peripheral progenitors.

    Article  CAS  PubMed  Google Scholar 

  26. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Capotondo, A. et al. Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc. Natl. Acad. Sci. USA 109, 15018–15023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davies, L.C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41, 2155–2164 (2011).This is the first demonstration that tissue-resident macrophages in vascular tissues can renew by local proliferation without substantial monocytic input.

    Article  CAS  PubMed  Google Scholar 

  29. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).This work demonstrates the clear potential for widespread tissue seeding of macrophages from the yolk sac.

    Article  CAS  PubMed  Google Scholar 

  30. Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 178, 2000–2007 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 14, 821–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Pollard, J.W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ryan, G.R. et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 98, 74–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, H. et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim. Biophys. Acta 1824, 938–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chihara, T. et al. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ. 17, 1917–1927 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hume, D.A. & MacDonald, K.P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).This work demonstrates that parasite infection expands tissue-resident macrophages in an IL-4–dependent manner without the need for monocyte recruitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies, L.C. et al. Distinct bone marrow-derived and tissue resident macrophage-lineages proliferate at key stages during inflammation. Nat. Commun. 4, 1886 (2013).This work definitively demonstrates that peripherally derived inflammatory macrophages proliferate during inflammation.

    Article  PubMed  CAS  Google Scholar 

  42. Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Gordon, S. & Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Taylor, P.R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Cailhier, J.F. et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol. 174, 2336–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Maus, U.A. et al. Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1245–L1252 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Ajuebor, M.N. et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J. Immunol. 162, 1685–1691 (1999).

    CAS  PubMed  Google Scholar 

  52. Rosas, M. et al. The induction of inflammation by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J. Immunol. 181, 3549–3557 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kolaczkowska, E. et al. Resident peritoneal macrophages and mast cells are important cellular sites of COX-1 and COX-2 activity during acute peritoneal inflammation. Arch. Immunol. Ther. Exp. (Warsz.) 57, 459–466 (2009).

    Article  CAS  Google Scholar 

  54. Kolaczkowska, E. et al. Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: superior contribution of macrophages over mast cells. Immunol. Lett. 113, 99–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Barth, M.W., Hendrzak, J.A., Melnicoff, M.J. & Morahan, P.S. Review of the macrophage disappearance reaction. J. Leukoc. Biol. 57, 361–367 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Rosas, M., Thomas, B., Stacey, M., Gordon, S. & Taylor, P.R. The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. J. Leukoc. Biol. 88, 169–180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bellingan, G.J. et al. Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J. Exp. Med. 196, 1515–1521 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lauder, S.N. et al. Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax 66, 368–374 (2011).

    Article  PubMed  Google Scholar 

  59. Kirby, A.C., Coles, M.C. & Kaye, P.M. Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol. 183, 1983–1989 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. & Randolph, G.J. Modulation of dendritic cell trafficking to and from the airways. J. Immunol. 176, 3578–3584 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Janssen, W.J. et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184, 547–560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Allen, J.E. & Wynn, T.A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liddiard, K., Rosas, M., Davies, L.C., Jones, S.A. & Taylor, P.R. Macrophage heterogeneity and acute inflammation. Eur. J. Immunol. 41, 2503–2508 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cao, C., Lawrence, D.A., Strickland, D.K. & Zhang, L. A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics. Blood 106, 3234–3241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isbel, N.M., Nikolic-Paterson, D.J., Hill, P.A., Dowling, J. & Atkins, R.C. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol. Dial. Transplant. 16, 1638–1647 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, N. et al. Local macrophage proliferation in human glomerulonephritis. Kidney Int. 54, 143–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Antoniades, C.G. et al. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 56, 735–746 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Gautier, E.L. et al. Systemic analysis of PPARgamma in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J. Immunol. 189, 2614–2624 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Duffield, J.S., Lupher, M., Thannickal, V.J. & Wynn, T.A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Heredia, J.E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Henson, P.M. & Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 27, 244–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. London, A., Cohen, M. & Schwartz, M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7, 34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555–569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Erwig, L.P. & Henson, P.M. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 15, 243–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Manderson, A.P., Botto, M. & Walport, M.J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Uderhardt, S. et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36, 834–846 (2012).This work demonstrates that tissue-resident macrophages can actively divert apoptotic cell clearance to themselves rather than recruited inflammatory monocyte-derived cells.

    Article  CAS  PubMed  Google Scholar 

  80. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Seitz, H.M., Camenisch, T.D., Lemke, G., Earp, H.S. & Matsushima, G.K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Scott, R.S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Yoshida, H. et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437, 754–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 220, 237–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 19, 429–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Ganz, T. Macrophages and systemic iron homeostasis. J. Innate Immun. 4, 446–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Hvidberg, V. et al. Identification of the receptor scavenging hemopexin-heme complexes. Blood 106, 2572–2579 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Satoh, T. et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495, 524–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Odegaard, J.I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nguyen, K.D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).This is an interesting demonstration of the importance of alternatively activated macrophages in the physiological response to cold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Mebius, R.E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. den Haan, J.M. & Kraal, G. Innate immune functions of macrophage subpopulations in the spleen. J. Innate Immun. 4, 437–445 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009).This is a demonstration of the restriction of Spi-C expression to red pulp macrophages and its selective importance for their red pulp macrophage development and hence for splenic iron homeostasis.

    Article  CAS  PubMed  Google Scholar 

  103. Geijtenbeek, T.B. et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100, 2908–2916 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Kang, Y.S. et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 101, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Lanoue, A. et al. SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J. Exp. Med. 200, 1383–1393 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karlsson, M.C. et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med. 198, 333–340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. A-Gonzalez, N. et al. The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nat. Immunol. 14, 831–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eloranta, M.L. & Alm, G.V. Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-alpha/beta producers in mice upon intravenous challenge with herpes simplex virus. Scand. J. Immunol. 49, 391–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Klaas, M. et al. Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni. J. Immunol. 189, 2414–2422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Honke, N. et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat. Immunol. 13, 51–57 (2012).This paper describes an interesting selective role for splenic metallophilic macrophages as a potential infectious viral reservoir that drives adaptive immunity.

    Article  CAS  Google Scholar 

  112. Backer, R. et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc. Natl. Acad. Sci. USA 107, 216–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Khan, T.N., Wong, E.B., Soni, C. & Rahman, Z.S. Prolonged apoptotic cell accumulation in germinal centers of Mer-deficient mice causes elevated B cell and CD4+ Th cell responses leading to autoantibody production. J. Immunol. 190, 1433–1446 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Carlin, L.M. et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Quinn, J.M. et al. Calcitonin receptor antibodies in the identification of osteoclasts. Bone 25, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Sadahira, Y. & Mori, M. Role of the macrophage in erythropoiesis. Pathol. Int. 49, 841–848 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Paolicelli, R.C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Prinz, M., Priller, J., Sisodia, S.S. & Ransohoff, R.M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Zigmond, E. & Jung, S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol. 34, 162–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Klein, I. et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood 110, 4077–4085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carey, B. & Trapnell, B.C. The molecular basis of pulmonary alveolar proteinosis. Clin. Immunol. 135, 223–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Murphy, J., Summer, R., Wilson, A.A., Kotton, D.N. & Fine, A. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 38, 380–385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723–3738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Taylor, P.R. et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169, 3876–3882 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Dioszeghy, V. et al. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. J. Immunol. 181, 6514–6524 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Cailhier, J.F. et al. Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am. J. Respir. Crit. Care Med. 173, 540–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Chorro, L. & Geissmann, F. Development and homeostasis of 'resident' myeloid cells: the case of the Langerhans cell. Trends Immunol. 31, 438–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8, 935–947 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Dupasquier, M. et al. The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J. Leukoc. Biol. 80, 838–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Taylor, P.R. et al. Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo. Eur. J. Immunol. 35, 2163–2174 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4, 380–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Fainaru, O. et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23, 969–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Medical Research Council (MRC), including Senior Fellowship and Project grants to P.R.T. (G0601617/1, MR/J002151/1 and MR/K02003X/1) and a Programme grant to J.E.A. (MR/K01207X/1). P.R.T. is additionally supported through a Wellcome Trust Institutional Strategic Support Fund (097824/Z/11). L.C.D. is an MRC-funded PhD student and holds a Cardiff University 125 for 125 Scholarship. S.J.J. is funded by a University of Edinburgh Chancellor's Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, L., Jenkins, S., Allen, J. et al. Tissue-resident macrophages. Nat Immunol 14, 986–995 (2013). https://doi.org/10.1038/ni.2705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing