
Abstract. Background/Aim: Nicotinamide phosphoribo-
syltransferase (NAMPT), a key enzyme in the NAD+ biosynthetic
pathway, is a drug target of potent anticancer candidates,
including FK866 and other reported NAMPT inhibitors.
However, it is known that NAMPT point-mutations render
resistance to specific NAMPT inhibitors in several cancer cells.
We investigated the resistance mechanisms of NAMPT inhibitor
FK866 in human colorectal cancer (CRC) cells. Materials and
Methods: We used CRC human cell line HCT116 to determine
the expression profiles of FK866-sensitive parental HCT116 cells
and FK866-resistant HCT116 (HCT116RFK866) cells by DNA
microarray analysis. The levels of multidrug resistance protein
1 (MDR1) were assessed via western blot. In addition, we
analyzed the sensitivity of FK866 in parental HCT116 cells and
HCT116RFK866 cells by co-treatment with MDR1 inhibitor
verapamil. Results: Our results revealed an association between
ATP-binding cassette (ABC) transporter gene ABCB1 and
resistance to NAMPT inhibitor FK866 in both HCT116RFK866

cells and parental HCT116 cells. The expression of ABCB1,
which encodes MDR1, was lower in HCT116RFK866 cells than
in parental HCT116 cells. Furthermore, the protein level of
MDR1/ATP-binding cassette sub-family B member 1 (ABCB1)
was 0.5-fold lower in HCT116RFK866 cells than in parental
HCT116 cells. Additionally, HCT116RFK866 cells showed
improved sensitivity to FK866 when co-treated with verapamil,

an ABCB1 inhibitor. Interestingly, the efficacy of FK866 in
parental HCT116 cells was the same for the treatment with
FK866 alone or in combination with verapamil. Conclusion: The
change in expression of ABCB1 plays a key role in CRC drug
resistance to NAMPT inhibitor FK866. This suggests that the
MDR1/ABCB1 mechanism may regulate the resistance of
anticancer NAMPT inhibitor FK866.

Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-
limiting enzyme in the salvage pathway of nicotinamide
(NAM) in nicotinamide adenine dinucleotide (NAD+)
synthesis (1-4). NAMPT is a potential anticancer drug
target, and many drug candidates have been developed that
inhibit its enzymatic activity (1, 5), including FK866 (also
known as APO866 and WK175) (6, 7), CHS-828 (also
known as GMX1778) (8-11), GNE-617 (12), and STF-
118804 (13). Acquired resistance to anticancer NAMPT
inhibitors appears to be due to alterations in NAMPT itself
(14-16). There have been previous reports that NAMPT
point-mutations confer resistance to specific NAMPT
inhibitors (14-16). Recently, we produced FK866-resistant
HCT116RFK866 cells from human colorectal cancer (CRC)
HCT116 cells (17, 18). Whole-exome sequencing of the
NAMPT gene revealed two single point-mutations, H191R
and K342R, in NAMPT in HCT116RFK866 cells, of which
only K342R was present in the parental HCT116 cells (17,
18). Additionally, we used a NAMPT-immunoprecipitated
proteomics approach to demonstrate that NAMPT in
HCT116 cells, but not HCT116RFK866 cells, interacted with
the truncated POTE (expressed in prostate, ovary, testis, and
placenta) ankyrin domain family member E (tPOTEE) and
β-actin. Moreover, we reported that the NAMPT H191R
variant in HCT116RFK866 cells might prevent interaction
with the two identified binding partners (tPOTEE and 
β-actin), resulting in cellular resistance to diverse NAMPT
inhibitors (17). We also demonstrated that HCT116RFK866
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cells were more sensitive to the anticancer 5-fluorouracil
and cisplatin and γ-ray irradiation compared with parental
HCT116 cells (18).

Cancer drug resistance is a challenge that needs to be
overcome to achieve effective anticancer chemotherapy.
However, the underlying mechanisms can differ depending
on the medicine, and common cancer resistance mechanisms
include drug inactivation, drug efflux, drug-targeted
alterations, bypass pathway activation, DNA damage repair,
and cell death escape (19). Importantly, multidrug resistance
(MDR) in cancer cells can significantly attenuate the
response to chemotherapy (20-22). The major mechanism
involved in conferring MDR is the overexpression of ATP-
binding cassette (ABC) transporters, which can increase the
efflux of drugs from cancer cells, thereby decreasing
intracellular drug concentration (20-22).

The relationship between the mechanism of NAMPT
resistance and ABC transporter is unelucidated. To this end,
we investigated the association of ABC transporter with
resistance to FK866, a NAMPT inhibitor, in human CRC
HCT116 cells. 

Materials and Methods

Reagents. The anticancer NAMPT inhibitor FK866 HCl was
obtained from Focus Biomolecules (Plymouth Meeting, PA, USA)
and was stored as a 10 mM stock in ultra-pure water at −20˚C. The
ABC transporter inhibitor verapamil was obtained from FUJIFILM
Wako Pure Chemical Corp. (Doshomachi, Osaka, Japan) and was
stored as a 20 mM stock in DMSO at −20˚C.

Cell culture. The human CRC cell line HCT116 was obtained from
the American Type Culture Collection (Manassas, VA, USA). FK866-
resistant HCT116 (HCT116RFK866) cells were developed according
to the previously described method (17). Parental HCT116 and
HCT116RFK866 cell lines were cultured in Dulbecco’s modified
Eagle’s medium containing 10% heat-inactivated fetal bovine serum,
100 U/ml penicillin, and 100 μg/ml streptomycin in an incubator a
37˚C in an atmosphere of 5% CO2 at 100% relative humidity.

Clonogenicity assay. Clonogenicity assays were performed as
previously described (17, 18). Briefly, parental HCT116 and
HCT116RFK866 cells were dissociated with Accutase (NACALAI
TESQUE INC., Nijo Karasuma, Kyoto, Japan), suspended in
medium, inoculated into six-well plates (200 cells/well) in triplicate,
and then incubated overnight. The cells were treated with various
concentrations of drugs (FK866 only or co-treatment with
verapamil), a concentration of DMSO, or ultra-pure water (control).
After 10 days’ incubation, the cells were fixed with a solution of 4%
formaldehyde-phosphate-buffered saline and stained with 0.1% (w/v)
crystal violet. The number of colonies per well were then counted.

Microarray analysis. RNA extraction was performed as described
previously (23, 24). Briefly, total RNA was extracted using
QIAshredder spin columns and an RNeasy Mini Kit (both QIAGEN,
Hilden, Germany) as per the manufacturer’s instructions. DNA
microarray analysis of the parental HCT116 and HCT116RFK866
cells was performed by TAKARA Bio Inc. (Shiga, Japan) using a
SurePrint G3 Human Gene Expression 8×60K v3 Microarray
(Agilent Technologies, Santa Clara, CA, USA) to determine the
expression profiles of the cells.

Western blot analysis. Western blot analysis was performed as
described previously (17, 25). The following antibodies were used:
rabbit anti-MDR1 (1:1,000; Abcam, Cambridge, UK), rabbit anti-
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:20,000;
Trevigen, Gaithersburg, MD, USA), and horseradish peroxidase-
labelled anti-rabbit immunoglobulin (Ig)G (1:20,000; GE
Healthcare, Pittsburgh, PA, USA).

Statistical analysis. The data were presented as the means±standard
deviation (SD). The significance of differences among groups was
evaluated using Student’s t-test; p<0.05 was considered statistically
significant.

Results

To investigate the resistance mechanisms of NAMPT inhibitor
FK866 (Figure 1A) in human CRC, we analyzed the
comprehensive gene expression profiles of FK866-resistant
HCT116RFK866 cells and FK866-sensitive parental HCT116
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Figure 1. Chemical structures of NAMPT inhibitor FK866 (A) and ABC transporter inhibitor verapamil (B).



cells using DNA microarray technology (data not shown). In
the microarray analysis, the expression of multidrug resistance-
related ABCB1 was decreased in HCT116RFK866 cells
compared with parental HCT116 cells (Table I). Previously, we
used whole-exome sequencing analysis to demonstrate that the
gene mutation status of ABCB1 was similar in HCT116RFK866
and parental HCT116 cells (Table II) (18). However, the
relationship between the mechanism of NAMPT inhibitor
FK866 resistance and ABC transporter remained unelucidated.
Therefore, we investigated the association of ABC transporter
and FK866 resistance in our established human CRC FK866-
resistant HCT116RFK866 (17) and FK866-sensitive parental
HCT116 cells. ABCB1/MDR1 is a glycosylated 170-kDa
transmembrane protein that is encoded by the ABCB1 gene,
and the drug efflux pump of the family of ABC transporters is
well known (20-22). Microarray analysis revealed that the gene
expression of ABCB1 was 0.5-fold lower in HCT116RFK866
cells than in parental HCT116 cells (Table I). For western blot
validation, the protein level of ABCB1 was 0.5-fold lower in
HCT116RFK866 cells than in parental HCT116 cells (Figure 2).
These findings suggested that MDR1/ABCB1 was expressed
at lower levels in FK866-resistant HCT116RFK866 cells
compared to parental HCT116 cells.

To explore how the multidrug-resistant ABCB1 function
conferred resistance to NAMPT inhibitor FK866, we
analyzed the sensitivity of FK866 in HCT116RFK866 cells
and parental HCT116 cells by co-treatment with verapamil
(Figure 1B), an ABC transporter ABCB1 inhibitor (20, 21).

Interestingly, HCT116RFK866 cells showed improved
sensitivity to FK866 when co-treated with verapamil. In
contrast, the sensitivity of FK866 in parental HCT116 cells
was unaffected by the verapamil co-treatment (Figure 3). The
50% effective concentration (EC50) of FK866 in parental
HCT116 and HCT116RFK866 cells with or without verapamil
co-treatment was determined by colony formation assay. The
EC50 of FK866 in HCT116RFK866 cells was higher with
FK866 alone (EC50=6,650 nM in FK866) compared with co-
treatment with verapamil (EC50=2,700 nM in FK866). In
contrast, the EC50 of FK866 in parental HCT116 cells was
lower with FK866 alone (EC50=11 nM in FK866) compared
to co-treatment with verapamil (EC50=15 nM in FK866)
(Figure 3A and Table III). Regarding the sensitivity index of
FK866, HCT116RFK866 cells were 2.5-fold more sensitive to
FK866 when co-treated with verapamil. In contrast, HCT116
cells were almost similar in sensitivity to FK866 with
verapamil co-treatment. These findings suggested that
ABCB1 machinery regulates NAMPT inhibitor FK866
resistance in HCT116RFK866 cells.
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Table I. Gene expression of ABCB1 in parental HCT116 and HCT116RFK866 cells as determined by microarray analysis.

Gene symbol                                               Gene description                                                 S (signal)              R (signal)           FC (R/S)            p-Value

ABCB1                     ATP-binding cassette, sub-family B (MDR/TAP), member 1                153.0                      73.5                    0.48                 0.004

S, FK866-sensitive parental HCT116 cells; R, FK866-resistant HCT116RFK866 cells; FC, fold change (HCT116RFK866 cells vs. HCT116 cells). The
signal values represent the average signal intensity for the microarray probe (probe ID: A_23_P82523) from three independent experiments.

Table II. Gene mutation status of multidrug resistance gene ABCB1 in
HCT116 and HCT116RFK866 cells.

Gene symbol                                       Gene mutations

                                              HCT116                       HCT116RFK866

ABCB1                           mt(Ile1145Ile)het              mt(Ile1145Ile)het
                                      mt(Ser893Ala)het              mt(Ser893Ala)het
                                      mt(Asp603His)het             mt(Asp603His)het
                                      mt(Gly412Gly)het             mt(Gly412Gly)het
                                      mt(Asn21Asp)het              mt(Asn21Asp)het

mt, Mutation-type; het, heterozygous.

Figure 2. Protein levels of MDR1 in FK866-resistant HCT116RFK866
and parental HCT116 human CRC cells. Whole-cell lysates were
prepared from parental HCT116 and HCT116RFK866 cells. Protein
levels of MDR1 and GAPDH were examined by western blot analysis.
The expression of GAPDH was used as an internal control. Data are
representative of at least three independent experiments. Levels of
MDR1 protein are represented by the ratio of MDR1 density to GAPDH
density relative to the value for parental HCT116 cells. Results represent
the averages of three independent experiments. 



Discussion

NAMPT, a key enzyme in the NAD+ biosynthetic pathway, is
a molecular target of potent anticancer candidates, including
FK866 and other reported NAMPT inhibitors (1-4). However,
many studies have previously reported that NAMPT point-
mutations render resistance to specific NAMPT inhibitors in
several cancer cell types (14-16). We investigated the resistance
mechanisms of NAMPT inhibitor FK866 in human CRC
HCT116 cells (17, 18). Our findings revealed that multidrug
resistant-related ABCB1 (the gene encoding MDR1) is
expressed at a lower level in FK866-resistant HCT116RFK866

cells compared to parental HCT116 cells (Figure 2 and Table
I). We previously demonstrated that FK866-resistant
HCT116RFK866 cells, which are resistant to other classes of
NAMPT inhibitors (e.g., CHS-828, GNE-617, and STF118804),
were more sensitive to the anticancer medicines 5-fluorouracil
and cisplatin compared to parental HCT116 cells (18).
Interestingly, HCT116RFK866 cells showed a 2.5-fold higher
sensitivity (i.e., less resistance) to FK866 with verapamil co-
treatment. This suggests that ABCB1 may be involved in the
efflux of NAMPT inhibitor FK866 in HCT116RFK866 cells. We
consider that FK866-resistant HCT116RFK866 cells become
resistant to NAMPT inhibitor FK866 by down-regulating
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Figure 3. The sensitivity to FK866 in FK866-resistant HCT116RFK866
and parental HCT116 human CRC cells with verapamil co-treatment.
(A) Colony formation by parental HCT116 and HCT116RFK866 cells
after 10 days’ treatment with FK866 alone or co-treatment with
verapamil. Results are the average of two independent experiments.
Error bars show the ±standard error (SE) in triplicate experiments. (B)
Drug sensitivities of HCT116 and HCT116RFK866 in the colony
formation assay. HCT116 cells were treated with 10 nM FK866 alone
or 10 μM verapamil plus 10 nM FK866. HCT116RFK866 cells were
treated with 3,000 nM FK866 alone or 10 μM verapamil plus 3,000 nM
FK866. (C) Colony formation (%) is the average of two independent
experiments. Error bars show ±SE of triplicate experiments. Values are
standardized by a no-treatment control (no drug, solvent alone) in
parental HCT116 and HCT116RFK866 cells, respectively. An asterisk
indicates a statistically significant differences (Student’s t-test, p<0.01).



ABCB1 expression. Importantly, the sensitivity of FK866 in
parental HCT116 cells was unaffected by verapamil co-
treatment. Interestingly, many previous reports demonstrated
that the overexpression of ABCB1 is responsible for the
resistance against anticancer drugs, e.g., cisplatin, etoposide,
paclitaxel, and doxorubicin, in several cancer cells (20, 26-28).
Conversely, our finding suggests that the lower expression of
ABCB1 is associate with anticancer FK866 resistance in the
FK866-resistant HCT116RFK866 cells. These results indicated
the difference in the ABCB1 function between HCT116RFK866
cells and parental HCT116 cells. We propose that this difference
was regulated by post-transcriptional modification (e.g., protein
modification by phosphorylation, the interaction of long non-
coding RNAs, or other factors). We are currently investigating
the association of ABC transporter ABCB1 and other family
members with NAMPT inhibitor FK866 resistance mechanisms
in human CRC HCT116 cells. Our data indicate that FK866-
resistance in human CRC cells is responsible for the diverse
mechanisms; NAMPT mutation, differences in the components
of NAMPT complex, and different drug efflux machinery.
Finally, these novel findings provide a better understanding of
the resistance mechanisms of the anticancer NAMPT inhibitors.
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