
Abstract. Background: SF3B4, a critical component of U2
pre-mRNA spliceosomal complex, has been recently
indicated as a potential oncogene in hepatocellular
carcinoma (HCC). However, limited information exists on
how SF3B4 expression is regulated in HCC. Materials and
Methods: To determine the regulatory factor for SF3B4
expression, small interfering RNA (siRNA), real-time
polymerase chain reaction (qRT-PCR) and western blotting
assay were performed. The in vivo expression profiles of
SRSF3 and SF3B4 were analyzed using public datasets and
clinical samples. Results: Among 10 liver-specific splicing
factors, only SRSF3 knockdown resulted in a significant
increase in SF3B4 mRNA and consequently protein levels in
SNU-368 HCC cells, probably via the retardation of SF3B4
mRNA decay rates. Using green fluorescent protein-SF3B4
fusion construct, the coding region of SF3B4 was found to
be involved in SRSF3-mediated regulation of SF3B4
expression. Publicly available data from paired normal and
tumor tissues in HCC and results from patients with HCC
suggest that SRSF3 and SF3B4 possess an inverse
relationship. Conclusion: SRSF3 is a key molecule for
determining SF3B4 levels in HCC cells. 

The splicing factor 3B subunit 4 (SF3B4), also known as the
spliceosome-associated protein (SAP) 49, is a core protein of
the SF3B complex in the U2 small nuclear ribonucleoprotein

(snRNP). This splicing factor also plays an important role in
tethering U2 snRNP to the pre-mRNA region located at the
branched point of the prespliceosome complex (1).
Happloinsufficiency or mutations of SF3B4 gene have been
implicated as a major cause of acrofacial dystosis such as
Nager syndrome and Rodriguez syndrome, suggesting that an
accurate mRNA processing is critical for craniofacial
development (2-5). Recently, Ueno et al. clearly demonstrated
that SF3B4 functions as a bridging factor to facilitate the
assembly of polysomes on the endoplasmic reticulum, which
confers an enhanced translation of secretory proteins
including collagen A1s. This showed that the impairment in
the biosynthesis of collagen is a molecular base leading to the
poor craniofacial formation caused by SF3B4 mutation (6). 

A large-scale systematic genomic analysis identified
frequent alterations in the splicing regulatory components in
diverse types of cancers (7). Mutations in pre-mRNA
regulatory sequences including exonic enhancers, exon
silencers or those in splice site in the oncogene or tumor
suppressor gene might affect the rate and pattern of splicing
in key cancer-associated genes, which in turn might contribute
to the modulation of cancer phenotypes. In addition to the
mutations in the pre-mRNA cis- elements, mutations in genes
encoding the trans-acting splicing factors, which include
SF3B1, U2AF1, SRSF2, and ZRSR2, have been recurrently
found predominantly in hematological malignancies (8, 9). In
solid tumors, the occurrence of mutations in genes encoding
splicing factors is very low but the alteration of expression
levels of several regulatory splicing factors such as SRSF1,
SRSF2, SRSF6, hnRNP A1, hnRNP K, or PTB exists in
diverse types of human cancers (7). On the other hand, there
has been limited research on the association of SF3B4 and
cancer. Research on the relationship between SF3B4 and
cancer is only at the beginning stage, most of which is
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reported in hepato-cellular carcinoma (HCC). In a meta-
analysis covering five independent studies, SF3B4 was
identified to be up-regulated in HCC, which was subsequently
validated by quantitative real-time polymerase chain reaction
(qRT-PCR) (10). Another group consequently reported that
increased copy number of SF3B4 gene is related with poor
prognosis in HCC (11). Recently, Shen et al. demonstrated
that SF3B4 is one of early-state makers suggesting its role in
driving the development of HCC based on integrative analysis
of multistage HCC tissues and subsequent functional analysis
performed in HCC cell lines and mouse experiments (12).
Recently, Liu et al. showed that microRNA (miRNA)-133b
and SF3B4 have an inverse relationship in HCC tissues (13).
They also demonstrated that overexpression of miRNA-133b
inhibits the expression of SF3B4 while miRNA-133b
knockdown promotes SF3B4 expression in HCC cells. Based
on the increased luciferase reporter activity from SF3B4 3’-
UTR sequence, in which miRNA-133b binding region was
mutated, miR-133b was shown to directly regulate SF3B4
expression via its 3’-UTR sequence. However, the mechanism
by which SF3B4 is up-regulated in HCC is largely unknown.

The expression of many RNA-binding proteins is regulated
through splicing of their own pre-mRNA, auto-regulation, as
well as through cross regulation by other splicing factors (14).
Recently, the expression of 10 splicing factors has been
specifically implicated in vivo in liver disorders (15, 16). In
the present study we, therefore, examined the effect of 10
liver-specific splicing factors on the expression of SF3B4 in
HCC cells using a knockdown strategy. We identified that
SRSF3 is a negative regulator for SF3B4 expression, probably
through regulation of SF3B4 mRNA decay process. 

Materials and Methods
Cell lines and culture. The SNU-368 human HCC cell line was
obtained from the Korean Cell Line Bank (Seoul, Republic of
Korea) and Hep3B was acquired from ATCC (American Type
Culture Collection, CEM, Manassas, VA, USA). All cell lines were
cultured in RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS, GeneDEPOT Barker, TX, USA) and
penicillin/streptomycin (Biowest, Nuaillé, France). All cells were
maintained at 37˚C in a humidified incubator with 5% CO2.

Small interfering RNA (siRNA), recombinant plasmid construction
and transfection. Knock-down of 10 liver-specific splicing factors
as well as SF3B4 in SNU-368 cells was carried out with the small
interfering RNA (siRNA) strategy using Lipofectamine 2000
reagent (Thermo Fisher Scientific, Waltham, MA, USA). Target-
specific sequences of siRNA for each splicing factor were provided
by Bioneer (Daejeon, South Korea) and are listed in Table I. To
prepare green fluorescent protein (GFP)-SF3B4 fusion construct, the
sequence of GFP in pEGFP C1 (Promega, Madison, WI, USA) was
transferred to pcDNA 3.1 (Thermo Fisher Scientific) using Nhe I
and BamH I sites. The open reading frame of SF3B4 was prepared
by PCR from cDNA of SNU-368 cells with the following primer
pair: forward, 5’-TATGGATCCATGGCTGCCGGGCCGA-3’ and

reverse, 5’-TCGGATCCTTACTGAGGGAGAGGG-3’. After
verification of the sequence, the PCR product was subcloned into
BamH I sites of GFP/pcDNA 3.1 vector and the construct was
named GFP-SF3B4. After transfection of GFP-SF3B4 into SNU-
368 cells, SRSF3 expression was suppressed by siRNA. The
exogenous SF3B4 mRNA levels were then determined by reverse-
transcription and PCR amplification with GFP primers as well as
the primer sets recognizing GFP and SF3B4, respectively, and
subsequent agarose gel electrophoresis (Table II). 

Reverse transcription and quantitative real-time PCR (qRT-PCR).
Total RNA was isolated using RNAiso Plus (TaKara Biotechnology,
Shiga, Japan) and Ribospin kit (GeneAll, Seoul, Korea). And cDNA
was synthesized by PrimeScript™ RT Master Mix (TaKara
Biotechnology) according to the manufacturer’s instructions. To
quantify the expression levels of target mRNA, quantitative real-time
PCR (qRT-PCR) was performed using TB Green Premix Ex Taq™
(TaKara Biotechnology) on an Applied Biosystems 7300 instrument
(Applied Biosystems, Carlsbad, CA, USA). The relative values for
the target mRNAs were calculated using the 2−ΔΔCT method after
normalization to the Ct value for β-actin. The specific primers for
each mRNA are shown in Table III. The change in target mRNA
expression levels was presented as a fold change compared to the
control cells. To study the degradation rate of SF3B4 mRNA, 5 μg/ml
of actinomycin D (Sigma Aldrich, St. Louis, MO, USA) was added
to SNU-368 cells for indicated times before RNA was extracted.

Western blot analysis. Whole-cell proteins were extracted using lysis
buffer [50 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5%
sodium deoxycholate, 0.1% sodium dodecyl sulfate, pH 7.5] and
protease inhibitor cocktail (1:50 dilution; Roche, Penzberg,
Germany). Equal amounts of proteins were separated by 10% or
15% sodium dodecyl sulfate-polyacrylamide (SDS) gel
electrophoresis, and then electro-transferred onto the nitrocellulose
membranes (GE Healthcare, Little Chalfont, UK). After blocking in
5% skimmed milk in Tris-buffered saline with 0.1% Tween-20 for
1 h at room temperature, the membranes were then incubated with
the following primary antibodies: anti-SF3B4 (Abcam, Cambridge,
UK), anti-SRSF3 (Santa Cruz Biotechnology, CA, USA), anti-beta
actin (Sigma Aldrich), followed by incubation with the secondary
anti-bodies conjugated with horseradish peroxidase (Santa Cruz
Biotechnology). The immunoreactive bands were detected with the

ANTICANCER RESEARCH 40: 2033-2042 (2020)

2034

Table I. siRNA sequences used in this study.

Gene                                    Sequence (5’→3’)

Control                                 CCUACGCCACCAAUUUCGU
SRSF1                                  GCAGAUGAACUCGGGAUG
SRSF3                                  GAGUGGAACUGUCGAAUGG
SRSF6                                  CGUUCUAGAUCUCGUUCAATT
SRSF7                                  CGACGUCCCUUUGAUCCAATT
hnRNP A2B1                        GGAUUAUUUAAUAACAUUAT
hnRNP H                              GGUAUAUUGAAAUCUUUAAT
SFPQ                                   GAUAUCACGGAGGAUGAAU
NONO                                  GUCCAACGAACUGCUGGAA
SSB                                       GACUUCGUCAGAGGAGCAA
SF1                                       ACAACCUCAUCACAGAGAU



chemiluminescence detection system (Thermo Fisher Scientific).
Densitometric analysis of the bands was performed with ImageJ
version 1.51 (NIH, Bethesda, MD, USA).

Public data and clinical samples. The public data for SRSF3 and
SF3B4 mRNA levels in HCC and mouse liver samples were
obtained from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) database portal
(http://www.ncbi.nlm.nih.gov/geo/, Accession Number: GSE62043,
GSE35686, and GSE74656). Human HCC tissues were provided by
Catholic Central Biobank. All experimental protocols were approved
by the Ethics Committee at the Songeiu Campus of the Catholic
University of Korea.

Statistics. All of the experiments were performed at least three times
and the results are expressed as mean±standard error (SE). The
Student’s t-test was used to compare data between two groups. p-
Value of less than 0.05 was considered statistically significant.

Results

SRSF3 knockdown increases SF3B4 expression in SNU-368
HCC cells. SF3B4 plays an important role in tumorigenesis
especially in HCC (12, 13). It has recently been reported that
alteration in the expression of several splicing factors has been
implicated in the pathogenesis of chronic liver diseases as well
as hepatic cancer (15, 16). In the present study we, therefore,

investigated if SF3B4 expression in SNU-368 HCC cells is
regulated by other splicing factors or RNA-binding proteins,
which are associated with liver pathogenesis. The expression of
10 liver-specific splicing factors was efficiently suppressed
using specific siRNA, and SF3B4 expression was then
examined using quantitative mRNA analysis. Among 10 liver-
specific splicing factors, only the knockdown of SRSF3 notably
increased the expression of SF3B4 in SNU-368 cells (Figure
1A). Time-dependent analysis revealed that SRSF3 depletion
increased SF3B4 mRNA levels, as early as 9 h following
transfection (Figure 1B). To examine the possibility that an
alternative spliced form of SF3B4 is increased by SRSF3
depletion, we performed RT-PCR with the primer sets to cove
the sequence from exon 1 to exon 6 of SF3B4. As shown in
Figure 1C, the PCR product representing whole exons of
SF3B4 was increased following SRSF3 depletion, and no
significant difference in the length of PCR product of SF3B4
was observed between control cells and cells treated with
SRSF3 siRNA. In addition to mRNA levels, SRSF3 knockdown
significantly increased SF3B4 expression at the protein level by
1.5-fold as assessed by western blotting assay (Figure 1D).
Therefore, SRSF3 depletion-mediated accumulation of SF3B4
mRNA was not attributable to blocking in translational process.
Consistent with the results of RT-PCR, no truncated form of
SF3B4 protein was detected in western blots following SRSF3
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Table II. Primer sequences for qRT-PCR in this study.

Gene                                                    Forward (5’→3’)                                                                              Reverse (5’→3’)

SF3B4                                                   CTATTCCTTGGACCAATCAG                                                     GGACCAACATAAAAAAGAAA
SRSF3                                                   GCATCGTGATTCCTGTCCAT                                                     CGGAGTGGTCCATAGTAGCC
NONO                                                   ATATGCCACTCCGTGGAAAG                                                   TCCTCGATCATCCACAATGA
SSB                                                       GCAAATCCAAGGCAGAACTCA                                               GCATCAGTTGGGAAGCCTTTA
SFPQ                                                    TGTTGGGAATCTACCTGCTGA                                                 TTTGGCAATTTCAGCCAAAGC
SF1                                                       GTGAAAGAAGGGAAGGTTGGG                                              AGTCTCGATACCCTGCTTCAG
SRSF1                                                   GAGATGGCACTGGTGTCGTG                                                   TGCGACTCCTGCTGTTGCTTC
SRSF6                                                   GTGGATACAGCAGTCGG                                                           CTGGATCTGCTTCCAGAG
SRSF7                                                   GGTCTAGATCACATTCTCG                                                       GGTCTAGATCACATTCTCG
hnRNP A2B1                                        AGCTTTGAAACCACAGAAGAA                                               TTGATCTTTTGCTTGCAGGA
hnRNP H                                              GTGCAGTTTGCTTCACAGGA                                                   CCCCAGGTCTGTCATAAGGA
β-Actin                                                  AGTACTCCGTGTGGATCGGC                                                   GCTGATCCACATCTGCTGGA

Table III. PCR primer sequences for agarose gel electrophoresis.

Gene                                                    Forward (5’→3’)                                                                              Reverse (5’→3’)

GFP                                                     AGCTGACCCTGAAGTTCATCTG                                              GAACTCCAGCAGGACCATGT
GAPDH                                               CCATGTTCGTCATGGGTGTGAACCA                                      GCCAGTAGAGGCAGGGATGATGTTC
GFP-SF3B4                                          GCATGGACGAGCTGTACAAG                                                  CCGTATTGGCTTCCCATAGA
SF3B4*                                                 CTCCGAGCGGAATCAGGATG                                                   CCTCGAGGAAGGAAAATGTGAATTTA
SRSF3                                                  AGGAAAGCGGGAAGACTCAT                                                 GGACGGCTTGTGATTTCTCT

*Covering whole exons.
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Figure 1. SRSF3 knockdown increased SF3B4 expression in SNU-368 cells. (A) SNU-368 cells were treated with the indicated siRNAs (100 nM)
targeting the liver-specific splicing factors for 48 h. The suppression efficiency on the expression of each splicing factor (left) and the consequent
effect on mRNA expression levels of SF3B4 (right) were analyzed by qRT-PCR. Broken lines indicate 50% suppression of each mRNA (left) and
control SF3B4 levels (right). (B) SNU-368 cells treated with SRSF3 siRNA (siSRSF3, 50 nM) at the indicated times and the expression of SRSF3
(left) and SF3B4 mRNA (right) were analyzed by qRT-PCR. (C) After treatment with siSRSF3, the expression of SRSF3, SF3B4, and GAPDH mRNA
levels was analyzed by RT-PCR and 1.5% agarose electrophoresis (upper). The lower panel shows the schematic diagram of the exons of human
SF3B4 mRNA and the position of primers (arrows). (D) The protein levels of SRSF3 and SF3B4 were analyzed by western blot assay. β-actin served
as loading control (upper). Histogram summarized the quantitation of SRSF3 and SF3B4 proteins by densitometry (lower). Data are mean±S.E, of
three independent experiments. *p<0.05, **p<0.01.



knockdown. Thus, the function of SRSF3 as a splicing factor
does not seem to be involved in the regulation of SF3B4
expression.

SF3B4 did not affect SRSF3 expression. To investigate the
possibility of cross-regulation between SRSF3 and SF3B4,
SF3B4 expression was suppressed by siRNA and SRSF3
expression was determined at mRNA and protein levels.
Figure 2A shows that SF3B4 was effectively down-
regulated, but SRSF3 mRNA levels were not significantly
changed. Western blot analysis also indicated that SRSF3
expression was not affected by SF3B4 depletion. In addition
to SNU-368 cells, we also demonstrated that SRSF3
depletion notably increased SF3B4 expression both at
mRNA and protein levels in Hep3B cells, another HCC cell
line (17), whereas SF3B4 did not affect SRSF3 expression
(Figure 3A and B). These findings indicate that SRSF3 is an
upstream regulator to SF3B4 expression in HCC cells.

SRSF3 knockdown delayed the SF3B4 mRNA degradation
involving the coding region in SF3B4 mRNA. We then
investigated if SRSF3 depletion-induced accumulation of
SF3B4 mRNA is due to the stabilization of SF3B4 mRNA
using actinomycin D chase experiments. As shown in Figure
4A, the degradation rate of SF3B4 mRNA following

actinomycin D treatment is noticeably retarded by SRSF3
knockdown. In has been previously shown that SF3B4 is
regulated by miR-133b via 3’-UTR (13). Next, we prepared
a construct including only the coding region of SF3B4 in a
fusion of GFP in order to examine the requirement of UTR
of SF3B4 mRNA for SRSF3-mediated its own expression.
RT-PCR results performed with two pairs of primers,
targeting GFP and GFP-SF3B4, respectively, showed that
SRSF3 depletion clearly lead to an increase in the GFP-
SF3B4 mRNA expression, which includes only coding
region of SF3B4 (Figure 4B). Thus, the presence of 5’ or 3’-
UTR of SF3B4 is not involved in the SRSF3-mediated
regulation of SF3B4 expression.

Expression profiles of SRSF3 and SF3B4 in human HCC
tissues and in SRSF3-knockout mouse liver. The expression
pattern of SRSF3 and SF3B4 was analyzed using three GEO
public datasets. Figure 5A shows that the overall correlation
between SRSF3 and SF3B4 expression levels in the HCC
tissues from 100 HCC patients appeared weak (r2=0.0019).
Another GEO dataset of SRSF3-knockout mouse revealed
that following SRSF3 knockdown, SF3B4 mRNA increased
to about 2.3-fold compared to wild-type mice (Figure 5B).
Moreover, the paired analysis between normal and HCC
tissues from five patients revealed that SF3B4 mRNA levels
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Figure 2. SF3B4 knockdown does not alter the expression of SRSF3 in SNU-368 cells. SNU-368 cells were transfected with SF3B4 siRNA (siSF3B4)
or control siRNA (100 nM, 48 h). (A) Relative mRNA levels for SF3B4 and SRSF3 were examined by qRT-PCR. The data represent mean±S.E from
three independent experiments. (B) SRSF3 and SF3B4 expression was detected by western blot analysis (upper). Protein levels were determined by
densitometry and expressed as fold change compared to control. Data are mean±S.E., of three independent experiments. *p<0.05.



were increased and SRSF3 mRNA levels were decreased in
cancer tissues in all the patients (Figure 5C). We also
examined the SRSF3 and SF3B4 mRNA levels in HCC
tissues from 10 patients by qRT-PCR. As shown in Figure
5D, of these patients, five (P1-P5) exhibited an inverse
relationship in SRSF3 and SF3B4 mRNA levels, but the
other five (P6-P10) showed similar expression levels of
SRSF3 and SF3B4. Collectively, these in vivo data indicate
that SRSF3 is an important regulator, but not the only factor
for SF3B4 expression in HCC. 

Discussion 

The oncogenic role of SF3B4 in the development of HCC
has been suggested by previous studies using extensive meta-
analysis as well as integrative analysis of multistage HCC
tissues (12, 13). However, limited information exists on how
SF3B4 expression is regulated in HCC cells. In the present
study, we demonstrated that SRSF3 depletion resulted in a
significant increase in SF3B4 mRNA levels as well as in
SF3B4 protein levels in SNU-368 and Hep3B HCC cell
lines. Public data and clinical data suggest that SRSF3 and
SF3B4 are inversely correlated in HCC, although the
association is not strong. Thus, our results suggest that
SRSF3 is a negative regulator for determining SF3B4 levels
in HCC cells. 

SRSF3, also called SRp20, is the smallest member of the
SR protein family (18). In addition to the role in the regulation
of splicing, SRSF3 has been involved in various RNA
metabolism including transcription, polyadenylation, RNA
export, and translation (19-23). In the present study, SF3B4
protein expression was shown to be increased by SRSF3
depletion (Figure 1D), excluding the possibility for
involvement of SRSF3 in the translation inhibition of SF3B4.
Actinomycin D chase experiments revealed that SRSF3
depletion delayed the degradation of SF3B4 mRNA in SNU-
368 cells. Moreover, the mRNA from GFP-SF3B4 construct,
including only coding region, also increased following SRSF3
knockdown (Figure 4). Thus, SRSF3-mediated regulation of
SF3B4 mRNA is attributed to the regulation on the
degradation rate rather than transcription rate of SF3B4
mRNA. In addition, this mechanism is different from that by
miR-133b, which targets 3’-UTR of SF3B4 (13). Although the
involvement of SRSF3 in mRNA decay has not been widely
known, Mure et al. previously reported that SRSF3 makes a
specific contribution to the destabilization of intronless viral
mRNA decays through recruiting RNA exosome (24).
Therefore, in HCC, SF3B4 might be a possible target for
SRSF3 to link RNA exosome-mediated degradation, but the
specific nuclear milieu in which SF3B4 mRNA should be
degraded remains to be defined. 

Recently, pro-oncogenic activity of SRSF3 has been
proposed on the basis of its increased expression in multiple

human cancers (25-28), and its ability to induce tumor
formation in nude mice when overexpressed in rat
fibroblasts, via promoting progression of the G2/M transition
(28). Moreover, down-regulation of SRSF3 was shown to
lead to G1 arrest and apoptosis, promotion of senescence,
retardation of migratory activity and impairment of DNA
repair in various cancer cell lines (29-34). These findings
imply that SRSF3 promotes tumor progression and gain of
malignant phenotypes. Considering the potential role of
SF3B4 as an oncogenic driver of HCC in previous studies
(12, 13), our results, which show the negative regulatory role
of SRSF3 for SF3B4 expression, suggest that SRSF3
depletion may be rather favorable for tumor phenotypes of
HCC, which is inconsistent with previous studies for other
types of cancer cells. However, the specific role of SRSF3
in preventing chronic liver pathology has been reported by
recent studies using hepatocyte-specific Srsf3-knockout
(SRSF HKO) mice. The SRSF3 HKO mice at 1 month of
age revealed impaired hepatocyte maturation with alteration
in glucose and lipid homeostasis, indicating that SRSF3 is
required for the morphological and functional
differentiation of hepatocytes (35). Subsequently, the same
group reported that, with aging, SRSF3 HKO mice develop
spontaneous HCC following chronic liver diseases with
progressive steatosis and fibrosis (36). These data indicate
that SRSF3 is critical for the normal physiology of liver
and functional loss of SRSF3 ultimately leads to the
development of HCC. Wang et al. also demonstrated the
protective role of SRSF3 in the prevention of HCC,
showing that 5-year survival rate of HCC patients was
higher in the SRSF3-high group than in the SRSF3-low
group (16). Thus, our results, which show the negative
regulatory function of SRSF3 in SF3B4 expression, might
reinforce the protective role played by SRSF3 in the
progression of HCC. Furthermore, accumulation of SF3B4
could also contribute to the development of HCC driven by
SRSF3 knockout in addition to the previously proposed
events, such as the abnormal splicing of epithelial-
mesenchymal transition genes and increased expression of
insulin-like growth factor and c-myc (16). 

Even though we demonstrated that SF3B4 expression is
specifically regulated by SRSF3 in SNU-368 HCC cells, the
association of SRSF3 and SF3B4 mRNA levels was not
strong in HCC tissue samples in public datasets as well as in
our study (Figure 5). A possible explanation for this
discrepancy is that the association between them might be
dependent on clinical stages, early or late, as well as on the
presence of other factors that determine SF3B4 expression.
In addition, it might be due to the auto-regulatory function
of SRSF3, which means that SRSF3 protein levels do not
always correlate with SRSF3 mRNA levels (37). In line with
this, the functional loss of SRSF3 in human liver diseases
such as non-alcoholic fatty liver and steatohepatitis or
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cirrhosis as well as in mouse models, is attributable to the
neddylation-dependent proteasomal degradation, which
occurs independently of mRNA expression (38).  

In summary, our results indicate that SRSF3 is a novel
regulator for SF3B4 mRNA levels in HCC cells, suggesting
the possibility that inhibition of SRSF3 degradation is an
important strategy for preventing the progression of HCC.
The results provide an important link between the opposite
roles played by SRSF3 and SF3B4 in the progression of
HCC, i.e., protective and oncogenic function, respectively. 
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Figure 4. SRSF3 regulates SF3B4 mRNA stability involving the coding
region of SF3B4. (A) Degradation rate of SF3B4 mRNA in SRSF3-
depleted SNU-368 cells was measured by actinomycin D chase assay.
SF3B4 mRNA levels were quantified by qRT-PCR at the indicated times
after treatment actinomycin D (5.0 μg/ml) and the remaining levels were
presented as percentage of control at 0 h time. Data are mean±S.E, of
three independent experiments. *p<0.05, **p<0.01 vs. the value of
control at the same time. (B) Schematic diagram of GFP and GFP-SF3B4
fusion constructs (upper). The mRNA levels from GFP-SF3B4 fusion
construct including full length of coding region of SF3B4 was analyzed
using RT-PCR and visualized by 1.5% agarose electrophoresis (lower).

Figure 3. Effect of SRSF3 or SF3B4 knockdown on the expression of
SF3B4 or SRSF3, respectively in Hep3B cells. Hep3B cells were
transfected with control, SRSF3 or SF3B4 siRNA (50 nM, 48 h). (A)
SRSF3 and SF3B4 levels mRNA were analyzed with qRT-PCR and
expressed as fold change compared to control. Data are mean±S.E, of
three independent experiments. (B) The expression of SRSF3 and SF3B4
were detected by western blot analysis. *p<0.05, **p<0.01.
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Figure 5. In vivo profile of SRSF3 and SF3B4 expression in human HCC tissues and SRSF3-knockout mice.  (A) The association of SRSF3 and
SF3B4 levels was analyzed in HCC patients by scatter plotting (n=100). (B) SF3B4 mRNA levels in the liver from wild-type (WT) and SRSF3-
knockout (KO) mice. (C) The paired expression of SRSF3 and SF3B4 mRNA levels in adjacent normal (N) tissues and HCC (T) tissues (n=5),
*p<0.05. (D) The relative expression levels of SRSF3 and SF3B4 mRNAs in 10 HCC patients (P: patient). The SRSF3 or SF3B4 mRNA levels in
SNU-368 cells were designated as 1.0.
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