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Cold Physical Plasma Selectively Elicits Apoptosis in
Murine Pancreatic Cancer Cells In Vitro and In Ovo
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Abstract. Background/Aim: Poor prognosis of pancreatic
cancer has remained almost unchanged in recent years. Cold
physical plasma was suggested as an innovative anticancer
strategy, but its selective killing activity of malignant over non-
malignant cells has only partially been explored. The present
study aimed at exploring the effect of cold physical plasma on
cellular viability. Materials and Methods: Induction of cell
death and apoptosis by cold physical plasma was investigated
in murine PDA6606 pancreatic cancer cells and primary
murine fibroblasts in vitro (2D and 3D cultures) and in ovo.
Results: Plasma increased apoptosis in PDA6606 to a
significantly higher extent compared to fibroblasts. Antioxidants
abrogated these effects, suggesting a prime role of reactive
oxygen species in plasma-induced apoptosis. Plasma increased
apoptosis of 3D PDA6606 multicellular spheres grown in vitro
and in ovo, to significantly higher rates compared to that of
fibroblasts, with minimum in ovo inflammation or necrosis
observed by hematoxylin and eosin staining (H&E).
Conclusion: These data support the future intra-operative
application of cold physical plasma for the treatment of
microscopic residual tumor tissue after surgical resection.

Annually, pancreatic cancer causes over 330,000 deaths
worldwide (1). Its incidence is rising in both genders,
counteracting a global trend in cancer epidemiology (2). The
absence of specific early symptoms leads to delayed
diagnosis. At late stages, only 20-30% of the patients present
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with resectable tumors (3). Both aggressive local growth and
early metastatic dissemination often impede curative therapy
and result in a high rate of surgical Rl-resections.
Micrometastasis in these margins are the major cause for
tumor relapse in pancreatic cancer patients (4). This results
in median survival of only 18 months (5), calling for new
therapeutic strategies in the treatment of pancreatic cancer.

Cold physical plasma is a partially ionized gas expelling a
variety of reactive oxygen species (ROS) (6-8). This cocktail
of plasma-derived ROS was shown to display considerable
toxicity towards tumors in different kinds of cancers in vitro,
including for example melanoma (9-11), glioblastoma (12-14),
leukemia (15-17), ovarian cancer (18-20), prostate cancer (21-
23), and colon cancer (24-26). Several groups have determined
profound anticancer activity of cold physical plasmas in tumor
animal models (27-29). Successful application of the
atmospheric pressure argon plasma jet kINPen MED in cancer
patients has been reported (30-32). Importantly, this plasma
device was tested negative for genotoxic effects using
appropriate model systems (33-35). Yet, it is unclear to what
extent the kINPen MED plasma jet provides selective toxicity
in malignant versus non-malignant cells.

To this end, the toxicity of cold physical in murine
PDAG6606 pancreatic cancer cells was compared to that in
non-malignant, primary murine fibroblasts. Using cells
grown in 2D and 3D in vitro, and in 3D on fertilized eggs
(in ovo) according to the TUM-CAM assay (36), a selective
and thus tumor-toxic effect of cold physical plasmas towards
pancreatic cancer cells was clearly identified in these model
systems. Our results suggest a potential implementation of
cold physical plasma, maybe, as adjuvant treatment in the
therapy of pancreatic cancer.

Materials and Methods

Cell line and culture. 6606PDA cells (a kind gift from David
Tuveson, John Hopkins University, Philadelphia, USA) have been
isolated from a pancreatic adenocarcinoma of a transgenic C57BL/6
KrasP12G knock-in mouse (37). Primary, non-immortalized murine
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fibroblasts were isolated from C57BL/6 embryos, as previoulsy
described (38). Both cell entities were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal
bovine serum, 100 U/ml of penicillin, and 100 pg/ml of
streptomycin. Cells were subcultured twice a week for up to 10
passages. Cell culture reagents were obtained from Gibco
(Invitrogen; Carlsbad, CA, USA). Cell cultures were kept pathogen-
free in a humidified incubator at 37 °C in an atmosphere of 5 % CO,,
and were regularly tested negative for mycoplasma contamination.

Cold physical plasma. Cold physical plasma (Figure 1) was
generated by the atmospheric pressure argon plasma jet kINPen
MED (neoplas tools; Greifswald, Germany). It has received
accreditation as medical device class Ila (39). Embedded in the
hand-held unit and shielded by a dielectric capillary, the argon gas
(purity greater 99.999%) was excited by a rod-like electrode using
three standard liters of argon gas flow. Application was carried out
from a distance of 5 mm of the plasma tip from the tissue surface.
As sham treatment, argon gas flow alone (without electrical
excitation or plasma generation) was used in some experiments.

Metabolic activity in vitro. For the assessment of metabolic activity
in vitro, 2x103 cells were seeded into each well of a 96-well plate.
After overnight attachment, supernatants were discarded and fresh
cell culture medium was added. Subsequently, the argon plasma jet
was directly hovered over the center of each well for the indicated
time length. In some experiments, the culture medium was
supplemented with the antioxidant N-acetylcysteine (NAC; Sigma;
St. Louis, MO, USA). Following treatment, cells were returned to
the incubator. After 24 h cells were washed, incubated with
resazurin (Alfa Aesar; Ward Hill, MA, USA) for 3 h, and its
transformation to resorufin was determined by fluorescence
measurement in a microplate reader (Tecan; Mainnedorf,
Switzerland) at A.,=535 nm and A,,,=590 nm.

Detection of cell death and apoptosis of 3D multicellular spheres in
vitro. To grow three-dimensional multicellular spheres, 5x105
PDAG6606 cells or fibroblasts were added into cell culture inserts (5
mm plastic templates, self-made) in 12-well plates. After overnight
incubation, inserts were removed and supernatant was exchanged
with 500 pl of fresh medium leaving only a thin liquid film on the
cells. Then, plasma treatment was carried out for 20 sec. The control
group was exposed for 20 sec to argon gas only. After treatment,
cells received 2 ml of fresh medium, and the dish was returned to
the cell culture incubator. Cell death and apoptosis analyses were
performed using allophycocyanin-labeled annexin V and propidium
iodide (both BD Pharmingen; Heidelberg, Germany) at 1, 24, and 48
h following plasma treatment. Briefly, cells were detached with
Trypsin/EDTA, washed, and incubated in annexin V binding buffer
(BioLegend; London, UK) containing annexin V and propidium
iodide. Cells were washed, fluorescent signals were acquired by flow
cytometry (LSR II; Becton Dickinson, Heidelberg), and data were
analyzed using FlowJo software (TreeStar; Ashland, OR, USA).

In ovo tumor-chorio-allantoic membrane (TUM CAM) fertilized
chicken embryo model. Pathogen-free fertilized eggs were obtained
from VALO Biomedia (Osterholz-Scharmbeck, Germany). After
delivery, eggs were incubated for 6 days at 37°C and 65% relative
humidity in a motorized incubator (Thermo-De-Luxe 250; J. Hemel
Brutgerite; Verl, Germany). On day 6, a small hole (<1 mm) was
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Figure 1. The atmospheric pressure argon plasma jet kINPen MED. The
Jjet excites a flux of argon gas at the tip of a rod-like electrode in the
inner part of the head (smaller part on the left of the pen-like housing
at the bottom of the image). The excited argon molecules are driven to
the ambient air, reacting with room air oxygen and nitrogen, to generate
a mixture of reactive oxygen and nitrogen species (violet plasma effluent
at the lower left of the image).

punched into the pointed end of the eggs using a cannula (20G) to
generate an air cell. The hole was then closed with a self-adhesive
tape, and eggs were incubated for two additional days. On day 8, eggs
were carefully opened at the pointed end and the surface of the
chorio-allantoic membrane (CAM) was slightly roughened using a
5x5 mm filter paper (TISSUE-TEK II; Vogel, Germany) saturated
with diethyl ether. Onto this area, a sterile silicone ring was placed
(5 mm inner and 6 mm outer diameter). Thereafter, 2x10° PDA6606
cells or fibroblasts were resuspended in 10 pul BD Matrigel (BD
Biosciences, USA) and 5 pl DMEM. This suspension was carefully
filled into the silicone ring. Eggs were covered with Tegaderm (3M
Healthcare; Neuss, Germany) to avoid evaporation and were returned
to the incubator. On day 12, multicellular spheres were exposed to
plasma in ovo, while controls received argon gas only. Eggs were
placed back into the incubator for another 48 h (Figure 2).

Immunofluorescence and histology. On day 14, multicellular spheres
were excised, stored overnight in formalin, and embedded in
paraffin. Thin sections (2 pm) were cut vertically and mounted on
glass slides. Following deparaffinization with xylene and ethanol
(100%), sections were stained with H&E according to standard
protocols. To quantify apoptotic cells, TUNEL assay
(CALBIOCHEM, Merck, Darmstadt, Germany) was performed
according to manufacturer’s specifications. Using fluorescence
microscopy (Keyence; Neu-Isenburg, Germany) the ratio of
TUNEL-positive (DAPI-positive) cells was determined.

Statistical analysis. Graphics and statistical analyses were
performed using prism 7.04 (GraphPad Software, USA). In vitro
experiments were repeated at least three independent times.
Statistical comparison was performed using multiple #-tests with
Holm-Sidak post-testing correcting for multiple comparisons.
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Figure 2. Experimental design of TUM-CAM in ovo assay. After delivery, eggs were stored in the incubator with intermittent rotation. On day 6,
small holes were punched in the eggshell for creating an air pocket. On day 8, PDA6606 murine pancreatic cancer cells or murine primary
fibroblasts were implanted, and chicken embryos were again incubated. On day 12, cold physical plasma treatment was performed. On day 14,
PDAG6606 or fibroblasts spheres were removed and analyzed via immunofluorescence for apoptosis and histologically.

Significance levels were indicated as follows: *a=0.05, **a=0.01,
and ***a=0.001. Data are shown as individual data points and
mean, or meanzxstandard error.

Results

Cold physical plasma selectively inactivated murine
pancreatic cancer cells over murine fibroblasts via release
of reactive oxygen species in vitro. Cold physical plasma
is a partially ionized gas expelling various reactive
oxygen species (ROS) that have been shown to be toxic
to tumor cells. To address the selectivity of this novel
treatment regimen, the toxicity of cold plasma was
examined using murine PDA6606 pancreatic cancer cells
and murine primary fibroblasts. To this end, the metabolic
activity of cells was assessed 24 h after plasma treatment
of 2D monolayer cell cultures in vitro. Compared to
mock-treated argon gas controls, plasma treatment
significantly reduced metabolic activity of pancreatic
cancer cells but not that of fibroblasts (Figure 3A).
Supplementation with the ROS-scavenging antioxidant N-
acetylcysteine (NAC) reversed plasma-mediated toxicity
in a concentration-dependent manner. At 2 and 4 mmol/l
of NAC, exposure to plasma significantly decreased the
metabolic activity of pancreatic cancer cells compared to
that of murine fibroblasts (Figure 3A). At higher NAC
concentrations, there was still a differential response of
these cell types. Interestingly, the lowest NAC
concentrations nearly abolished plasma effects in
fibroblasts, whereas pancreatic cancer cells were only
partially protected. This difference might offer a
therapeutic window for minimizing potential harmful
effects of plasma treatment in patients by adding small
amount of scavenger. Altogether, these results indicate
that plasma treatment is more toxic to pancreatic cancer
cells than fibroblasts in the presence of NAC.

Cold physical plasma selectively induced apoptosis and
terminal cell death in murine pancreatic cancer cells over

murine fibroblasts in vitro. To investigate cell death in a
more relevant three-dimensional culture system, tumor or
fibroblasts were grown in tissue-like spheres in vitro, before
being subjected to plasma treatment. Spheres were
dissociated and the total percentage of dead and apoptotic
cells was evaluated by flow cytometry. There was a
significant increase of apoptotic cells in plasma-treated
PDA6606 pancreatic cancer cells over primary murine
fibroblasts assayed 24 h and 48 h after plasma treatment
(Figure 3B). Notably, apoptotic rates in fibroblasts decreased
between 24 h and 48 h whereas they were increasing in
pancreatic cancer cells. This suggests stronger counter-
regulation mechanisms in fibroblasts but not in tumor cells.
The significantly elevated percentage of apoptotic fibroblasts
over cancer cells at 1 h may be explained by a higher
percentage of dead fibroblasts in the controls. Since
fibroblasts were isolated from primary murine tissue, they
are more prone to cell culture-induced toxicity. By contrast,
quantifying the percentage of terminally dead (propidium
iodide*) cells at 1 h, PDA6606 pancreatic cancer cells were
found to be significantly more vulnerable (Figure 3C)
compared to murine fibroblasts. This finding became more
pronounced with increasing incubation times of 24 h or 48
h post plasma treatment.

Cold physical plasma elicited apoptosis preferentially in
spheres grown from murine pancreatic cancer cells over that
of primary fibroblasts. Plasma treatment selectively induced
apoptosis of murine pancreatic cells over fibroblasts in a
ROS-dependent manner in 2D monolayers and 3D sphere
cultures in vitro. However, even 3D in vitro tissue cultures
lack parts of the tumor microenvironment in living hosts. To
address this complexity while minimizing the need for
animal experiments (in vivo), the TUM-CAM assay has been
developed which utilizes fertilized chicken embryos
harboring a pre-mature central nervous system up to day 15
(36). Accordingly, we implanted either murine PDA6606
pancreatic cancer cells or murine primary fibroblasts onto
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chorio-allantoic membranes of eggs (in ovo) and assayed the
tissue response following exposure to cold physical plasma.
Counterstaining of nuclei with DAPI and DNA fragments of
apoptotic cells with the TUNEL assay revealed overall
similar spontaneous apoptosis for either of the cell types in
the argon gas mock treatment group (Figure 4). By contrast,
there was a notable increase in apoptosis in PDA6606
murine pancreatic cancer cells over primary murine
fibroblasts following plasma treatment for 10 sec or 30 sec.
Quantifying the percentage of apoptotic cells in both cell
types, fibroblasts were significantly less affected by plasma
treatment compared to cancer cells. Consistent with the in
vitro observations, the in ovo results suggested fibroblasts to
be significantly more resistant to cold physical plasma-
induced apoptosis than pancreatic tumor cells. This was
confirmed by H&E staining of sections of in ovo spheres
exposed either to mock treatment with argon gas or cold
physical plasma. Fibroblast spheres did not show any
morphological changes following 30 sec of plasma treatment
(Figure 5A and 5B). However, plasma treatment of
PDA6606 cells in ovo elicited morphological signs of
apoptotic cell death such as cellular shrinking, condensed
and bright eosinophilic cytoplasm, and pycnotic dark small
nuclei due to chromatin condensation (Figure 5C and 5D).
Nevertheless, the rest of cells retained their malignant
phenotype with some showing mitotic activity. In general, no
inflammatory reaction or large necrotic areas were noted
following plasma treatment.

Discussion

Notwithstanding general translational and clinical progress
in cancer treatment, prognosis for patients suffering from
pancreatic cancer remains very poor. In search of possible
add-on treatment procedures, the toxicity and selectivity of
cold physical plasma in murine pancreatic cancer cells was
investigated and compared to non-malignant, primary
fibroblasts.

Cold physical plasma treatment reduced metabolic activity
and induced apoptosis, as well as early terminal cell death in
pancreatic cancer cells. This is in line with other findings
reporting on pro-apoptotic effects of plasma treatment in
human or mouse cancer cell lines (40-45). We have also
observed apoptosis in COLO-357 tumor spheres grown in
ovo (TUM-CAM) following exposure to an argon plasma jet
earlier (36). It is subject of ongoing research which main
active components in plasmas mediate such biological
response. In principle, cold physical plasmas are multi-
component systems releasing mild heat, electrons and ions,
electric fields, UV-radiation, and reactive oxygen and
nitrogen species (ROS/RNS) (46). In 2D cell culture
systems, adherent cells are covered by cell culture medium
to protect them from drying out. Plasma components need to
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Figure 3. Cold physical plasma reduced metabolic activity and induced
apoptosis in pancreatic cancer cells grown in vitro as 2D monolayers or
3D multicellular spheres. (A) Metabolic activity of PDA6606 murine
pancreatic cancer cells and fibroblasts 24 h post exposure to cold
physical plasma (60 sec) in the presence of ROS-scavenger
N-acetylcysteine (NAC); (B, C) Percentage of annexin V+ apoptotic (B)
and propidium iodide+ terminally dead cells (C) in argon gas control
and plasma-treated (20 sec) PDA6606 murine pancreatic cancer cells
and murine primary fibroblasts grown in 3D multicellular spheres in
vitro. Data show mean + standard error of 4-5 independent experiments.
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Figure 4. Exposure to cold physical plasma elicited apoptosis preferentially in spheres grown in ovo from murine pancreatic cancer cells over that
from primary fibroblasts. (A) Representative images of sphere sections stained for nuclei (DAPI, blue) and apoptotic cells (TUNEL, green); (B)
ratio of TUNEL+ over DAPI+ cells among all treatment groups. Data are from 9-11 tissue sections per group; scale bars represent 50 um, **p<0.01.

travel through this liquid in order to be active. Damaging,
long-lived UV radiation (UV-C) only penetrates in the order
of 100 nm (47), eliminating this possible effector.
Temperature measurements of plasma-treated liquids have
ruled out this mode of action. Electrons and ions quickly
deteriorate at the plasma gas-liquid interphase (48). Electric
fields are negligible with the atmospheric pressure argon

plasma jet kKINPen MED used in this study (49). This leaves
ROS/RNS as main driver of plasma effects in in vitro
cultures. Many kinds of reactive species were so far
identified in plasma-treated liquids (50) including
superoxide, singlet delta oxygen, peroxynitrite, and hydrogen
peroxide (51-54). Disassembling the plasma-derived redox
chemistry was out of the scope of the current study, but
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Figure 5. H&E staining of solid spheres from pancreatic cancer cells and non-cancer spheres of murine fibroblasts. (A, B) showing spindle-shaped
nuclei and bigger intercellular space in comparison to cancer cells (C, D), murine fibroblast spheres grown on chicken embryos in ovo displayed
no differences when comparing argon gas, mock treatment, (A) to 30 sec of cold physical plasma treatment (B); (C) mock-treated, argon gas treated,
cancer cells showed big cell nuclei, tightly stuck together causing small intercellular spaces, mitotic figures (arrowhead) and a strong vascularization
(interrupted line), hallmarks of malignant tissue; (D) after 30 s exposure to cold physical plasma, pancreatic cancer tumors showed signs of cell
death, as seen with generation of apoptotic bodies, pycnotic, dark small nuclei, and a drained cell organization with eosinophilic cytoplasm rests

(arrows). Representative images are shown, original magnification 400x.

results using the clinically established ROS-scavenger NAC
(55) suggested a main role of radical chemistry in cytotoxic
effects. In principal, this accounts also for 3D cell spheres
grown in vitro and in ovo that were not directly protected
from a large liquid film and thus directly accessible to
plasma-derived short-lived radical species.

Apart from plasma and liquid redox chemistry, our results
clearly indicate a selective toxicity of plasma-derived
reactive species towards malignant pancreatic tumor cells
over non-malignant primary fibroblasts. This corroborates
previous findings that demonstrated selective toxicity in
tumor cells using cold physical plasma sources (56-61).
There are different theories of how this selectivity is
achieved with none of them being confirmed so far. One is
the assumption that cancer cells have more aquaporins in
their cell membrane (62). These water channels not only
carry water in and out of cells but also facilitate the uptake
of long-lived plasma-derived oxidants such as hydrogen
peroxide (63). With dry argon as feed gas used in this study,
our plasma jet produces only little hydrogen peroxide in the
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gas phase (64), suggesting that hydrogen peroxide is unlikely
to have a significant contribution in our three-dimensional
model cell spheres. Another theory claims a significance of
membrane-bound catalase for plasma-derived reactive-
species dependent tumor cell kill (65). Specifically, this
enzyme is claimed to protect tumor cells from autocrine
hydrogen peroxide and peroxynitrite-mediated tumor cell
apoptosis. Yet, the in vivo relevance of this mechanism
remains to be established. A third hypothesis attributes a role
to membrane-based cholesterol in dictating the selectivity of
plasma-mediated toxicity in cancer versus non-cancerous
cells (66). However, experimental evidence is missing to
support this theory. A fourth theory is that of “oxidative
balance” (67-69). It proposes that metabolic reprogramming
in cancer cells (e.g. from oxidative phosphorylation in
mitochondria to glycolysis) leads to higher endogenous ROS
levels compared to that of non-malignant cells (70). This
would make cancer cells more prone to ROS-induced cell
death as with cold physical plasma treatment (71). However,
our own data suggest that mitochondria remain an important
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target in cancer cells, also using cold physical plasmas (72).
This is based on the general finding that some types of tumor
cells employ both oxidative phosphorylation and glycolysis
to meet their energy needs (73). Moreover, ROS not only
damage cellular biomolecules but also serve as reactive
agents in thiol-arrays responsible for redox-mediated
signaling function (74). Yet, it remains to be explored which
redox proteins are key switches in translating plasma-derived
ROS into apoptotic responses in malignant over non-
malignant cells.
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