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Abstract. Background/Aim: Phosphoserine aminotransferase
1 (PSAT1) is an enzyme implicated in serine biosynthesis, and
its overexpression has been linked to cancer cell proliferation.
Therefore, targeting PSATI is considered to be an anticancer
strategy. Materials and Methods: The viability of non-small
cell lung cancer (NSCLC) cells was measured by MTT assay.
Protein and mRNA expression were determined by western
blot and reverse transcription polymerase chain reaction,
respectively. Results: Glutamine-limiting conditions were
generated through glutamine deprivation or CB-839
treatment, which induced PSATI expression in NSCLC cells.
PSAT1 expression induced by glutamine-limiting conditions
was regulated by activating transcription factor 4. Knock-
down of PSATI enhanced the sensitivity of NSCLC cells to
glutamine-limiting conditions. Interestingly, ionizing radiation
induced PSATI expression, and knocking down PSATI
increased cell sensitivity to ionizing radiation. Conclusion:
Inhibiting PSAT1 might aid in the treatment of lung cancer,
and PSATI may be a therapeutic target for lung cancer.

Metabolic alternation plays a key role in the adaption of cancer
cells to a changing extracellular environment. Cancer cells have
unique metabolic characteristics, such as elevated energy and
biosynthesis as required for rapid cell growth and proliferation
(1, 2). With a higher metabolic rate and increased proliferation,
cancer cells have a high nutrient demand (3). To fulfill the
increased nutritional demand, cancer cells usually up-regulate
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their uptake of glucose and glutamine from the extracellular
environment. As most glucose is converted into lactate, cancer
cells become heavily dependent on glutamine as a major source
of carbon and nitrogen (4). Glutamine serves as a source of
nitrogen for the synthesis of nucleotides, amino acids and
proteins, and it is involved in glutathione production to support
antioxidative defense (5). Glutamine also serves as a source of
carbon that replenishes tricarboxylic acid cycle intermediates (6).
Cancer cells become addicted to glutamine as a consequence of
genetic or epigenetic abnormalities. These genetic abnormalities
result not only in the import of glutamine via the up-regulation
of glutamine transporters but also in the promotion of expression
of metabolic enzymes that are involved in the metabolism of
glutamine (7). Suppression of glutamine metabolism by
depriving cells of glutamine, inhibiting glutaminase or blocking
glutamine transporters has been considered an attractive
anticancer strategy (8). CB-839 is a potent, selective, reversible
and orally bioavailable inhibitor of glutaminase that can inhibit
cellular glutamine-to-glutamate metabolism. CB-839 has shown
an antitumor effect on triple-negative breast cancer cells and
leukemia cells (9, 10).

Phosphoserine aminotransferase 1 (PSAT1) is an enzyme
implicated in the biosynthesis of the amino acid serine (11).
PSAT1 is overexpressed in breast cancer, colon cancer,
esophageal squamous cell carcinoma and non-small cell lung
cancer (NSCLC), and its increased expression has been
shown to enhance cancer cell proliferation, metastasis and
chemoresistance (12-16). Thus, targeting PSATI is
considered to be an anticancer strategy. This study aimed to
investigate the role of PSAT1 in resistance under glutamine-
limiting conditions in NSCLC cells and the mechanism by
which PSAT1 is regulated.

Materials and Methods
Cell culture and reagents. H1299 and H460 human NSCLC cells were
obtained from ATCC (Manassas, VA, USA) and cultured in RPMI

1640 medium (#LMO011-01; Welgene, Gyeongsangbuk-do, Republic
of Korea) supplemented with 10% fetal bovine serum (Gibco; Thermo
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Fisher Scientific, Waltham, MA, USA). For glutamine-free medium,
RPMI 1640 without L-glutamine (#LMO11-05; Welgene) was
supplemented with 10% dialyzed fetal bovine serum (Gibco; Thermo
Fisher Scientific). CB-839 was purchased from Cayman Chemical
(Ann Arbor, MI, USA), and thiazolyl blue tetrazolium bromide (MTT)
was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt,
Germany). 137Cesium was used as a source of gamma radiation
(Atomic Energy of Canada Limited, Chalk River, ON, Canada).
Protein lysates from normal lung tissue #1 (#CP565585), normal lung
tissue #2 (#CP565577), lung cancer stage IB #3 (adenocarcinoma,
#CP565638), lung cancer stage IB #4 (squamous carcinoma,
#CP565643), lung cancer stage IB #5 (large cell carcinoma,
#CP565586), lung cancer stage IIIA #6 (adenocarcinoma,
#CP565414), lung cancer stage IIIA #7 (squamous carcinoma,
#CP565564), and lung cancer stage IIIA #8 (large cell carcinoma,
#CP565534) were purchased from OriGene Technologies (Rockville,
MD, USA). TissueScan Lung Cancer Tissue qPCR panel (Lung
Cancer cDNA array II #HLRT502) was also obtained from OriGene
Technologies, and contained cDNA from five normal lungs, 15 stage
IA, 10 stage IB, 4 stage IIA, 2 stage IIB, 5 stage IIIA, 5 stage IIIB,
and 2 stage IV lung cancer samples.

Measurement of cell viability. H1299 and H460 cells were seeded
in a 6-well plate and were grown overnight until they reached about
50% cell confluence. The cells were exposed to glutamine-free
medium or treated with CB-835 (1, 2 or 5 uM) for 24 h. Cell
viability was assessed by measuring the mitochondrial conversion
of MTT. The proportion of converted MTT was calculated by
measuring the absorbance at 570 nm. The results are expressed as
the percentage reduction in MTT under the assumption that the
absorbance of the control cells was 100%. The MTT experiments
were repeated three times.

RNA extraction and reverse transcription polymerase chain reaction
(RT-PCR). RNA was isolated from H1299 and H460 cells using
TRIzol reagent according to the manufacturer’s instructions
(Invitrogen; Thermo Fisher Scientific). cDNA primed with oligo dT
was prepared from 2 mg total RNA using M-MLV reverse
transcriptase (Invitrogen; Thermo Fisher Scientific).

The following specific primers were used for PCR: PSAT1: 5’-
GTCCAGTGGAGCCCCAAAA-3’ and 5-TGCCTCCCACAGA
CCTATGC-3",150 bp product (12); f-Actin (ACTB): 5’-
GGATTCCTATGTGGGCGACAG-3’ and 5’-CGCTCGGTGAGGA
TCTTCATG-3’, 438 bp product (17). Amplication of PSATI was
performed for 28 cycles at 95°C for 30 s, 55°C for 30 s and 72°C for
30 s. Amplication of ACTB was performed for 25 cycles at 95°C for
30 s, 55°C for 30 s and 72°C for 30 s. The PCR products were
visualized on 2% agarose gel containing ethidium bromide. The band
intensities were quantified using ImageJ software (version 1.52a; NIH;
National Institutes of Health, Bethesda, MD, USA).

Transient transfection. The expression plasmid (pEF/mATF4-myc)
encoding mouse wild-type activating transcription factor 4 (ATF4)
was kindly provided by Dr. Jawed Alam (18). PSATI (#1: 5’-
CAGGCAAGUUUGAAAUCUATAT-3’, and #2: 5’-UUCUGACU
UGAACUGGAAJdTAT-3") small interfering RNAs (siRNAs) were
synthesized by Bioneer Corporation (Daejeon, Republic of Korea).
ATF4 (#sc-35112), PSATI #3 (#sc-92619) and control (#sc-37007)
siRNAs were purchased from Santa Cruz Biotechnology (Dallas,
TX, USA). Transfections with plasmids and siRNA in H1299 and
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H460 cells were performed using Lipofectamine Plus or
Lipofectamine RNAiIMAX, respectively, according to the
manufacturer’s instructions (Invitrogen; Thermo Fisher Scientific).
Thirty hours after transfection, the cells were exposed to glutamine-
free medium, treated with 5 uM CB-839 or exposed to ionizing
radiation (5 or 10 Gy). After 24 or 30 h of incubation, the cells were
harvested for RT-PCR or western blot analysis, and the cell viability
was measured by MTT assay.

Western blot analysis. Proteins from cell lysates were separated using
11 % sodium dodecyl sulphate-polyacrylamide gels and transferred to
nitrocellulose membranes followed by immunoblotting with the
specified primary and horseradish peroxidase-conjugated secondary
antibodies. The blots were developed using SuperSignal West Pico
Chemiluminescent Substrates (Thermo Scientific Pierce, Rockford, IL,
USA) to produce a chemiluminescence signal, which was captured on
X-ray film. The following antibodies were used: anti-PSAT1 (#PA5-
22124) was obtained from Thermo Fisher Scientific, anti-ATF4 (#sc-
200) was obtained from Santa Cruz Biotechnology, and anti-f3-Actin
(#A5316) was obtained from Sigma-Aldrich (Merck KGaA).

Statistical analysis. The results are expressed as the mean+standard
deviation (SD) of three independent experiments. Statistical
differences were measured by Student’s #-test for two groups or a
one-way ANOVA for multiple groups, followed by Tukey’s test,
using GraphPad prism software (version 7.0, San Diego, CA, USA);
differences at p<0.05 were considered statistically significant.

Results

Glutamine deprivation or treatment with CB-839, a
glutaminase inhibitor, induces PSATI expression in NSCLC
cells. Firstly, we investigated the effects of glutamine
deprivation on the viability of NSCLC cells. H1299 and H460
cells were deprived of glutamine for 24 h, and cell viability
was detected by MTT assay. A decrease in cell viability of less
than 25% was observed in both cell lines deprived of glutamine
(Figure 1A, left panel). CB-839 is a potent and selective
inhibitor of glutaminase, a key enzyme in glutamine
metabolism. We observed a decrease in cell viability of less
than 20% when cells from both cell lines were treated with
CB-839 at concentrations up to 5 uM for 24 h (Figure 1A, right
panel). Interestingly, PSAT1 protein expression was induced by
glutamine deprivation in the H1299 and H460 cells (Figure 1B,
left panel). CB-839 also induced PSAT1 protein expression in
a dose-dependent manner in both cell lines (Figure 1B, right
panel). PSATI mRNA expression was increased by glutamine
deprivation, and by CB-839 treatment (Figure 1C). These data
suggest that glutamine-limiting conditions induce PSAT1
expression in NSCLC cells.

PSATI expression under glutamine-limiting conditions is
regulated by ATF4. It was reported that glutamine
deprivation induces ATF4, which regulates the transcription
of genes required for amino acid synthesis and import, redox
balance, and angiogenesis, resulting in restoration of
homeostasis (19-21). In our study, ATF4 protein expression



Jin et al: Knock-down of PSATI Enhances Sensitivity of NSCLC Cells to Glutamine-limiting Conditions

A

'_T'“ H1z298 B naso =5
5 100 5
s k]
80
8 &
g s
= >
§ 20 =
= (&) e : :
0 1 2 5 01 2 5
CB-839 (uM) CB-839 (uM)
B 12h 24h CB-839 (uM)
MW (kDa) GIn+ Gin- Gin+ Gin- 0 1 2 5
&
) 40 _ _ e
g -Actin
C 12h 24h CB-839 (uM)
Gln+ GIn- Gin+ GIn- 0 1 2 5
f=2]
o
w
=
T .
== pracin

Figure 1. Glutamine deprivation or treatment with CB-839, a glutaminase

inhibitor, induces phosphoserine aminotransferase 1 (PSATI) expression

in non-small cell lung cancer cells. A: HI1299 and H460 cells were grown in glutamine-free medium for 24 h or treated with the indicated
concentrations of CB-839 for 24 h. Cell viability was measured by MTT assay. Data are presented as the means+SD relative to the control.
Significantly different at ***p<0.001, **p<0.01 or *p<0.05 versus the control group; ns, not significantly different. B, C: H1299 and H460 cells

were grown in glutamine-free medium for 12 or 24 h or treated with the

indicated concentrations of CB-839 for 24 h. The indicated protein (B)

and mRNA (C) levels were estimated by western blot and reverse transcription polymerase chain reaction, respectively. The blot is representative

of two independent experiments. CTL: Control, Gln: glutamine.

was increased in the H1299 and H460 cells starved of
glutamine (Figure 2A, left panel). CB-839 also induced
ATF4 expression in both cell lines (Figure 2A, right panel).
To investigate whether ATF4 is involved in increasing the
expression of PSAT1, we examined PSAT1 expression in
H1299 cells transiently transfected with plasmids encoding

Myc-ATF4. Compared with cells transfected with an empty
vector, cells that overexpressed Myc-ATF4 exhibited
increased levels of PSATI mRNA and protein (Figure 2B).
We further investigated whether ATF4 is responsible for the
up-regulation of PSATI expression in response to glutamine
deprivation or CB-839. H1299 cells were transfected with
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Figure 2. Phosphoserine aminotransferase 1 (PAST1) expression induced by glutamine deprivation or CB-839 treatment is regulated by activating
transcription factor 4 (ATF4). A: H1299 and H460 cells were grown in glutamine-free medium for 12 or 24 h or treated with the indicated
concentrations of CB-839 for 24 h. B: H1299 cells were transfected with an empty vector or Myc-tagged mATF4 for 30 h. C: HI1299 and H460
cells were transfected with control or ATF4 siRNAs for 30 h and were then exposed to glutamine-free medium for 24 h or treated with 5 uM CB-
839 for 24 h. The protein and mRNA levels were estimated by western blot and reverse transcription polymerase chain reaction (RT-PCR),
respectively. The blot is representative of two independent experiments. CTL: Control. Gln: Glutamine.
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ATF4 siRNA and were deprived of glutamine or treated with
CB-839. As shown in Figure 2C, ATF4 siRNA inhibited
PSAT1 expression in response to glutamine deprivation and
to CB-839. These data suggest that ATF4 activation is
important for the induction of PSATI expression under
glutamine-limiting conditions.

Knocking down PSAT1 enhances cell sensitivity to glutamine
deprivation and to CB-839 treatment. PSAT1 has been
reported to promote cancer cell proliferation and
chemoresistance (14). We investigated whether down-
regulation of PSATI enhanced cell sensitivity to glutamine
deprivation or CB-839. H1299 cells were transfected with
PSAT] siRNA and were deprived of glutamine or treated with
CB-839. All three PSATI siRNAs led to considerable
suppression of protein expression (Figure 3A). Suppression
of PSATI expression with siRNA also significantly reduced
the viability of cells deprived of glutamine or treated with
CB-839 (Figure 3B and C). These results suggest that
knocking down PSAT] effectively enhanced cell sensitivity
to glutamine-limiting conditions.

PSATI
knockdown of PSATI increases cell sensitivity to ionizing
radiation. It was reported that PSAT1 is closely associated
with tumorigenesis in colon and breast cancer, and NSCLC,
and that high levels of PSAT1 expression are correlated with
poor survival (16, 22, 23). In our study, PSAT1 protein
levels in human lung cancer tissues (stages IB and IITA) and
normal lung tissues were analyzed by western blot analysis.
A marked increase in PSATI1 protein expression was
observed in lung cancer tissues compared with normal lung
tissues (Figure 4A). To further evaluate PSAT/I mRNA
levels at the different stages of lung cancer, we used a
commercially available lung cancer tissue qPCR panel that
included cDNAs obtained from 48 patients with
histopathologically confirmed lung cancer representing all
stages (stage 1A, n=15; stage 1B, n=10; stage IIA, n=4; stage
IIB, n=2; stage IIIA, n=5; stage IIIB, n=5; stage 1V, n=2),
and normal lung samples (n=5). In agreement with the
protein data, the levels of PSATI/ mRNA were up-regulated
in lung cancer tissues compared with normal lung tissues.
These data suggested that expression of PSATI mRNA and
protein is elevated in lung cancer tissue compared with
normal lung tissue.

Radiation therapy for treating lung cancer is effective for
destroying cancer cells and shrinking tumors (24).
Interestingly, ionizing radiation increased PSAT1 protein
expression in a dose-dependent manner in H1299 cells
(Figure 4C), and silencing PSATI with siRNA further
reduced the viability of cells exposed to ionizing radiation
(Figure 4D). These data suggest that knocking down PSAT]
effectively enhances cell sensitivity to ionizing radiation.

is overexpressed in lung cancer tissues and
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Figure 3. Knocking down phosphoserine aminotransferase 1 (PSATI)
enhances cell sensitivity to glutamine deprivation or CB-839 treatment. A:
H1299 cells were transfected with three different PSATI siRNAs for 30 h.
PSAT1I protein levels were measured using western blot analysis. B, C:
H1299 cells were transfected with control or PSAT1 siRNAs for 30 h and
then exposed to glutamine-free medium for 30 h (B) or treated with 5 uM
CB-839 for 30 h (C). Cell viability was measured by MTT assay. CTL:
Control, Gln: glutamine. Data are presented as the means+SD relative to
the control (n=3). Significantly different at **p<0.01 and ***p<0.001.

Discussion

Glutamine is the most abundant amino acid that participates
in energy formation, redox homeostasis, molecular
synthesis, and signaling in cancer cells (25). These
functions make glutamine metabolism an attractive target
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for cancer therapeutic strategies. Glutamine metabolism of
cancer cells is targeted on glutamine depletion, glutaminase
inhibition, and membrane glutamine transporter inhibition
(9, 26-28). Interestingly, we revealed that glutamine-
limiting conditions generated by glutamine deprivation or
treatment with the glutaminase inhibitor CB-839 induced
PSAT1 expression (Figure 1B and C). PSATI1 regulates
serine biosynthesis from intermediates generated in the
glycolytic pathway. PSAT1 is overexpressed in breast
cancer, colon cancer, esophageal squamous cell carcinoma
and NSCLC (12-14, 16). In the present study, in contrast to
the relatively low PSAT1 protein expression in normal lung
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Figure 4. Phosphoserine aminotransferase 1 (PSAT1) is up-regulated in
lung cancer tissues, and knocking down PSATI1 enhances cell sensitivity
to ionizing radiation. A: PSATI protein levels in normal lung tissues
and lung cancer tissues were analyzed by western blot analysis. 3-Actin
was used as a loading control. Protein lysates from normal lung tissue
(lanes I and 2), lung cancer stage IB (lane 3, adenocarcinoma, lane 4,
squamous carcinoma, lane 5, large cell carcinoma) and lung cancer
stage IIIA (lane 6, adenocarcinoma; lane 7, squamous carcinoma, lane
8, large cell carcinoma) were purchased from OriGene Technologies.
B: PSATI mRNA levels were determined by quantitative polymerase
chain reaction in an OriGene cDNA array of normal lung tissue and
lung cancer tissue of different pathological grades. The polymerase
chain reaction products were visualized on 2% agarose gel containing
ethidium bromide (upper panel). The band intensities were quantified
densitometrically by ImageJ software, and the values were normalized
against those of B-Actin expression, and the log?2 fold change data were
plotted (bottom panel). C: HI1299 cells were exposed to the indicated
dose of ionizing radiation for 24 h. PSATI protein was analyzed by
western blot analysis. D: H1299 cells were transfected with control or
PSAT1 siRNAs for 30 h and were then exposed to the indicated dose of
ionizing radiation for 24 h. Cell viability was measured by MTT assay.
CTL: Control. Data are presented as the means=SD relative to the
control (n=3). Significantly different at **p<0.01 and ***p<0.001.

tissues, high levels of PSAT1 protein were detected in lung
cancer tissues (Figure 4A). In agreement with the protein
data, results from the qPCR analysis of human lung cancer
tissue cDNA arrays demonstrated that PSAT/ mRNA was
up-regulated in the lung cancer tissue compared with
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normal lung tissue. The overexpression of PSAT1 is
associated with cell proliferation and chemoresistance in
colon cancer (14). The depletion of PSAT1 reduced cell
proliferation in breast cancer and NSCLC (12, 16). In our
study, knocking down PSAT! reduced the viability of
NSCLC cells and enhanced their sensitivity to glutamine-
limiting conditions created through glutamine deprivation
or CB-839 treatment.

In response to glutamine deprivation, cancer cells can
activate different adaptive responses to restore homeostasis
(5). ATF4 expression is increased by glutamine deprivation
and promotes transcription of genes required for amino acid
synthesis and import, redox balance, and angiogenesis (19-
21). In our study, ATF4 expression was increased under
glutamine-limiting conditions created through glutamine
deprivation or CB-839 treatment in NSCLC cells (Figure
2A). Overexpression of ATF4 increased PSAT1 expression,
whereas knocking down ATF4 expression with siRNA was
capable of diminishing PSAT1 expression under glutamine
limiting conditions (Figure 2B and C).

Radiation therapy for lung cancer is effective for
destroying cancer cells and shrinking tumors (24).
Interestingly, ionizing radiation increased PSAT1 protein
expression, and knocking down PSATI expression
effectively enhanced NSCLC cell sensitivity to ionizing
radiation (Figure 4C and D).

These data suggest that inhibiting PSAT1 might aid in the
treatment of lung cancer and that PSAT1 may be a
therapeutic target for lung cancer therapy.
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