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Analysis of Malignant Melanoma Cell Lines
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Abstract. Background/Aim: Most melanomas develop in
hypoxic conditions. Since hypoxia via HIF-1 induces glycolysis,
a process essential for malignant melanoma growth/survival,
the goal of this study was to analyze the influence of hypoxia
on the expression of HIF-1 target genes involved in glucose
metabolism. Materials and Methods: The response of melanoma
cell lines to hypoxic conditions was analyzed by RT-PCR and
western blotting. A Kaplan—Meier survival analysis for patients
with high and low expression level of PFKFB4 was performed.
Further analysis of patients’ data was performed using the
R/Bioconductor environment. Results: Induction of PFKFB4
gene expression can be considered a crucial mechanism behind
glycolysis enhancement in hypoxic melanoma cells. Analysis of
a publicly available database revealed that high PFKFB4
expression contributes to poor prognosis of melanoma patients.
Conclusion: Currently available anti-melanoma therapeutic
strategies may significantly benefit from agents targeting
PFKFB4 activity.

The incidence of melanoma is relatively low, representing
less than 5% of all skin cancers, nevertheless, its frequency
has been increasing over the past decades. Moreover,
advanced-stage melanoma is highly aggressive and invasive
malignancy constitutes around 70% of skin cancer-related
deaths (1-4).

Melanoma arises from skin pigment cells (melanocytes)
located in the basal layer of epidermis that are responsible
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for melanin production. One of the major risk factors for
melanoma is chronic sun exposure of the skin, leading to
UV- induced melanocyte mutations, especially within NRAS,
BRAF and cKIT protooncogenes (5). On the other hand, a
considerable group of melanoma patients reports a family
history of disease, pointing out the hereditary background of
this highly lethal cancer, characterized predominantly by
BRAF mutations (5, 6). In general, mutations in the genes
involved in proliferation, apoptosis, metabolism and cell
cycle constitute the main cause of malignant melanoma
transformations (5).

Although the genetic alterations in melanocytic DNA are
crucial for melanoma development, emerging data highlight
the significant role of the skin microenvironment in
melanoma initiation and progression. Skin microenvironment
is a structural and functional constellation composed of
normal skin cells such as keratinocytes, fibroblasts,
endothelial cells, melanocytes and cells of the immune
system subjected to mutual interactions. Disruption of this
homeostasis may promote the development of melanoma (7).
Importantly, the inherent part of skin microenvironment is
low oxygen partial pressure, deepening during cancer
progression and promoting its development (8-11).

Notably, literature data indicate that 50-60% of locally
advanced tumors, including melanomas are characterized by
areas of hypoxia or even anoxia in which oxygen concentration
ranges from 0.5 to 1.5% O, (8, 9, 12). In melanoma, hypoxia
was observed to accelerate malignant transformation (13-16)
and tumor development/progression (12, 16-19). Of note,
oxygen-deprived environment also contributes to treatment
resistance (20-25) and phenotype switching of melanoma cells
(26, 27). All the alterations observed in hypoxic cells result
from hypoxia-mediated gene expression changes, initiated
mainly by the hypoxia-inducible factor-1 (HIF-1) transcription
factor (stabilized in hypoxic conditions, below 2% O,) (28).
Among the HIF-1 target genes are those coding for glycolytic
enzymes and glucose transporters, that allow for sufficient ATP
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production in oxygen-deprived environment. Notably, enhanced
glycolysis has been recently reported as a pathway associated
with resistance to adoptive T cell therapy in melanoma mouse
model (29). Moreover, it has been shown that the attenuation of
glycolysis is crucial in the response to BRAF inhibitors (BRAF-
i) as by in BRAF-i resistant melanomas a decrease of glucose
breakdown induces cell death (30, 31). As most melanomas
reside in a hypoxic environment, the glycolytic pathway seems
to be constantly induced. In this paper, using melanoma cell
lines as a model, the influence of hypoxia on the expression of
glycolysis related genes was analyzed. Importantly, our study
revealed that the PFKFB4 gene product, 6-Phosphofructo-2-
Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4), is the crucial
enzyme enhancing the glycolysis in hypoxic melanomas, the
overexpression of which is associated with the poor prognosis
of melanoma patients.

Materials and Methods

Cell lines and cell culture. Two human melanoma cell lines
representing different stages of tumor progression were studied:
WMI115 from vertical growth phase and its metastatic derivative
WM266-4 line. Both cell lines were obtained from ESTDAB
Melanoma Cell Bank (Tubingen, Germany) and were grown according
to their recommendation. Reduced oxygen culture conditions (1% O,
hypoxia) were obtained, as described previously (32).

RNA isolation and cDNA synthesis. Total amount of RNA was
extracted from melanoma cells using RNeasy Plus Mini kit (Qiagen,
Hilden, Germany). The concentration and purity of all isolated RNA
samples were determined with the use of NanoDrop ND-1000
Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).
For each sample 125 ng of RNA was used for reverse transcription.
cDNA synthesis was carried out using NG dART RT kit (EURx,
Gdansk, Poland) with oligo (dT)20 primer and dART reverse
transcriptase, as described in the manufacturer’s protocol (EURX).

Reverse transcription polymerase chain reaction (RT-PCR). PCR
reaction was carried out using Color OptiTag PCR Master Mix (2x)
(EURX) according to the manufacturer’s protocol. The PCR mixture
contained 0.6 ul of each 10 uM primers (forward and reverse), 5 pl
of Color OptiTaq PCR Master Mix (2x) and 5 pl of nuclease free
deionized water. 1 pL of cDNA was added to each PCR mixture.
The cDNA was amplified using the MJ Research PTC-200 Thermal
Cycler. PCR reaction started with initial denaturation for 5 min at
95°C. Then the PCR conditions for 26 cycles were as followed:
30 sec at 95°C, 30 sec at 65°C (PFKFB3) or 58°C (all other genes)
and 30 sec at 72°C. The extension reaction was for 10 min at 72°C.
The PCR products were analyzed on 1.5% w/v agarose gels. Bands
were normalized using HPRT1 to correct for differences in loading
of the cDNAs samples.

Western Blot. Western-blot analysis was performed as described
previously (32).

Patients and statistical analysis. The gene expression and survival

data of 214 melanoma patients (GSE65904) were downloaded from
the NCBI Gene Expression Omnibus (GEO), a public repository of
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microarray data (33). The data were analyzed in the R environment
(34). A number of libraries as GEOquery (35), Affy (36), Limma
(37) were used to analyze gene expression. Based on the expression
level of PFKFB4 gene, the patients were divided in three groups
G1, G2 and G3 using R/Bioconductor environment and segmented
library (38) for fitting the regression models in case of broken-line
relationships. Using limma, an R/Biocondictor software package
significantly up-regulated genes in the G3 group (with the highest
PFKFB4 expression) in comparison to the G1 group (with the
lowest PFKFB4 expression) were found. All the selected genes were
submitted to the Database for Annotation, Visualization and
Integrated Discovery (DAVID), and the Kyoto Encyclopedia of
Genes and Genomes (KEGG). The survival curves were estimated
by the Kaplan—Meier method and compared by Log-rank test in
GraphPad Prism 5.01 (GraphPad Software, La Jolla, CA, USA).

Results

The response of melanoma cells to low oxygen concentrations
at the protein level. In the first stage, to validate our
experimental setup, the influence of hypoxic stimulation on
two melanoma cell lines, WM115 and WM266-4, was
investigated. Hypoxia induced accumulation of HIF-1 alpha
subunit protein (Figure 1A). In order to determine whether
HIF-1 accumulation triggers a transcriptional response, RT-
PCR assay was performed. The gene selected for this analysis,
Carbonic Anhydrase IX (CAIX ), has been shown to be a HIF-
1 target (39, 40) and its HIF-1-dependent regulation has been
reported in malignant melanoma (12). Interestingly, according
to the literature, expression of CAIX significantly contributes
to progression of melanoma as CAIX seems to be crucial in
adaptation of melanoma cells to extracellular acidosis (41, 42),
accompanying hypoxia. Expression of CAIX in normoxic
conditions was negligible in both analyzed cell lines (Figure
1B). However, hypoxia induced expression of CAIX in
WMI115 and WM266-4 cells (Figure 1B).

Effect of low oxygen conditions on glycolytic gene expression
in melanoma cell lines. Since glycolysis is the essential energy-
yielding process accelerated in low oxygen environment and
glycolysis enhancement was found to be associated with worse
clinical outcome (43), semi-quantitative RT-PCR was used to
examine the effect of reduced oxygen culture conditions on the
expression of HIF-1 target genes involved in glucose
breakdown in melanoma cells. The panel of selected genes
comprised of HK2 (Hexokinase 2), PFKFB3 (6-Phosphofructo-
2-Kinase/Fructose-2,6-Biphosphatase ~ 3), PFKFB4 (6-
Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4), ALDO
A (Aldolase A), ENOI (Enolase 1), PKM (Pyruvate kinase,
muscle), LDH A (Lactate Dehydrogenase A) and SLC2AI
(Solute carrier family 2, facilitated glucose transporter member
1). All the genes were previously shown to be HIF-1 target
genes (44) containing HRE (Hypoxia Response Elements)
elements in their promoters (39, 45-52). As shown in Figure 2,
in both cell lines the majority of analyzed genes had a high
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Figure 1. Response of WM115 and WM2264 melanoma cell lines to
hypoxic conditions A) HIF-1 alpha accumulation in WMI115 and
WM266-4 melanoma cells. WM115 and WM266-4 cells were cultured
for 24 h in normoxic or hypoxic (24 h, 1% O,) conditions. HIF-1 alpha
accumulation was detected using western blot. B-actin is shown as an
internal control for equal protein loading. B) Expression of HIF-1 target
gene, CAIX, in WM115 and WM2264 cell lines. WM115 and WM266-4
cells were cultured for 24 h in normoxic or hypoxic (24 h, 1% O,)
conditions. CAIX expression was detected by RT-PCR. HPRT1 is shown
as an internal control for equal amount of cDNA.

expression in normoxic conditions indicating that HIF-1 is not
the crucial transcription factor controlling their expression. The
only gene, with low expression in normoxic conditions and
clear induction in hypoxia was PFKFB4, the one coding the
cancer specific isoenzyme of phosphofructokinase II (PFK-II).
In conclusion, these results indicate that, in contrast to the
majority of studied genes encoding glycolytic enzymes, HIF-1
induced strong expression of PFKFB4.

PFKFB4 expression in melanoma cell lines and patients.
The observation that the PFKFB4 gene can be crucial for
the enhancement of glycolytic pathway in melanoma cells
under hypoxic conditions, prompted us to investigate its
basal expression in a panel of melanoma cell lines. As
shown in Figure 3, in WM793, 1205Lu, A375P, WM239A
WMI115 and WM266-4 cell lines the expression of
PFKFB4 was comparable under normoxic conditions.,
However, in WM35 and WM3211the expression PFKFB4
was as high as in WMZ266-4 hypoxia treated cells. To
determine if high expression of PFKFB4 is the
consequence activation of HIF-1 pathway in normoxic
conditions, in the same panel of cell lines, the expression
of CAIX, the hallmark of active HIF-1 signaling in
melanoma cells, was analyzed. Based on CAIX expression
(Figure 3), which seems to be controlled exclusively by
HIF-1 transcription factor in melanoma cell lines, it can be
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Figure 2. Expression of HIF-1 glycolytic target genes under reduced oxygen
conditions in WM115 and WM2264 melanoma cell lines. The expression of
HIF-1 glycolytic target genes HK2, PFKFB3, PFKFB4, ALDOA, ENOI,
PDKI, PKM, LDHA, SLC2A1 in cells cultured for 24 h in normoxic or
hypoxic (24 h, 1% O,) conditions was determined by RT-PCR. HPRT1 is
shown as an internal control for equal amount of cDNA.
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Figure 3. Basal expression of PFKFB4 and CAIX in the panel of human
melanoma cell lines determined by RT-PCR. The expression PFKFB4
and CAIX was determined by RT-PCR. cDNA isolated from hypoxic
WM266-4 (WM266-4H) was used to compare the basal normoxic
expression of PFKFB4 and CAIX in melanoma cell lines with the
expression level observed in hypoxic environment. HPRTI is shown as
an internal control for equal amount of cDNA.

concluded that there is a lack of HIF-1 activity in WM35
and WM3211. Thus, the high expression of PFKFB4 in
WM35 and WM3211 is not a consequence of hypoxia-
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Figure 4. Analysis of PFKFB4 mRNA expression in malignant melanoma patients using a publicly available data set GSE65904. A) 214 malignant
melanoma patients were classified in accordance to PFKFB4 mRNA expression. The patients were divided into three expression groups (G1, G2,
G3) using the segmented regression available in R package (34). B) The PFKFB4 mRNA expression in G1, G2 and G3 groups; for subsequent gene
expression comparison the three patients with the highest PFKFB4 were excluded from the analysis. C) Gene ontology processes with significant
over-representation among the genes overexpressed (fold change =2) in G3 in comparison to G1. Only the pathways having significant alterations

(p<0.05) are presented. The glycolysis related processes are underlined.

independent HIF-1 signaling in normoxic conditions,
indicating that PFKFB4 can be expressed in melanoma
cells also regardless of the presence of HIF-1 transcription
factor. Next, the PFKFB4 mRNA expression was examined
in melanoma patients using publicly available data set,
GSE65904. As presented in Figure 4A, among malignant
melanoma patients there was a group with high expression
of PFKFB4 gene. Next, melanoma patients were divided,
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using segmented regression, in three groups (G1, G2, G3)
based on the expression level of PFKFB4 (Figure 4A and
B) and subsequently significantly up-regulated genes in the
G3 group (with the highest PFKFB4 expression), in
comparison to Gl group (with the lowest PFKFB4
expression), were identified. Annotation analysis performed
on up-regulated genes with DAVID and KEGG showed that
a significant number of up-regulated genes was involved in
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Figure 5. High PFKFB4 expression is associated with poor prognosis of melanoma patients. The publicly available micro-array data set GSE65904
was used to correlate PFKFB4 mRNA expression (median lowest, median highest, and G3 versus G1+G2) to disease outcome. Kaplan—Meier curves
are presented for distant metastasis free survival (upper panel) and overall survival (lower panel). The median survival for the compared groups is
given in the graphs. High PFKFB4 expression is associated with worse distant metastasis free survival and overall survival, p<0.05, by Log-rank test.

glucose breakdown (Figure 4C). These data clearly indicate
that the group of patients with the highest PFKFB4
expression can be considered as the one with high rate of
glucose breakdown. Taking into consideration the
importance of glycolysis in the progression of melanoma,
the melanoma patients were divided in groups based on the
PFKFB4 expression (median lowest, median highest, and
G3 versus G1+G2) and comparison of distant metastasis
free and overall survival between groups was performed.
As shown in Figure 5 (upper panel), the group with high
PFKFB4 expression selected based on the median and
PFKFB4 high group, identified by segmented regression
(G3 group), showed significantly worse distant metastasis
free survival, clearly indicating that cancer specific
isoenzyme of phosphofructokinase II, PFKFB4, can have
an important impact on the progression of malignant
melanoma. As for the overall survival (Figure 5, lower
panel), in the PFKFB4 high group identified based on the
median expression the trend for the worse overall survival
was clearly visible, whereas the G3 group had significantly
worse OS survival in comparison to G1+G2 group.

Discussion

In this study we focused on the influence of hypoxia on the
expression of genes involved in glucose metabolism in
melanoma cells. Hypoxia occurs/appears when oxygen supply
fails to meet demands of the body tissue and is a common
phenomenon in advanced solid tumors (53) including most
melanomas. Tumor hypoxia and HIFs affect most of the
cancer hallmarks including: cell survival, vascularization,
metabolism reprogramming, immune response, invasion,
treatment resistance, metastasis, apoptosis and genomic
instability (54-56). Our study revealed that many of analyzed
HIF-1 target genes, which code for proteins involved in
glucose metabolism had high basal normoxic expression
indicating high glycolytic profile of melanoma cells at
normoxic conditions. On the other hand, expression of certain
genes involved in glucose metabolism was not apparently
induced in hypoxic conditions in the studied cell lines.
Interestingly, however, in both studied cell lines, very strong
induction of PFKFB4 gene, which codes for cancer specific
isoenzyme modulating glycolysis — phosphofructokinase II
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(PFK-II)/fructose-2,6-bisphosphatase ~ (FBPase-II), was
observed. The product of its kinase domain, Fru-2,6-P,,
constitutes an essential activator of the glycolytic flux,
activating glucose breakdown through allosteric modulation
of the rate-limiting enzyme of glycolysis, phosphofructokinase
I (PFK-I) (57, 58). As mentioned above, the protein coded by
PFKFB4 gene is not a bona fide glycolytic enzyme, but its
activity is associated with carcinogenesis and significantly
enhances the rate of glucose breakdown. The fact that its basal
normoxic expression is rather low (at least in most studied
melanoma cell lines) suggests that HIF-1 mediated PFKFB4
induction can be considered as a universal mechanism for
enhancement of hypoxia-mediated glucose breakdown in
malignant melanoma. Although our data stays in line with
studies conducted by Buart et al. (59), who indicated PFKFB4
gene as the one belonging to hypoxic signature in melanoma,
our cell line analysis pointed that its expression is not
restricted to hypoxic environment. The fact that there are
melanoma cell lines with high PFKFB4 expression in
normoxic conditions irrespective of active HIF-1 signaling
suggests that in melanoma patients high basal PFKFB4
expression cannot be considered a direct hallmark of hypoxia.
Important for deciphering the role of PFKFB4 in melanoma
behavior/biology were the findings that came from the study
of publicly available data set, revealing that its high expression
significantly correlates with shorter overall survival of
malignant melanoma patients.

Taking into consideration that melanoma cells mostly
reside in hypoxic conditions and high glycolytic rate is
involved in the resistance to BRAF inhibitors and adoptive
T cell therapy (29), PFKFB4 seems to be an important gene,
the function/significance of which should be subjected to
further detailed study, especially in the context of anti-
melanoma treatment.

According to our knowledge, this is the first study
showing the impact of PFKFB4 overexpression in the
progression of malignant melanoma. In addition, we found
that in patients with high PFKFB4 gene expression there was
an up-regulation of genes involved in glucose metabolism.
Altogether our data indicate that phosphofructokinase II
isoenzyme 4, coded by PFKFB4 gene, may become a novel
target in anti-melanoma therapeutic strategies and inhibition
of its activity may significantly improve the outcome of
currently applied therapies against malignant melanoma.
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