
Abstract. Background/Aim: Ovarian cancer (OC) is a
gynecologic tumor with poor prognosis. Despite radical
cytoreductive surgery and platinum-based adjuvant systemic
treatment, OC will relapse in the majority of the cases. Thus,
cold atmospheric plasma (CAP), a highly reactive physical
state bearing diverse biological activities being suited for
anticancer therapy, may be a promising option in OC
therapy. Materials and Methods: OC cell lines were exposed
either directly to the CAP or to cell culture medium
previously exposed to CAP. Cell proliferation and cell
motility was measured. Results: The data demonstrated, that
even a single application of a short-term CAP treatment led
to an attenuation of OC cell growth and motility. Moreover,
incubation with CAP-treated cell culture medium gave
similar effects. Results were consistent in four OC cell lines.
Conclusion: In summary, the CAP application in oncological
surgery leads to strong anti-proliferative effects and opens
up novel opportunities for the OC treatment.

Although ovarian cancer (OC) ranks eighth among the most
common female malignancies, it is the fifth cause of death
from cancer in women (1). This discrepancy is largely
attributed to the fact that the majority of patients present with

advanced disease at the time of diagnosis. OC entities are
composed of several sub-types with widely differing
clinicopathological, genetic, and molecular features (2). The
pronounced morphologic and molecular heterogeneity
combined with non-specific symptoms in already advanced
stages hinders striking OC therapy strategies in most of the
cases.

OC therapy consists of an upfront surgery aiming at
macroscopic complete resection and combined platinum-
based chemotherapy with carboplatin and paclitaxel and,
most recently, bevacizumab (3). Despite radical
cytoreductive surgery and platinum-based adjuvant systemic
treatment, OC will relapse in the majority of cases.

Based on studies on other cancer entities including prostate
and breast cancer (4-6) as well as different OC cell lines in
vitro and in vivo (7-11), the application of cold atmospheric
plasma (CAP) may become a promising option for OC
therapy, particularly for intraoperative application adjacent to
critical sites. CAP is defined as a highly reactive partially
ionized physical state containing diverse biologically reactive
factors including reactive oxygen and nitrogen species (ROS,
RNS). This broad spectrum of bioactive agents in combination
with charged particles, electric field and shock waves is not
achievable with any other therapeutic method. Biological
efficacy of CAP is primarily characterized by cell type-
specific cell growth modulation, promotion of wound healing
and scar formation, activity against microorganisms and
viruses, and the modulation of inflammation, leukocyte
behaviour, and apoptosis (5, 6, 12-19). Notably, due to a
weaker antioxidant capacity, CAP selectively attacks cancer
cells and induces immunogenic cell death with potentially
improve the imunnogenicity of cancer cells (20, 21). 

In the presented study, we performed proof-of-concept
experiments for the application of CAP in OC treatment in vitro.
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Materials and Methods

Cell culture and CAP treatment. The OC cell lines OVCAR-3 (Cell
Lines Service, Eppelheim, Germany), SKOV-3 (Cell Lines Service,
Eppelheim, Germany), TOV-21G (American Type Culture
Collection, Manassas, VA, USA), and TOV-112D (American Type
Culture Collection, Manassas, VA, USA) were propagated in RPMI
1640 medium (Biochrom, Berlin, Germany) supplemented with
10% fetal bovine serum (Biochrom, Berlin, Germany), 0.125%
gentamicin (Ratiopharm, Ulm, Germany), and 0.1% insulin (Novo
Nordisk, Mainz, Germany) (OVCAR-3), DMEM/F12 (Life
Technologies, Darmstadt, Germany) containing 5% fetal bovine
serum (Biochrom, Berlin, Germany), and 0.125% gentamicin
(Ratiopharm, Ulm, Germany) (SKOV-3), and MCDB105 (tebu-Bio,
Offenbach, Germany)/medium 199 (Biochrom, Berlin, Germany)
mixture containing 15% fetal bovine serum (Biochrom, Berlin,
Germany), and 0.125% gentamicin (Ratiopharm, Ulm, Germany)
(TOV-21G, TOV-112G), respectively. Cells were passaged twice a
week in a humidified atmosphere at 37˚C and 5% CO2.

For CAP treatment, 3.0×104 cells in 500 μl cell culture medium
were treated with CAP for indicated times with the atmospheric
pressure argon plasma jet kINPen MED (neoplas tools, Greifswald,
Germany) at three standard liters per minute, 65 V supply voltage
and 1.1 MHz frequency. After CAP exposure, cells were incubated
for 120 h. Control cells were treated with argon gas. Alternatively,
cell culture medium was exposed to CAP and subsequently diluted
with cell suspension 1:2.

Proliferation assay. Cellular growth was assessed by use of a CASY
Cell Counter and Analyzer Model TT (Roche Applied Science,
Mannheim, Germany). Cells were diluted in CASYton solution
(1:100, Roche Applied Science) and 400 μl of cell suspension were
measured in triplicates using a capillary of 150 μm in diameter and
gate settings of 9.00 μm/15.75 μm (OVCAR-3), 7.00 μm/15.15 μm
(SK-OV-3), 5.25 μm/10.15 μm (TOV-21G), and 6.15 μm/11.00 μm
(TOV-112D).

Cell motility assay. A total of 1.0×105 cells per well were CAP
treated for 15 s (OVCAR-3, SKOV-3, TOV-21G), and 30 s (TOV-
112G), seeded in a 24-well cell culture plate and incubated at 37˚C
and 5% CO2 for 24 h. Subsequently, cell layers were scratched with
a 200-μl pipette tip and imaged for 48 h in a life cell imaging setup
at 37˚C and 5% CO2. Light microscopical analysis in an Axio
Observer Z1 microscope (Carl Zeiss, Oberkochen, Germany) was
performed every 6 h and cell translocation into the cell-free scratch
was analyzed using ZEN pro 2012 software (Carl Zeiss,
Oberkochen, Germany). Cell motility was expressed as a relative
decrease of the cell-free space (cell-free growth area) of the scratch
compared to t=0.

Statistics. Data are given as the mean±standard deviation (SD).
Statistical comparison was performed using the unpaired Student’s
t-test. p≤0.05, p≤0.01, and p≤0.001 were considered as significant.

Results
CAP exposure leads to anti-proliferative effects on OC cells.
The anti-proliferative efficacy of CAP was dependent on
treatment duration as well as on the used OC cell line.
Generally, growth inhibition after CAP treatment increased

with the length of the treatment (Figure 1). TOV-21G cells,
however, appeared more sensitive to CAP because their
proliferation was significantly inhibited after 10 s and 15 s,
respectively (Figure 1G-I). In contrast to TOV-21G cells,
TOV-112G cells demonstrated reduced sensitivity to CAP,
resulting in prolonged treatment exposure of 10 s, 20 s, and
30 s (Figure 1J-L) for similar effects compared to the other
OC cell lines.

The anti-proliferative efficacy of CAP treatment depends
on the cell culture medium composition. To investigate
CAP’s indirect impact on OC cells via CAP activated
biofluids, cell culture medium was treated as mentioned
above followed by an incubation of untreated OC cells
with treated medium for 120 h. Neither medium A (DMEM
F12; Figures 2 A to C) nor medium B (MCDB105/Medium
199; Figures 2 D to F) interfered with OC cells after CAP
activation (Figure 2). The volume of treated medium was
not important in mediating CAP-dependent effects.
Performing these experiments using 1000 μl of CAP
treated medium A and medium B, respectively, gave no
growth deceleration (data not shown). Only medium C
(RPMI 1640; Figure 2 G to I) conveyed CAP effects on
OC cells and inhibited untreated OVCAR-3 cells after
CAP treatment of 200 μl of medium. Again, application of
1000 μl of CAP treated medium C demonstrated very
similar effects on OC cell growth (Figure 2J-L).

CAP exposure inhibits the cellular motility of OC cells.
Beside cellular growth, the complex network of cellular
motility, invasion, and metastasis is one of the primary
hallmarks of cancer. Performing scratch assays with CAP-
treated OC cells, anti-metastatic efficacy of CAP has been
demonstrated. Specifically, SKOV-3 (Figure 3B) and TOV-
21G (Figure 3C) cells showed an attenuated but non-
significant influx into scratched areas. In contrast, CAP
treatment of OVCAR-3 (Figure 3A) and TOV-112G (Figure
3D) cells significantly inhibited the motility of both cell lines
over a period of 48 h.

Discussion

First, in 2012, Iseki et al. have suggested anti-proliferative
CAP effects on OC cell lines SKOV-3 and HRA (22). The
authors demonstrated a reduced cell metabolic activity 72 h
after CAP exposure in both cell lines, pointing to a declined
cellular viability. Omran et al. confirmed with a transporting
and flexible plasma jet the eradication of OC cells in vitro
(11) and Utsimi et al. demonstrated anticancer effects of
CAP-activated medium on chemoresistant OC cells in vitro
and in vivo (8, 9). Notably, the more aggressive population
of OC cells derived from patients ascites was more sensitive
to CAP treatment than the less aggressive type (10).
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In our study, we performed CAP exposure experiments
utilizing the OC cell culture model consisting of SKOV-3,
OVCAR-3, TOV-21G, and TOV-112G cells, which
represents a well-characterized established in vitro model
particularly in the field of OC treatment resistance and
cancer progression research (23-26). Our data demonstrated
remarkable anticancer effects over a period of 120 h by cell
counting, indicating direct cell number alterations. As
expected, the anti-proliferative efficacy of CAP was
dependent on the individual OC cell type and the exposure
time, reflecting OC heterogeneity and dose-response effects.
A decrease in scratch re-population was observed for all four
OC cell lines. Moreover, CAP effects could be indirectly
transferred to cells by treatment of the cell culture medium.
This effect did not interfere with the liquid volume which
has been treated with CAP, but with the chemical

composition of the medium. Even though the protein
composition in cell culture medium remains unchanged after
CAP exposure (27), however, several biologically effective
species are generated, e.g. superoxide (O2–), singlet oxygen
(1O2), hydrogen peroxide (H2O2), and ozone (O3) (28).
Consequently, physical parameters of the medium which
determine cellular viability, e.g. pH, electrical conductivity,
and UV transmittivity, may be affected by CAP treatment
according to the composition of the cell culture medium. As
a result, reactive species together with critical changes in
liquid physics might enable to mediate CAP’s efficiency
even indirectly (27, 29, 30). Due to the high content of
amino acids, vitamins, and other organic compounds and due
to the higher buffer capacity of DMEM compared to RPMI
(31), DMEM medium appears more appropriate to neutralize
CAP effects in liquids. In the clinical context, coagulating
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Figure 1. Anti-proliferation after CAP treatment of OC cells. OC cells OVCAR-3 (A-C), SKOV-3 (D-F), TOV-21G (G-I), and TOV-112G (J-L) were
exposed to CAP (CAP) for 5s, 10 s, and 15 s (OVCAR-3, SKOV-3, TOV-21G) and 10 s, 20 s, and 30 s (TOV-112G), respectively, and cell counts
were performed at the indicated time points. Control cells (Contr) were treated similarly with argon carrier gas. Data are given as the mean±SD
with p≤0.05 (*), p≤0.01 (**), and p≤0.001 (***) as determined by the Student’s t-test.
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Figure 2. Indirect CAP effects of CAP-treated cell culture media on untreated OC cells. Untreated OC cells SKOV-3 (A-C), TOV-21G (D-F), and
OVCAR-3 (G-L) were incubated with medium A (DMEM/F12; A-C), medium B (MCDB105/Medium 199 mixture; D-F), and medium C (RPMI 1640;
G-L), respectively, which were exposed to CAP for 5 s, 10 s, and 15 s, respectively, and cell counts were performed over a period of 120 h at the
indicated time points. In control samples (Contr), media were treated similarly with argon carrier gas. Incubation experiments were performed
using 200 μl (A-I) and 1000 μl (J-L) of CAP treated media. Data are given as the mean±SD with p≤0.05 (*), and p≤0.01 (**) as determined by
Student’s t-test.

Figure 3. Cell motility inhibitory effects of CAP on OC cells. OVCAR-3 (A), SKOV-3 (B), TOV-21G (C), and TOV-112G (D) cells were exposed to
CAP for 15 s (OVCAR-3, SKOV-3, TOV-21G), and 30 s (TOV-112G), respectively, and propagated in 24-well cell culture plates for 24 h.
Subsequently, monolayers were scratched and imaged for up to 48 h in a life cell imaging setup. Light microscopical analysis was performed every
6 h and cell translocation into the cell-free scratch was expressed as relativ decrease of the cell-free space of the scratch compared to t=0. Control
cells (Contr) were treated similarly with argon carrier gas. Data are given as the mean±SD with p≤0.05 (*), and p≤0.01 (**) as determined by the
Student’s t-test.



effects of CAP will also play an important role. CAP
treatment efficiently achieves blood coagulation without
thermal effects (32) and, thus, intraoperative CAP
applications would primarily be restricted to the site of
surgery without subsequent systemic effects. Moreover,
previous studies demonstrated the kINPen Med CAP being
genotoxically safe (33, 34).

First hints were generated to the mode of action of CAP
suppressing ovarian and breast cancer cell growth.
Macranthoside B, a saponin compound with anticancer
efficacy, blocks proliferation and induces apoptosis of OC
cells via reactive oxygen species accumulation (35). These
findings, when considered together with the study of Yan et
al. demonstrating that CAP treatment generated reactive
oxygen species at the micromolar level (36), may provide a
new prospective to understand the interaction between CAP
and cancer cells.

In summary, the CAP application in oncological surgery
opens up novel opportunities for OC therapy. The study
presented here demonstrated that even a single application of
a short-term CAP treatment leads to attenuation of cell growth
as well as to inhibition of the metastatic capability of OC cells.
The study, however, is limited by its restriction to an in vitro
cell culture model. Consequently, semi-in vivo tests, e.g. the
hen’s egg test-chorio allantoic membrane (HET-CAM) and
animal models, are needed to confirm these results.
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