
Abstract. Background: Glioma stem cells (GSCs) play
important roles in the tumorigenesis of glioblastoma multiforme
(GBM). Using a novel cellular bioinformatics pipeline, we
aimed to characterize the differences in gene-expression profiles
among GSCs, U251 (glioma cell line), and a human GBM
tissue sample. Materials and Methods: Total RNA was extracted
from GSCs, U251 and GBM and microarray analysis was
performed; the data were then applied to the bioinformatics
pipeline consisting of a principal component analysis (PCA)
with factor loadings, an intracellular pathway analysis, and an
immunopathway analysis. Results: The PCA clearly
distinguished the three groups. The factor loadings of the PCA
suggested that v-myc avian myelocytomatosis viral oncogene
neuroblastoma derived homolog (MYCN), dipeptidyl-peptidase
4 (DPP4), and macrophage migration-inhibitory factor (MIF)
contribute to the stemness of GSCs. The intracellular pathway
and immunopathway analyses provided relevant information
about the functions of representative genes in GSCs.
Conclusion: The newly-developed cellular bioinformatics
pipeline was a useful method to clarify the similarities and
differences among samples.

Glioblastoma multiforme (GBM) is an aggressive malignant
brain tumor conferring a mean progression-free survival of 7
months and a mean overall survival of 15 months, even with
multimodal treatment including surgery, temozolomide-based
chemotherapy, and radiation therapy (1). Its poor prognosis
is attributable to limited surgical resection due to massive

infiltration into the brain parenchyma, drug resistance due to
genetic or epigenetic alterations, and radiation resistance (2).
Consequently, recurrence inevitably occurs. Recent studies
have identified glioma stem cells (GSCs) in glioma tissues
and have suggested their important roles in GBM (3). For
instance, GSCs exhibit pluripotency, which is responsible for
the heterogeneity and invasive pathogenicity of GBM (4).
They also express multidrug transporters at high levels, which
explains the drug resistance of glioma (5). Moreover, GSCs
possess DNA repair ability, which induces radiation resistance
(6). In addition, because they possess the ability to self-renew,
they form microspheres in vitro and tumor masses in vivo that
recapitulate the original tumors (7, 8). Based on these
findings, GSCs have drawn attention as a new therapeutic
target for GBM (9).

Multiomics technologies, such as genomics, proteomics
and metabolomics, have recently been applied in the field of
cancer research, including brain tumor research (10). These
molecular biological techniques have identified the genetic
and epigenetic alterations in GBM, such as methylation of
the O6-methylguanine methyltransferase (MGMT) promotor
(11) and isocitrate dehydrogenase (IDH) mutations (12), both
of which are considered prognostic markers of GBM. In
particular, the IDH mutation status has been integrated into
the most recent World Health Organization Classification of
Tumors of the Central Nervous System (13). Furthermore,
the Cancer Genome Atlas project has reported that the
receptor tyrosine kinase resistance to audiogenic seizures
(RAS)–phosphatidylinositol 3-kinase (PI3K) pathway, p53
pathway, and retinoblastoma protein pathway are important
signaling pathways in GBM (14). Molecular biological
techniques have elucidated other important characteristics of
GBM, including histone modifications involved in
transcriptomic changes induced by hypoxic stress (15),
microRNAs that further regulate gene expression (16, 17),
and altered immune responses, such as tumor-associated
microglia/macrophages involved in tumor proliferation,
survival, and migration (18). However, these techniques have
not yet been well-organized as transomics technologies.
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In GSC research, culture techniques have been developed
to isolate and maintain GSCs from GBM tissues. However,
these conventional GSCs are unable to proliferate or survive
after several passages. In this regard, several GSC lines have
been established recently (19, 20). These GSC lines have
resolved the issues associated with conventional GSCs.
Nevertheless, differences in gene-expression profiles
between these GSC lines and fresh human GBM tissues have
not been evaluated. To this end, we established a novel
cellular bioinformatics pipeline consisting of a principal
component analysis (PCA) with factor loading, intracellular
pathway analysis, and immunological pathway analysis using
microarray data. With this pipeline, we comprehensively
evaluated the differences in gene-expression profiles among
GSCs, the glioma cell line U251, and GBM sample, and
elucidated factors that are specifically associated with GSCs.

Materials and Methods 

Patients and cell lines. This study was approved by the Ethics
Committee of Hyogo College of Medicine (Approval number: 363).
Upon the acquisition of written-informed consent from a patient
with GBM, a GBM tissue sample was obtained by direct tumor
resection at Hyogo College of Medicine. The patient was a 54-year-
old female. Her integrated molecular pathological diagnosis was
glioblastoma, IDH wild-type. Human GSC lines X01 and X03 were
kindly provided by Dr. Akio Soeda at Gifu University (20, 21). The
human GBM cell line U251 was purchased from the Japanese
Collection of Research Bioresources Cell Bank (Osaka, Japan).

Cell cultures. Tumor sphere cultures were prepared as described
previously (20, 21), with some modifications, in Dulbecco’s modified
Eagle’s medium-F12 (Gibco-Invitrogen, La Jolla, CA, USA)
containing penicillin G, streptomycin sulfate, B-27 (Gibco-
Invitrogen), recombinant human epidermal growth factor (20 ng/ml;
R&D Systems, Minneapolis, MN, USA), and recombinant human
fibroblast growth factor 2 (20 ng/ml; R&D Systems). Cells were
cultured in Heracell CO2 incubators (Thermo Fisher Scientific,
Asheville, NC, USA) at 37˚C, ≥95% relative humidity, and 5% CO2
under 20% oxygen conditions. The human glioma cell line U251 was
maintained in Dulbecco’s modified Eagle’s medium (Sigma–Aldrich,
Milan, Italy) containing 10% fetal bovine serum, 1% penicillin G, and
streptomycin sulfate. Cells were grown at 37˚C in 5% CO2 in
humidified atmospheric conditions for 6 days and were enzymatically
dissociated using 0.25% trypsin and 0.02% EDTA solution.

RNA extraction and oligonucleotide microarray. The procedure used
in this study has been reported previously (22). Briefly, total RNA
was extracted from the GSC and U251 lines, and the GBM tissue
sample and purified using Qiagen RNeasy Mini Kit (QIAGEN N.V.,
Venlo, the Netherlands) according to the manufacturer’s instructions.
Biotinylated cRNA was synthesized from 250 ng of total RNA using
GeneChip 3’ IVT PLUS Reagent Kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. The biotinylated cRNA
yield was determined using the NanoDrop 2000 Spectrophotometer
(Thermo Fisher Scientific). Subsequently, 15 μg of cRNA was
hybridized for 16 h at 45˚C on the GeneChip Human Genome U133
Plus 2.0 Array (Thermo Fisher Scientific). The array was washed,

stained with phycoerythrin-labeled streptavidin using the GeneChip
Fluidics Station 450 (Thermo Fisher Scientific), and scanned using
GeneChip Scanner 3000 7G (Thermo Fisher Scientific). A single
array analysis was conducted using Microarray Suite version 5.0
(Thermo Fisher Scientific) with the Thermo Fisher Scientific default
settings and the global scaling method to normalize the intensities.
The trimmed mean target intensity of each array was arbitrarily set
to 500. Simultaneously, the microarray data was deposited in Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/); with
GEO accession number GSE124145.

Bioinformatics analyses. The NetAffx Library Files of the Human
Genome U133 Plus 2.0 Array and the Transcriptome Analysis
Console (TAC ver. 4.0; Thermo Fisher Scientific) were used to
quantify the signal intensity of each gene. To achieve dimensional
compression of the microarray data and evaluate the differences
among samples, a principal component analysis (PCA) was
performed using R ver. 3.4.1 with the “prcomp” package (23, 24).
Factor loading for each principal component was used to rank genes
that contributed to principal component values. 

WikiPathways (http://www.wikipathways.org) is a biology
community-maintained web service that is used to visualize
biological pathways (25). Each pathway has its own page that
contains diagrams, descriptions, references, version histories,
component genes, protein lists, etc. In order to explore the
differences in biological pathways between the GSCs and GBM,
TAC was used to evaluate the statistically enrichment of
differentially expressed genes in pathways.

In order to predict immune responses in each sample based on the
gene expression data, ImmQuant was used (26). ImmQuant is freely
available online (http://csgi.tau.ac.il/ImmQuant/). This software is
used to visualize inferred alterations in the composition of immune
cell populations in human samples based on microarray data.

Statistical evaluation. The statistical procedures used in this study
have been reported previously (22). Significant differences were
evaluated using one-way ANOVA on ranks. Significance levels were
set at p<0.05 and a mean difference of greater than two-fold (27).

Results
Gene expression patterns of GSCs, U251 and GBM. We first
performed microarray-based comprehensive gene-expression
analyses of GSCs, U251, and hGBM (Tables I and II). We
further evaluated each of these samples for genes that have
been reported as major functional factors or major
determinants of GBM properties (Figure 1A). GBM and
U251 had similar expression patterns of these previously
reported genes (3, 28-32). In contrast, GSCs exhibited unique
expression patterns compared to those of GBM and U251.

In order to clarify the similarities and differences among
these samples, we performed a PCA using the gene-
expression data (PCA mapping; Figure 1B). The first
principal component (PC1; accounting for 41.7% of the total
variance) clearly distinguished the fresh human GBM tissue
from the cell lines (U251 and GSCs); it reflected the
characteristics of cell lines. The second principal component
(PC2; accounting for 18.5% of the total variance) clearly
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distinguished GSCs from GBM and U251; it reflected the
characteristics of stemness.

Factor loadings and pathway analysis revealed representative
factors in GSCs. Next, we evaluated factor loadings for each
principal component in order to identify contributing factors
(Figure 2). The factor loading for PC1 (Figure 2A) suggested
that the expression of engulfment adaptor 1 (GULP1),
transcriptional coactivator and phosphatase 4 (EYA4),
serine/threonine kinase 26 (STK26), and semaphorin 3A
(SEMA3A) would positively contribute to differences between

cell lines (GSCs and U251) and tissue-derived materials
(GBM). The factor loading for PC2 (Figure 2B) suggested that
the expression of v-myc avian myelocytomatosis viral oncogene
neuroblastoma derived homolog (MYCN), dipeptidyl-peptidase
4 (DPP4), and macrophage migration-inhibitory factor (MIF)
would contribute to the stemness of GSCs.

Based on these findings, we hypothesized that PC2-related
genes were important in identifying representative factors that
distinguish GSCs from other cells in glioma tissues. Therefore,
we performed an intracellular pathway analysis for the PC2-
related genes using WikiPathway. MYCN was found to be
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Table I. Top 15 genes found to be highly expressed in glioma stem cells (X01) compared to glioblastoma cell line (U251), sorted by fold-change. 

Gene symbol                                                            Description                                                            X01 Avg (log2)    U251 Avg (log2)    Fold change

CHI3L1                                         Chitinase 3-like 1 (cartilage glycoprotein-39)                                        15.23                      2.01                 9529.99
MYCN                v-Myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog              14.8                        2.51                 5009.87
DPP4                                                               Dipeptidyl-peptidase 4                                                           11.73                      0.52                 2369.82
NFIA                                                                   Nuclear factor I/A                                                               13.7                        2.86                 1840.35
CHI3L1                                         Chitinase 3-like 1 (cartilage glycoprotein-39)                                        15.2                        4.47                 1704.82
SLC6A15                    Solute carrier family 6 (neutral amino acid transporter), member 15                      11.32                      1.06                 1229.06
TIE1                           Tyrosine kinase with immunoglobulin-like and EGF-like domains 1                      12.34                      2.25                 1089.92
CA12                                                              Carbonic anhydrase XII                                                          11.37                      1.5                     930.51
RNF128                                   Ring finger protein 128, E3 ubiquitin protein ligase                                   10.69                      0.96                   849.21
SOX8                                                                         SRY box 8                                                                     11.93                      2.2                     847.99
DPP4                                                               Dipeptidyl-peptidase 4                                                           11.64                      1.93                   836.11
CDKN2C                          Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)                             13.12                      3.53                   769.72
GPR37                          G-Protein-coupled receptor 37 (endothelin receptor type B-like)                         10.99                      1.56                   686.72
PCDH19                                                              Protocadherin 19                                                                11.87                      2.76                   555.43
GNG4                                 Guanine nucleotide binding protein (G protein), gamma 4                              10.86                      1.82                   528.13

SRY, Sex determining region Y; EGF, epidermal growth factor.

Table II. Top 15 genes found to be highly expressed in glioma stem cells (X01) compared to human glioblastoma tissue (hGBM) sorted by fold-
change.

Gene symbol                                                            Description                                                            X01 Avg (log2)   hGBM Avg (log2)   Fold change

Undefined                                                                 Undefined                                                                     11.81                      0.19                 3158.27
Undefined                                                                 Undefined                                                                     12.93                      1.93                 2042.66
Undefined                                                                 Undefined                                                                     11.02                      0.19                 1812.64
SLC6A15                    Solute carrier family 6 (neutral amino acid transporter), member 15                      11.32                      1.34                 1015.51
MYCN                 v-Myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog               10.65                      1.24                   676.87
DPP4                                                               Dipeptidyl-peptidase 4                                                           11.64                      2.41                   598.94
TRDV3                                                     T-Cell receptor delta variable 3                                                    11.1                        1.93                   576.3
Undefined                                                                 Undefined                                                                     13.1                        4.21                   475.67
Undefined                                                                 Undefined                                                                       9.79                      1.52                   308.87
Undefined                                                                 Undefined                                                                       9.59                      1.66                   243.59
C6orf15                                              Chromosome 6 open reading frame 15                                              12.45                      4.74                   209.89
MYCN                 v-Myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog               11.27                      3.99                   155.99
RASEF                                                RAS and EF-hand domain containing                                               10.54                      3.29                   152.3
YME1L1                                                           YME1-like 1 ATPase                                                            10.14                      3.31                   113.82
SLC6A15                    Solute carrier family 6 (neutral amino acid transporter), member 15                        9.09                      2.28                   112.4

RAS, Resistance to audiogenic seizures; YME, yeast mitochondrial escape; ATPase, adenosine triphosphatase.
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Figure 1. Genetic characterization of the glioblastoma (GBM) the cell line U251, the X01 and X03 glioma stem cell (GSC) lines, and human (h)GBM
tissues. A: Expression patterns of genes previously reported as major factors of GBM. B: Principal component analysis (PCA) mapping based on the
gene-expression levels of U251, X01, and X03 GSCs and hGBM. The first principal component (PC1; 41.7%) reflects the characteristics of cell lines.
The GSC cell line and GBM cell line were separated along the second principal component (PC2; 18.5%), indicating the stemness characteristics.
CD44, CD44 molecule; CD133/PROM1, prominin 1; CDKN2A, cyclin-dependent kinase inhibitor 2A; DNER, delta/notch-like EGF repeat containing;
EGFR, epidermal growth factor receptor; ID4, inhibitor of DNA binding 4; IDH1, isocitrate dehydrogenase [NADP(+)]1 cytosolic; IDH2, isocitrate
dehydrogenase [NADP(+)]2, mitochondrial; NF1, neurofibromin 1; NF2, neurofibromin 2; NFKB1, nuclear factor kappa B subunit 1; NFKB2, nuclear
factor kappa B subunit 2; NOTCH1, notch 1; NOTCH2, notch 2; PDGFRA, platelet-derived growth factor receptor alpha; PDGFRB, platelet-derived
growth factor receptor beta; PTEN, phosphatase and tensin homolog; SHH, sonic hedgehog signaling molecule; PC3, third principal component.
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Figure 2. Principal component analysis-based factor loading. A: Representative factors contributing to principal component PC1. B: Representative
factors contributing to PC2. GULP1, Engulfment adaptor 1; EYA4, transcriptional coactivator and phosphatase 4; STK26, serine/threonine kinase
26; SEMA3A, semaphorin 3A; C1QC, complement C1q C chain; OLFM1, olfactomedin 1; GPR17, G-protein-coupled receptor 17; FAM107A, family
with sequence similarity 107 member A; NPTX2 neuronal pentraxin 2; RGS1, regulator of G protein signaling 1; AQP4, aquaporin 4; PMP2,
peripheral myelin protein 2; GRIA2, glutamate ionotropic receptor AMPA type subunit 2; NTRK2, neurotrophic receptor tyrosine kinase 2; NEFL,
neurofilament light; SEMA3C, semaphorin 3C; IL13RA2, interleukin 13 receptor subunit alpha 2; PDGFC, platelet-derived growth factor C; EDIL3,
EGF like repeats and discoidin domains 3; COL1A2, collagen type I alpha 2 chain; GNAI1, G protein subunit alpha i1; KRT81, keratin 81; CHI3L1,
chitinase 3-like 1; MYCN, v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog; CA12, carbonic anhydrase 12; SLC6A15,
solute carrier family 6 member 15; MIF, macrophage migration inhibitory factor; DPP4, dipeptidyl-peptidase 4; PC2, second principal component.



involved in the pathway miR target genes in lymphocytes
(Figure 3). In addition, solute carrier family 6 member 15
(SLC6A15) was associated with the NRF2 pathway (Figure 3),
and collagen type I alpha 2 chain (COL1A2) and platelet
derived growth factor C (PDGFC) with the Focal adhesion
pathway (Figure 3). These data suggest that the representative
factors for GSC identification in tissues were related to cell

proliferation, cell survival, glucose supply, immune-
suppression, anti-oxidative stress, and migration.

GSCs expressed macrophage-inhibitory factors but
macrophage inhibition was not detected by an ImmQuant
analysis. Two factors in the factor loading for PC2 were
associated with immune responses [Figure 2B: MIF
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Figure 3. Bar graph indicating the top 30 pathways enriched in glioma stem cells (GSCs) compared with human glioblastoma tissue (hGBM). Down:
Gene sets reduced in GSCs compared with hGBM; Up: gene sets increased in GSCs compared with hGBM; Total: the sum of changes in gene sets
in GSCs against hGBM. PI3K-AKT, Phosphatidylinositol-3 kinase-serine/threonine kinase; MTOR, mechanistic target of rapamycin kinase; MAPK,
mitogen-activated protein kinase; VEGFA, vascular endothelial growth factor A; VEGFR2, kinase insert domain receptor; RAS, resistance to
audiogenic seizures; SIDS, sudden infant death syndrome; EGF/EGFR, epidermal growth factor/epidermal growth factor receptor; EMT, epithelial
to mesenchymal transition; TGF-β, transforming growth factor beta; NRF2, nuclear factor, erythroid 2 like 2; GPCRS, G protein-coupled receptors.



(positive association) and PDGFC (negative association)].
Based on these findings, an ImmQuant analysis was
performed to evaluate the association of GSCs with the
immune system. We detected increases in neutrophilic
metamyelocytes, neutrophils, naïve CD4+ T-cells, and naïve
CD8+ T-cells (Figure 4). However, there were no differences
among factors relevant to macrophages, natural killer cells,
or dendritic cells.

Discussion

In the present study, we established a method for evaluating
cell type-specific gene expression as well as the
representative factors, pathways, and associated immune
responses. We used this method to comprehensively analyze
GSCs, U251, and GBM using microarray data (Tables I and
II). A PCA demonstrated substantial differences in gene
expression patterns among GSCs, U251, and GBM (Figure
1). The factor loadings revealed 14 genes to be representative
factors contributing to the stemness of GSCs (Figure 2).
Based on a pathway analysis, the representative factors
identified by the PCA were associated with cell proliferation
(MYCN and DPP4), glucose metabolism (DPP4), anti-
oxidative stress (SLC6A15), and the suppression of cell
adhesion (COL1A2; Figure 3). Although some inhibitory
factors of macrophages were identified in these analyses,
ImmQuant analyses suggested no associations with immune
responses (Figure 4).

Genome-wide association studies are commonly used to
evaluate gene expression and mutations in GBM. However,
comprehensive genetic data from whole-genome sequencing,
whole-exome analyses, DNA-methylation analyses, and
DNA microarrays do not necessarily coincide with
phenotypes. In addition, other analysis types, such as
analyses of molecular mechanisms, pathway analysis,
proteomics, and metabolomics, are not well integrated. Our
novel cellular bioinformatics pipeline for cancer research
addresses these limitations of previous approaches.

The human glioma cell line U251 has contributed
substantially to GBM research. However, its gene-expression
profiles differ from those of GBM tissues (33). To clarify
this point, we performed PCA analyses and factor loading
using microarray data obtained from GSCs, U251, and
hGBM (Figures 1A and 2). These analyses revealed
substantial differences in the gene-expression patterns of
GSCs, U251, and GBM. PC1 reflected the characteristics of
cell lines; PC2 reflected the characteristics of stemness.
Since the characteristics of stemness are thought to be
important for GSC identification in heterogeneous
environments, such as GBM tissues, we directed our focus
to the factors contributing to PC2.

We identified MYCN as a representative factor for the
stemness of GSCs. MYCN is a member of the Myc family of
oncogenes. It is related to cell proliferation and apoptosis
regulation. A pathway analysis revealed that MYCN is
involved in the remarkable changes in the miR target genes in
lymphocyte pathways. MYCN is a major determinant of cell
division and transcription amplification (34, 35) and is highly
expressed in children and young patients with GBM with the
H3F3A G34 mutation occurring in the forebrain (36). 

DPP4, a well-known target for diabetes mellitus treatment,
was also identified as a representative factor for the stemness
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Figure 4. Matrix indicating possible kinetics of immune cells based on
ImmQuant analyses. Red: Increased, blue; decreased. Mature NK cell,
mature natural killer cell; NKT, natural killer T-cell.



of GSCs in this study. DPP4 is involved in several signaling
pathways, such as PI3K signaling, RAS signaling, and
mitogen-activated protein kinase signaling via glucagon-like
peptide-1 (37, 38). Consistent with this, the pathway analyses
in this study suggested substantial differences in the PI3K and
RAS pathways (Figure 3). The continued administration of the
DPP4 inhibitor sitagliptin inhibited the carcinogenesis of 1,2-
dimethylhydrazine-induced colon cancer (39). DPP4 also acts
as a serine exopeptidase with dipeptidyl peptidase activity and
thereby regulates various physiological processes by cleaving
circulating peptides, including many chemokines, mitogenic
growth factors, neuropeptides, and peptide hormones. DPP4
appears to be associated with malignant tumor development
and progression by both enzymatic and nonenzymatic
mechanisms (40, 41). Taken together, these data show DPP4
might be involved in glucose metabolism in GSCs for survival
even under stress.

The factor loadings for PC1 indicated that GULP1, EYA4,
STK26, and SEMA3A are markers to distinguish cultured
cells (GSCs and U251) from GBM (Figure 2A). Among
these genes, EYA4 and STK26 are related to the
aggressiveness of GBM. EYA4 is involved in DNA repair,
apoptosis, and innate immunity following DNA damage and
cellular damage. STK26 is involved in cell growth,
autophagy, and tumorigenicity (42, 43). SEMA3A is highly
expressed in GBM, and the SEMA3A signaling axis
promotes GBM growth and invasion (44). SEMA3A is also
highly expressed in the breast cancer stem line MCF-7 (45)
and the hepatocellular carcinoma cell line MHCC97H (46).
In contrast, GULP1 is thought to act as a cancer suppressor
(47). In contrast, complement C1q C chain (C1QC),
olfactomedin 1 (OLFM1), G protein-coupled receptor 17
(GPR17), family with sequence similarity 107 member A
(FAM107A); neuronal pentraxin 2 (NPTX2), regulator of G
protein signaling 1 (RGS1), aquaporin 4 (AQP4), peripheral
myelin protein 2 (PMP2), glutamate ionotropic receptor
AMPA type subunit 2 (GRIA2), and neurotrophic receptor
tyrosine kinase 2 (NTRK2) appeared to contribute negatively
to PC1 (Figure 2A). Given that these genes, except for
C1QC, RGS1, and AQA4, are found in normal brain tissues
(48), PC1 likely reflects the differences between cell lines
(GSCs and U251) and tissue-derived materials (GBM). Their
biological functions should be elucidated in future studies.

The factor loadings for PC2 also identified two macrophage-
inhibitory factors (Figure 2B). One was MIF, which encodes a
lymphokine involved in cell-mediated immunity,
immunoregulation, and inflammation (49). MIF expression in
GSCs appears to be involved in the immunotolerance of GBM
by activating the immunosuppressive cell population (50). The
amplification of MIF is also related to cell proliferation and
differentiation (51). ImmQuant analyses suggested no changes
in macrophages or dendritic cells. The involvement of naïve
CD4+ T-cells and naïve CD8+ T-cells was suggested. To

elucidate precise immune responses, it is necessary to co-
culture the tumor cells with immune cells or treat cells with
GBM-related cytokines.

The pathway analyses revealed the remarkable enrichment
of gene expression in GSCs against GBM as a control
(Figure 3), consistent with previous results (14, 27, 52, 53).
The genes were related to the PI3K-AKT signaling pathway,
MAPK signaling pathway, RAS signaling, and other survival
signals and growth signals, all of which are associated with
proliferation, survival, glucose metabolism, and protein
synthesis signaling (54-56). 

Validation experiments are indispensable in confirming the
results of transomics studies (57), which we intentionally
omitted from this study. We are in the process of including
validation experiments in the analysis pipeline. In particular,
further studies are needed to verify the associations of MYCN
and DPP4 with GSCs. We observed substantial differences
in gene expression between GSCs and GBM. The differences
are expected because GSC lines are a collection of single
cells, whereas patient GBM tissues are aggregates of various
cells. In study to highlight the characteristics of tumor cells,
other methods should be considered in order to extract tumor
cells more precisely from surgical specimens, such as a laser
capture microdissection method.

Conclusion

We established a novel cellular bioinformatics pipeline
consisting of a PCA with factor loading, intracellular
pathway analysis, and immunological pathway analysis using
microarray data. PCA mapping revealed clear differences in
gene expression among GSCs, GBM tissue, and U251.
Factor loadings revealed that the representative factors in
GSCs are related to cell proliferation (MYCN and DPP4).
The pathway analysis revealed that the PI3K-AKT signaling
pathway was enriched in GSCs. Here, MYCN and DPP4 was
shown to be related to the stemness of GSCs, and the PI3K-
AKT signaling pathway has been shown to be important for
cellular processes in GSCs. The cellular bioinformatics
pipeline is a useful method for clarifying the similarities and
differences among cell populations and collections.
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