Skip to main content

Advertisement

Log in

Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine whether specific HOXA epigenetic signatures could differentiate glioma with distinct biological, pathological, and clinical characteristics.

Methods

We evaluated HOXA3, 7, 9, and 10 methylation in 63 glioma samples by MassARRAY and pyrosequencing.

Results

We demonstrated the direct statistical correlation between the level of methylation of all HOXA genes examined and WHO grading. Moreover, in glioblastoma patients, higher level of HOXA9 and HOXA10 methylation significantly correlated with increased survival probability (HOXA9—HR: 0.36, P = 0.007; HOXA10—HR: 0.46, P = 0.045; combined HOXA9 and 10—HR 0.28, P = 0.004).

Conclusions

This study identifies HOXA3, 7, 9, and 10 as methylation targets mainly in high-grade glioma and hypermethylation of the HOXA9 and 10 as prognostic factor in glioblastoma patients. Our data indicate that these epigenetic changes may be biomarkers of clinically different subgroups of glioma patients that could eventually benefit from personalized therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Fattah R, Xiao A et al (2006) Differential expression of HOX genes in neoplastic and non-neoplastic human astrocytes. J Pathol 209:15–24

    Article  PubMed  CAS  Google Scholar 

  • Banelli B, Bonassi S et al (2010) Outcome prediction and risk assessment by quantitative pyrosequencing methylation analysis of the SFN gene in advanced stage, high-risk, neuroblastic tumor patients. Int J Cancer 126:656–668

    Article  PubMed  CAS  Google Scholar 

  • Beroukhim R, Getz G et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104:20007–20012

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Cillo C, Cantile M et al (2001) Homeobox genes in normal and malignant cells. J Cell Physiol 188:161–169

    Article  PubMed  CAS  Google Scholar 

  • Costa BM, Smith JS et al (2010) Reversing HOXA9 oncogene activation by PI3 K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res 70:453–462

    Article  PubMed  CAS  Google Scholar 

  • Ehrich M, Nelson MR et al (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102:15785–15790

    Article  PubMed  CAS  Google Scholar 

  • Ehrich M, Zoll S et al (2007) A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Res 35:e29

    Article  PubMed  Google Scholar 

  • Esteller M, Hamilton SR et al (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  • Gaspar N, Marshall L et al (2010) MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 70:9243–9252

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20:147–173

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Liu L et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Graff JR et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  PubMed  CAS  Google Scholar 

  • Jensen OM, Esteve J et al (1990) Cancer in the European community and its member states. Eur J Cancer 26:1167–1256

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley-Interscience, New York

    Book  Google Scholar 

  • Korshunova Y, Maloney RK et al (2008) Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 18:19–29

    Article  PubMed  CAS  Google Scholar 

  • Laffaire J, Everhard S et al (2011) Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro Oncol 13:84–98

    Article  PubMed  CAS  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  PubMed  CAS  Google Scholar 

  • Lehmann U, Langer F et al (2002) Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol 160:605–612

    Article  PubMed  CAS  Google Scholar 

  • Levin VA, Leibel S, Gutin PH (2001) Neoplasm of the central nervous. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principle and practice of oncology, 6th edn. Lippincott Williams & Wilkins, Philadephia, pp 2100–2160

    Google Scholar 

  • Louis DN, Ohgaki H et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  • Martinez R, Martin-Subero JI et al (2009) A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4:255–264

    PubMed  CAS  Google Scholar 

  • Murat A, Migliavacca E et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan RP, Costello JF (2009a) Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol 19:188–197

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan RP, Costello JF (2009b) Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics 6:436–446

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T, Ozaki S et al (1998) Investigation of genetic alterations associated with the grade of astrocytic tumor by comparative genomic hybridization. Genes Chromosomes Cancer 21:340–346

    Article  PubMed  CAS  Google Scholar 

  • Noushmehr H, Weisenberger DJ et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  PubMed  CAS  Google Scholar 

  • Novak P, Jensen T et al (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66:10664–10670

    Article  PubMed  CAS  Google Scholar 

  • Phillips HS, Kharbanda S et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  • Rauch T, Wang Z et al (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 104:5527–5532

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi M, Sekiguchi A et al (2002) HOX gene clusters are hotspots of de novo methylation in CpG islands of human lung adenocarcinomas. Oncogene 21:3659–3662

    Article  PubMed  CAS  Google Scholar 

  • Strathdee G, Holyoake TL et al (2007) Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin Cancer Res 13:5048–5055

    Article  PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Tost J (2010) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol 44:71–81

    Article  PubMed  CAS  Google Scholar 

  • Tost J, Dunker J et al (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35:152–156

    PubMed  CAS  Google Scholar 

  • Verhaak RG, Hoadley KA et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  Google Scholar 

  • Weller M, Stupp R et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    Article  PubMed  CAS  Google Scholar 

  • Widschwendter M, Apostolidou S et al (2009) HOXA methylation in normal endometrium from premenopausal women is associated with the presence of ovarian cancer: a proof of principle study. Int J Cancer 125:2214–2218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicoletta Sacchi for critically reading the manuscript. This work was supported by the Italian Ministry of Health and by the Regione Liguria project: “Genetic and epigenetic alterations in brain tumors.” B. B. is the recipient of a grant “Young Investigators” from the Italian Ministry of Health.

Conflict of Interest

None of the Authors has any conflict of interest that could have biased the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Romani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3288 kb)

Supplementary material 2 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Vinci, A., Casciano, I., Marasco, E. et al. Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome. J Cancer Res Clin Oncol 138, 35–47 (2012). https://doi.org/10.1007/s00432-011-1070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-011-1070-5

Keywords

Navigation