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Abstract. Although modern anticancer drugs have made
great progress in disease treatment, the occurrence of drug
resistance often leads to treatment failure. Understanding the
molecular basis of resistance mechanisms is important to
and  develop for
circumvention. In this context, subcellular vesicles released
by cancer cells have been identified to mediate cellular
resistance by various mechanisms. Such extracellular
vesicles (EVs) can be subdivided into exosomes and
ectosomes based on their size, cargo, and mechanism of
formation. The unveiling of EV-targeted treatment options
depends on a sound knowledge on EV biology including
biogenesis, release, targeting to recipient cells, and uptake.
In this review, we focus on EVs as mediators of cancer drug
resistance with a particular emphasis on the distinction of
exosomes and ectosomes.

determine  prognosis strategies

With the development of new therapeutic approaches, such
as targeting signaling pathways by inhibitors and specific
antibodies, modern cancer treatment has achieved
considerably higher remission rates and better treatment
tolerance for patients than a decade ago (1). Nevertheless, the
development of drug resistance with subsequent treatment
failure remains a major problem and we are still learning the
mechanisms underlying cancer cell resistance (2). In this
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context, subcellular vesicles released by cancer cells are
newly identified candidates believed to mediate resistance.
Several mechanisms, such as drug export/sequestration,
horizontal transfer of membrane-bound proteins, transfer of
genetic information, and neutralization of antibody-based
drugs, have been identified so far. Extracellular vesicles
(EVs) differ in size and mechanism of formation, as well as
in the cargo they carry (3). These differences may explain
why certain subpopulations of EVs are linked to distinct drug
resistance mechanisms. Herein, we give an overview of the
current knowledge regarding EVs as mediators of cancer drug
resistance.

Cellular Resistance Mechanisms

Based on in-depth molecular exploration of cancer cell
biology, new strategies of cancer treatment have been
developed in the past decade. Use of checkpoint inhibitors
and immunotherapeutic approaches in particular, have
resulted in considerably higher remission rates and enabled
treatment of formerly resistant cancer (4). The downside of
these treatment principles is that the more specific a drug is
in blocking a particular pathway, the more likely is the
development of a cellular resistance mechanism during
therapy that circumvents this pathway blockage.

In principle, there are two distinct resistance mechanisms,
namely inherent and acquired. Whereas the first develops
during cancer genesis, acquired drug resistance arises under
the pressure of treatment with specific anticancer drugs.
Besides cancer cell alterations, a number of factors such as
pharmacokinetic mechanisms, under-dosage based on
clinical considerations, and epigenetic changes may
contribute to the clinical phenomenon of drug resistance, and
subsequently to treatment failure (5, 6). In addition,
especially in modern immunotherapeutic approaches, the
tumor microenvironment as a crucial element in treatment
success has to be taken into account (7, 8).
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Biogenesis of EVs: Exosomes and Ectosomes

EVs are found in subsets that differ in size, cargo, and
mechanism of formation. Exosomes are small membrane
vesicles (30-100 nm) that form intracellularly within multi-
vesicular bodies (MVB), and are released after fusion with
the plasma membrane. Larger ectosomes (50-1000 nm), on
the other hand, directly arise by outward budding and fission
of the plasma membrane (9).

Mechanistically, the machinery of the endosomal-sorting
complex required for transport (ESCRT) is reportedly
involved in exosome generation. This system acts as a driver
of membrane shaping and scission, and hence is involved in
the formation of multi vesicular bodies and intraluminal
vesicles (10). Inactivation of the ESCRT affects the
efficiency of exosome secretion as well as the composition
of the secreted vesicles (11). In addition, exosomes can also
be formed in an ESCRT-independent manner involving the
generation of ceramide (12, 13), or proteins of the
tetraspanin family (such as CD63, CD81, CD82, CD9),
which participate in imposing a spontaneous negative
curvature on the membranes and in endosomal sorting,
respectively (14-17). Since the endosomal-sorting machinery
is recognized as the major regulator of exosome
composition, agents or activities affecting these processes
should be considered when investigating exosome biogenesis
as well as manipulation.

The biogenesis of ectosomes, on the other hand, requires
some rearrangements within the plasma membrane.
Dependent on the intracellular Cat? concentration,
activation of enzymatic machinery such as translocases
(flippases and floppases), scramblases, and calpain
facilitate migration of phosphatidylserine, normally
confined to the inner cytoplasmic membrane leaflet, across
the lipid bilayer to the cell surface. This leads to bending
of the membrane, restructuring of the cytoskeleton, and
finally results in membrane budding (18, 19). However,
ectosome formation can occur even when membrane lipid
asymmetry is maintained (20, 21). In this regard, it has
been shown that the presence of cholesterol and regulators
of cytoskeletal elements are also essential for ectosome
generation (22-24).

Notably, although the generation of exosomes and
ectosomes occurs at distinct sites within a cell, both EV
populations also share intracellular mechanisms and sorting
machinery in the process of their biogenesis, which makes it
difficult to distinguish them in some cases (25).

Release of EVs. Especially under inflammatory conditions, EVs
can be released into the extracellular space by all cells. Initially,
EV secretion was seen as a cellular waste-disposal process (26)
but today it is generally accepted as a directed and highly
regulated process (3, 25, 27). The release of exosomes is a
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complex procedure that involves the sorting of cargoes into
MYVBs and further into intraluminal vesicles. Moreover, MVBs
need to be prevented from degradation, targeted to the plasma
membrane, and primed for secretion (9). All these steps
probably require additional regulatory checkpoints, which
likely results in a time difference between the formation and
the release of exosomes compared to ectosomes. The release
of ectosomes, on the other hand, seems to be the direct
consequence of membrane budding and fission. This process
requires the interaction of actin and myosin with subsequent
ATP-dependent contraction (24). Of note, ESCRT-dependent
release involving tumor susceptibility gene 101 (7SG10I) and
vacuolar protein sorting 4 (VPS4) ATPase has been reported
not only for exosomes but also for ectosomes (28).
Furthermore, it is known that an increased Ca* concentration
boosts the release of ectosomes from cells (29).

Targeting to recipient cells. Once released into the extracellular
space, EV-mediated intercellular communication requires
membrane docking, activation of surface receptors and
signaling, endocytosis of EVs, or fusion with the membrane of
the recipient cell. Specificity for the recipient cell is determined
by definite interactions between surface structures of EVs and
receptors at the plasma membrane of the cell. Examples of
such structures are tetraspanins (30), integrins (31), lipids (32),
heparan sulfate proteoglycans (33, 34), and extracellular matrix
components (35, 36).

Cellular uptake of EVs. To transfer a specific piece of
information, EVs interact with, or can be taken up by
recipient cells via multiple mechanisms such as surface
binding and subsequent fusion, macropinocytosis,
phagocytosis, and different endocytic mechanisms that are
either clathrin-dependent or function via clathrin-
independent pathways such as caveolae or lipid rafts (9).

The specific composition of EVs can be directly liked to
their fate. For example, amyloid precursor protein containing
exosomes from neuroblastoma cells were specifically
endocytosed by neurons (37). Furthermore, on throphoblast-
derived exosomes, syncytin 1 acts as an ‘eat me signal’,
promoting their uptake (38). Notably, the dynamics of
interaction is also dependent on membrane structures on the
recipient cell. It has been reported that filopodia on target
cells mediate the transfer of EVs towards endocytic hot spots
(39). In particular, lipid rafts on the target cell have been
shown to contribute to EV internalization, as their disruption
resulted in reduced uptake of EVs (40). Once taken up, EVs
are collected into MVBs following the pathway of
endocytosis, which leads to vesicle degradation upon fusion
with lysosomes in most cases (41). Interestingly, through
back fusion with the MVB membrane, internalized vesicles
can escape from digestion, and thus can release their cargo
into the cytoplasm of the recipient cell (42).
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Signal transmission by EVs. Docking of EVs at the plasma
membrane can result in the activation of surface receptors,
signaling, and the onset of functional responses in target
cells. For example, antigen-presenting EVs have been shown
to be potent inducers of specific antigenic responses in T-
cells (43, 44). Furthermore, fibronectin detected on tumor-
derived EVs promoted their anchorage-independent growth
after binding to integrin on non-transformed fibroblasts (45).
Besides receptor activation at the surface, internalized EVs
can activate responses through the delivery of their cargo.
Similarly to antigens, protein cargo can be processed in the
endocytic compartment and used for antigen presentation
involving EVs in the process of immune regulation (31, 46).
When EVs directly fuse with the plasma membrane of the
target cell, they release their intraluminal content, such as
miRNA or mRNA, into the cytoplasm and can mediate gene
expression (47, 48). Upon membrane fusion, EVs also
transfer membrane lipids (such as eicosanoids and fatty
acids) and proteins [such as epidermal growth factor receptor
variant III (EGFRVIII)], thereby contributing to the
regulation of bioactive lipid species (49) and to a horizontal
propagation of oncogenes and their associated transforming
phenotype, respectively (18).

Nomenclature of EVs

To date (May 2019), consensus has not yet emerged on
specific markers of EV subtypes. Therefore, the International
Society for Extracellular Vesicles has suggested an EV
nomenclature that refers to physical characteristics,
biochemical composition, or descriptions of conditions or
cellular origin (50). However, EV subtypes have overlapping
sizes, which impairs methods for EV isolation based solely
on this parameter. Reports on biological effects of EV
subtypes have to be critically viewed in light of the method
used for purification. For example, an immediate
ultracentrifugation of body fluids or cell culture supernatants
at 100,000 x g would pelletize not only small exosomes but
also larger ectosomes, resulting in a mixture of both
populations so that observed biological effects cannot be
clearly assigned to one or the other set of EVs. Due to the
difficulties of standardized EV subgroup distinction, we refer
to exosomes, ectosomes, microparticles/microvesicles and
oncosomes as EVs. Apoptotic bodies, which are a special
form of EV released by dying cells, are not considered in this
review.

EV-linked Drug Resistance Mechanisms

Since EVs comprise all biomolecular categories including
proteins, lipids and nucleic acids (3), the development of
drug resistance via EVs is linked to mechanisms involving
such cargo.

EV-mediated drug export or sequestration. The EV-mediated
export or sequestration of cytotoxic drugs reduces their
effective concentration in target cells. The major cellular
mechanism using this principle is the overexpression of
membrane transporters that reduce intracellular drug levels
to sublethal concentrations (51). As early as 2003, a positive
correlation between genes involved in EV shedding and drug
resistance in cancer cell lines was described (52). In the
same study, it was found that breast cancer cells were able
to export the chemotherapeutic agent doxorubicin into the
extracellular medium via vesicle formation (52). Similarly,
resistant ovarian carcinoma cells (53) as well as melanoma
cells (54) were able to deposit cisplatin within EVs. On the
molecular level, EVs from resistant cells overexpressed
proteins involved in detoxification of cisplatin such as
multidrug resistance-associated protein 2 (MRP2), as well as
ATP7A and ATP7B transporter proteins (53). Furthermore,
in a breast cancer model, the administration of mitoxantrone
led to rapid sequestration of the drug in EV-like structures at
the plasma membrane, and this was linked to the
overexpression of the multidrug efflux transporter ABCG2
[also known as breast cancer resistance protein (BCRP)] in
these cells (55).

EV-mediated horizontal transfer of membrane-bound
proteins. As already mentioned, tumor cells can achieve
resistance through the delivery of membrane-bound drug
efflux pumps to sensitive cells. Among such transporters,
multi-drug resistance-associated P-glycoprotein (P-gp, MDR-
1 or ABCB1) is one of the well-studied ones. Not only were
resistant variants of cell lines found to express ABCB1, but
EVs from the resistant variants also carried ABCB1 and,
therefore, may have the ability to confer resistance to
docetaxel at least in part by the EV-mediated transfer of
ABCB1 (56). In addition, the phosphoinositide 3-kinase
(PI3K)-AKT signaling pathway may contribute to the
regulation of the subcellular localization of ABCG2 (57) and
ABCA3 (58). It has been postulated that the PI3K-AKT
signaling pathway may also play a role in the exclusive
sorting of ABCG2 to the membrane of EVs in multidrug
resistance in breast cancer cells (MCF-7/MR) (56). The
unique localization of ABCG2 allowed for efficient pumping
and hence concentration of multiple cytotoxic agents of
distinct structure and mode of action, as well as non-toxic
compounds including riboflavin (59), from the cytoplasm to
the lumen of EVs. Importantly, blockade of the AKT
signaling axis markedly increased the cytoplasmic
localization of ABCG2, resulting in reduced drug
accumulation within EVs and subsequent reversal of multi
drug resistance (56).

Of note, similar transfer mechanisms have been reported
for models of ovarian cancer (60), leukemia (61), and
osteosarcoma (62).
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EV-mediated transfer of genetic information relevant for
resistance. Surrounded by a membrane, specific bioactive
cargoes, such as proteins and nucleic acids, are conserved in
EVs and thus, protected from degradation. In recipient cells,
such cargoes may alter cell cycle control and apoptotic
programs favoring tumor cell survival and growth. For
instance, different microRNAs (miR) have been found in
EVs from neuroblastoma cell lines. Among those, miR-21
was the top represented. When EVs were co-cultured with
monocytes, cells acquired miR-21 very rapidly. Monocytes
that acquired miR-21 transcribed oncomiR-155 and
subsequently released oncomiR-155-containing EVs that
were internalized by neuroblastoma cells, resulting in an
increased resistance to the drug cisplatin (63). The horizontal
transfer of EVs that contain anticancer drug resistance-
promoting miRs has been shown for a variety of cancer types
[e.g. lung (64, 65), breast (66, 67), pancreatic (68), colonic
(69), prostatic (70), melanoma (71), glioblastoma (72), and
leukemia (73, 74)]. Of note, an enhanced secretion of tumor-
suppressor miRs via EVs upon exposure to chemotherapeutic
agents can also serve as disposal mechanism, leading to
reduced drug sensitivity of tumor cells (69).

EV-mediated neutralization of antibody-based drugs. Since
EVs share features of antigenicity with the cells of their
origin, the presence of antigens targeted by immunotherapy
acts as a sink for antibody-based drugs. In B-cell lymphoma
cell lines and primary lymphoma cell preparations, the
expression of CD20 on B-cells was indeed mirrored by EVs.
CD20 on EVs bound the therapeutic antibody to CD20
rituximab and effectively depleted the soluble antibody from
antibody suspensions. Moreover, in patients who had received
the antibody for therapeutic purposes, approximately half of
the plasma rituximab was fixed to EVs 3 h after the end of
the infusion (58). In addition, in different breast cancer
models, human epidermal growth factor receptor 2* (HER2™")
EVs were found to play a role in modulating resistance to the
HER2 antibody trastuzumab. Either secreted by HER2*
tumor cells in vitro or present in the serum of patients, EVs
were found to bind to trastuzumab, and block its activity in
vitro (75). More recently, the immune checkpoint ligand
programmed cell death 1 ligand 1 (PD-L1) was detected on
EVs from patients with melanoma (76). By capturing
immunotherapeutic antibodies to PD-L1, EVs drive the drug
away from the tumor and thereby break down T-cell function
and antitumor immunity.

Possible Therapeutic Options Targeting
EV-mediated Resistance Mechanisms

Using EV-inhibiting agents may sensitize cancer cells to

chemotherapeutic agents and reduce cancer growth in
patients. To discuss possible therapeutic options, it would be
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desirable to distinguish between exosome and ectosome-
related resistance mechanisms and to consider the levels of
EV generation, release and interaction with the recipient cell.
As we are still at the beginning of our understanding of EV
biology, most of the targeting levels are still hypothetical.

Intracellular cargo. Tetraspanins affect the intracellular
routing of cargos such as integrins towards MVBs,
suggesting that functional impairment would affect different
steps of exosome generation (77).

EV release. It was shown that cannabidiol, a phytocannabinoid
derived from Cannabis sativa, acts as a potent inhibitor of EV
release in vitro (78). Furthermore, chloramidine and
bisindolylmaleimide-I have been shown to inhibit EV release
without affecting cell viability. Apoptosis mediated by the
chemotherapy drug 5-fluorouracil (5-FU) was significantly
enhanced in the presence of both inhibitors (79).

EV docking. We still know too little about the structural
prerequisites for EVs to find and dock on recipient cells. It
would be interesting to develop targeted drugs that
specifically inhibit the binding of EVs.

EV uptake. It has been shown that depletion of cholesterol
disrupts lipid rafts on the surface of the recipient cell and
considerably reduces the uptake of EVs (40).

Therapeutic removal of EVs. Tumor-derived EVs are involved
in tolerating and modulating their environment, promoting
metastasis and angiogenesis, immunosuppression and drug
resistance (80). Removal of such mediators from patients
could improve anticancer therapy. As early as 1989, when EVs
had not even been identified, removal of low-molecular-
weight proteins reportedly resulted in tumor shrinkage (81).

The recently developed hemofiltration technology of
Adaptive Dialysis-like Affinity Platform Technology
(ADAPT™ ; Aethlon Medical, Inc., San Diego, California)
separates blood components <200 nm. With target antigens
interacting with immobilized agents of the affinity matrix,
such as monoclonal antibodies, lectins and aptamers, disease-
related components can be removed from the entire
circulatory system without loss of essential blood
components (82). By capturing tumor-secreted exosomes that
suppress the immune system and thus contribute to drug
resistance in cancer, the device enables immune-based
therapy with improved clinical outcome without the danger
of increasing drug toxicity or interaction risks.

Summary and Concluding Remarks

For more than a decade, the involvement of EVs in facilitating
anticancer drug resistance via several different mechanisms has
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Figure 1. The role of extracellular vesicles (EVs) in spreading anticancer drug resistance. EVs comprise a heterogeneous population of membrane vesicles
of various origins. Being either exocytosed from intracellular multivesicular body (MVBs) storage upon fusion with the plasma membrane, or directly
budded from the cell surface, exosomes differ from ectosomes. Both populations are secreted under physiological as well as pathophysiological conditions,
such as cancer genesis and the development of anticancer drug resistance. Interestingly, it has been revealed that EVs are involved not only in the
desensitization of cancer cells upon treatment with chemotherapeutic drugs (i. Drug export) or cancer immunotherapeutic agents (ii. Shielding cancer
cells from cancer immunotherapy), but also in the spread of anticancer drug resistance from resistant to sensitive cancer cells through numerous
mechanisms (e.g. iii. Transfer of drug efflux pumps; iv. Transfer of genetic information). Discovery of EV-targeted treatment options strongly depends on
a sound knowledge about EV biology including biogenesis, release, targeting to recipient cells, and uptake. ABCBI: ATP-binding cassette transporter,
sub-family B member 1 (also known as P-glycoprotein); CBD: cannabidiol; miRNA: microRNA; PD-LI1: programmed cell death 1 ligand 1.
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been demonstrated (Figure 1). However, since specific markers
for a clear distinction of EV subtypes have not yet been defined,
mechanisms of anticancer drug resistance cannot be linked to
any subtype. According to a worldwide survey by the
International Society for Extracellular Vesicles in 2016,
sequential ultracentrifugation was the most commonly used
method for primary EV separation and concentration (83).
Others and we have used this method, with small adaptations,
to successfully separate larger from smaller EVs, showing
differences in content and functionality of those subpopulations
(84-87). In particular, Crescitelli and colleagues have shown that
such EV subpopulations differ in their RNA content. While
smaller RNAs without prominent ribosomal RNA peaks were
detectable in small vesicles (exosomes), larger vesicles
(ectosomes) contained little or no RNA, at least in an in vitro
system (84). Furthermore, we have shown that larger vesicles
(ectosomes) carry higher amounts of membrane-bound tissue
factor, a potent activator of the extrinsic coagulation cascade,
as compared to small vesicles (exosomes) (85). In light of the
differences in EV biogenesis, either from the inside of a cell or
budding outward from the plasma membrane, these findings
suggest the following hypotheses: miRNA-containing exosomes
of small size are the drivers of resistance development via
exchange of genetic information; and shedding of larger
ectosomes facilitates detoxification of drug-loaded cancer cells
and the horizontal transfer of membrane-bound proteins. For the
future, it will be of major importance to re-evaluate previous
findings on the biological effects of EV subpopulations based
on a standardized protocol of EV isolation and distinction. This
is especially important for the newer therapeutic approaches that
involve selective inhibition of specific signaling pathways.
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