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Abstract. The intracellular redox balance (redox status) is
a dynamic system that may change via many factors.
Mitochondria are one of the most important among them.
These organelles are the main intracellular source of energy.
They are essential for maintaining cellular homeostasis due
The
mitochondrial dynamics change during cellular activities

to regulation of many biochemical processes.

and in some cases, can cause an overproduction of reactive
oxygen species (ROS), which encourages the induction of
oxidative DNA damage and up- or down-regulation of
phosphatases,  proliferative/anti-proliferative  factors,
apoptotic/anti-apoptotic factors, etc. Moreover,
mitochondrial dysfunction and redox imbalance can
continuously support and contribute to a wide range of
pathologies, termed as “free radical diseases” (e.g., cancer,
neurodegeneration, atherosclerosis, inflammation, etc.). This
review article is focused on the mitochondrial dysfunction
and cellular redox status as a hallmark of cell homeostasis
and diagnostic marker of cancer. It is intended to broad
readership — from students to specialists in the field.
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Reactive Oxygen Species, Redox
Imbalance and Oxidative Stress

Maintaining the level of reactive oxygen species (ROS) in a
balanced state and proper functioning of redox systems are
crucial for redox status in the living cells. In the organism,
the redox balance is based on the generation and elimination
of ROS by endogenous and exogenous sources (1). Normal
cells of healthy mammals are characterized by low steady-
state levels of ROS and constant levels of intracellular
reducing equivalents (2). ROS are universal products of
aerobic metabolism, which can be generated during cellular
respiration or as a result of specific enzymes that seem to be
centrally involved in redox signalling (3, 4). The balance
between generation of ROS and their neutralization by
endogenous cellular defense mechanisms is crucial for
maintaining normal cell homeostasis, because some types of
ROS (e.g., superoxide, hydrogen peroxide, nitric oxide)
serve as signaling molecules (5, 6). Low/moderate levels of
ROS are involved in normal biochemical pathways: (i)
cellular response against infections; (ii) intercellular
recognition and signal transduction; and (iii) induction of
mitogenic response (7-9). Abnormal generation of ROS
induces oxidative stress and “free radical pathologies” via
damages of biological macromolecules and genotoxicity
(10). The carcinogenesis is a classical example. As a result
of intracellular redox imbalance, the abnormal levels of ROS
may lead to cell dysfunction — inhibition of protein
phosphatases and activation of protein kinases, malignant
transformation and tumor development and progression (11,
12) (Figure 1). These events are accompanied by activation
of transcription and translation factors, accumulation of
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defective proteins, and adaptation to high levels of ROS and
resistance to ROS-dependent apoptosis — a common
behaviour of all cancer cells (13). Many authors indicate that
the oxidative stress is a direct or indirect result of ROS-
mediated damage on biological macromolecules and a major
factor not only for -carcinogenesis, but also for
neurodegeneration, cardiovascular disease, inflammation,
atherosclerosis, diabetes, aging, etc. (14-20).

The disruption of cellular homeostasis by activation of
oncogenes, mitochondrial dysfunction and/or oxidative stress
leads to an increased genomic instability and the target cells
are able to adapt to the changing environment (21). As a
result, we observe several events: enhancement of cell
proliferation, angiogenesis, and metastatic potential, which
induces cancer development (22). In turn, chronic
inflammatory processes, caused by biological, chemical, and
physical factors, are also associated with an increased risk
of developing a variety of malignancies (Figure 2) (23).

Historical origins of the concept of redox status used to
determine the ratio between the mutually convertible
oxidized and reduced forms of a specific endogenous redox-
pairs relative by the Nernst equation (24). In addition to
determination of the redox potential of different redox-pairs,
the Nernst equation can be an instrument for providing a
quantitative assessment of various intracellular redox
systems and to evaluate the cellular redox status (25). At a
later stage, the “redox status” as a term in redox biology and
medicine is widely used to describe oxidation-reduction
changes, caused by free radicals and oxidative stress.

Cancer and non-cancer cells are characterized by an
entirely different redox status, which is the basis of
diagnostics and development of new therapeutic strategies.
It is widely accepted that a moderate increase in ROS can
promote cell proliferation and differentiation, but extremely
excessive amounts of ROS can cause irreversible oxidative
damages of biomacromolecules, apoptosis and cell death
(26). Therefore, maintaining ROS homeostasis at low levels
is crucial for normal cell survival, while the moderate
enhancement of ROS is associated with adaptation, abnormal
cancer cell growth and conservation of redox imbalance.
Prolonged operation of cells at abnormal steady-state levels
of ROS provokes genetic mutations, which makes them well-
adapted to oxidative stress. This process is in the basis of
malignant transformation. The cancer cells develop an
enhanced endogenous antioxidant capacity. The cells that
survive intrinsic oxidative stress mobilize a set of adaptive
mechanisms, which not only activate ROS-scavenging
systems to fight with the oxidative stress, but also to inhibit
apoptosis. Recent evidences suggest that such adaptation
contributes to malignant transformation, metastasis and
resistance to anticancer drugs (26-30).

Which is the main endogenous source of ROS and how
the substantial biochemical difference between normal and
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cancer cells and tissues could be used as a diagnostic marker
and therapeutic target?

Role of Mitochondria in “Free Radical Pathologies”

Mitochondria play a central role in the regulation of cellular
bioenergetics, which is responsive to changes in the
environment, caused by hormones, nutrients, partial oxygen
pressure, oxygen amendments and others (31, 32). They are
essential for cell viability. However, mitochondrial gene
mutations, which are often found in cancer cells, can impair
mitochondrial ~energy metabolism or mitochondrial
bioenergetics and biosynthesis, change the status and serve as
a trigger of mitochondrial “retrograde signaling™ of the nucleus
(33, 34). The mitochondrial redox control is important not only
for oxidative phosphorylation, ATP synthesis, calcium
homeostasis, thermogenesis, apoptosis and ROS production, but
it affects the redox balance of the entire cell (35). Mitochondria
not only provide energy for the cell, but also participate in many
other cellular functions, including calcium signalling, membrane
potential regulation, heme and steroid synthesis, cell
proliferation, apoptosis, efc. (36). Thus, mitochondria are the
main source of intracellular ROS (e.g., superoxide and
hydrogen peroxide) (Figure 3) (26, 37-41). The production of
ROS in mitochondria is tightly regulated by the mitochondrial
superoxide dismutase (SOD2) and glutathione-peroxidase
(GPx), as well as by catalase and non-enzymatic antioxidants.

Overproduction of ROS in mitochondria and alteration of
mitochondrial dynamics can promote carcinogenesis through
suppression of complex I, induction of oxidative mitochondrial
DNA damage, increased excessive calcium ion influx,
inhibition of key phosphatases, induction of key kinases and
transcription factors (42, 43). Data indicate also a key role of
mitochondrial dysfunction in cardiovascular pathology and
aging. Mitochondrial damage could trigger ROS
overproduction, leading to detrimental structural and functional
effects on the cardiovascular system (44). An increasing
number of studies have demonstrated that mitochondrial
oxidation of thiol-containing proteins is a major event in
myocardial infarction and stroke. A basic characteristic of heart
diseases, accompanied by oxidative stress, is mitochondrial
dysfunction due to formation of ROS during reperfusion (45).
Similar picture has been observed in aging, diabetes,
atherosclerosis and neurodegeneration (46-49).

Substantial efforts were made in the understanding of the
role of mitochondrial dysfunction and oxidative stress in
these “free radical diseases”. Different theories of aging have
been proposed by many researchers, including free-radical
and mitochondrial theories of aging. Currently, one of the
most widely-accepted explanations for the cause of aging is
the gradual accumulation of dysfunctional mitochondria and
oxidative damage with age (29). This mechanism is also one
of the most widely discussed in carcinogenesis.
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Figure 1. ROS-dependent malignant transformation in cells — a potential mechanism.

Models of Oxidative Stress and Mitochondrial
Dysfunction in Living Cells

Many studies suggest that superoxide has been implicated in
the pathogenesis, while hydro-gen peroxide has been
implicated in the apoptosis (50). Because the mitochondrial
ROS are essential for both processes, cell signaling
regulation and ROS-induced damage, we need a more
detailed understanding and developing of methods for
detection of redox dynamics in living organisms.

The most popular approach is to use a specific selective
mitochondrial inhibitor to block electron leakage, especially
from complex-I or complex-1II of the electron-transport
chain, e.g., antimycin A, cyanide, rotenone, myxothiazol, and
oligomycin (51-59). Many researchers have used such
experimental models of mitochondrial dysfunction to enhance
drug-induced apoptosis in isolated mitochondria or intact
cells. These studies were conducted to investigate the
mitochondrial pathology and related oxidative damages (55,
60, 61). Mitochondrial in-hibitors of complex-I and complex-
III cause a rapid increase in intracellular Ca2*, disruption of
mitochondrial potential and depolarization of the

mitochondrial membrane (59). For ex-ample, cyanide as an
inhibitor of complex IV binds to the cytochrome ¢ oxidase
heme a3-CuB binuclear center to inhibit oxygen utilization in
cells and compromises the oxidative phosphorylation and
ATP synthesis (62-64). As a result of cytochrome ¢ oxidase
inhibition, a cascade of reactions is initiated, which leads to
mitochondrial ~ electron  transport  inhibition  and
overproduction of ROS at complexes I and III (65).
Rotenone, cyanide, myxothiazol and oligomycin significantly
inhibit resting background K* by simulating the effects of
hypoxia, in which leads to membrane depolarization (59).

In 2003, Pelicano et al. have described a basic strategy for
exogenous induction of mitochondrial dysfunction in living
cells, accompanied by overproduction of superoxide (Figure
4) (55). The authors have used simultaneously two specific
compounds — rotenone and 2-methoxyestradiol (2-ME).
Rotenone is an inhibitor of the electron flow through com-
plex I and causes generation of superoxide. 2-ME is an
inhibitor of mitochondrial SOD (Mn-SOD) and causes a
further accumulation of superoxide. The combination of both
leads to abnormal generation of superoxide radicals in the
cells (55).
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Figure 4. Experimental model for induction of mitochondrial dysfunction, overproduction of superoxide and oxidative stress by treating cells with

rotenone and 2-methoxyestradiol.
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Figure 5. Schematic presentation of the redox transformations of nitroxide radical in bio-logical systems.

Rotenone is a naturally-derived plant compound (66). Its
main effect is to increase the pro-duction of mitochondrial
ROS and to decrease the mitochondrial membrane potential
and cellular ATP levels (67, 68). It can prevent a transfer of
electrons from the Fe-S center of the mitochondrial NADH-
dehydrogenase (complex I) to ubiquinone. As a result,
rotenone de-creases overall ATP production and at the same
time leads to production of abnormal levels of superoxide.

The low levels of ATP and increased superoxide cause
oxidative stress in the cells and consequently result in cell
death (69). A number of commentaries have shown that
rotenone is able to induce apoptosis via abnormal
mitochondrial ROS generation in a variety of cells. The
rotenone-dependent mitochondrial ROS induce apoptosis by
DNA fragmenta-tion, cytochrome c release, and caspase 3
activation (70). The inhibition of neuronal mito-chondrial
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complex I with rotenone leads to an enhanced extracellular
production of superox-ide and was primarily mediated by
microglial NADPH-dependent oxidases in mice (71).

2-ME is a natural endogenous metabolite of 17(3-estradiol
that exerts anti-proliferative, anti-angiogenic, pro-apoptotic
and transcriptional activity in various cells, including
induction of cell-cycle arrest (72-76). Experiments have
demonstrated that 2-ME is involved in the inhibi-tion of the
polymerization of tubulin in vitro, thus disrupting normal
microtubule function (77). Also, 2-ME leads to inhibition of
mitosis at the metaphase and as a consequence — to the
inhibition of cell proliferation and induction of apoptosis (78).
2-ME has been reported to have unique properties including
cytotoxic, anti-proliferative and apoptotic effects in a vari-ety
of malignancies (79). 2-ME can also stimulate pro-apoptotic
factors and production of intracellular ROS. Another
mechanism of action involves the inhibition of hypoxia-
inducible factor (HIF) and interference with mitochondrial
function by related compounds, which are inhibitors of
complex I of the mitochondrial electron-transport chain (77).
Specifically, 2-ME has been reported to inhibit the Mn-SOD,
resulting in the release of cytochrome ¢ from mitochondria
and finally, in stimulation of caspases and generation of
abnormal superoxide production (55, 80, 81). Thus, the
treatment of cells with combination of rotenone and 2-ME is
one of the best models for induction of mitochondrial
dysfunction and oxidative stress in living cells.

Nitroxides as Redox Sensors for
Detection of Mitochondrial Dysfunction
and Oxidative Stress in Cells and Tissues

The cyclic nitroxides, also known as aminoxyls, are stable
free radicals that have unique chemical and biochemical
properties. They are widely used as probes for measurement
of oxygen, glutathione, pH change and redox status in living
cells and tissues (82, 83). Nitroxide radicals are organic
compounds containing an aminoxyl group (N-O%) and have
been used for many years as biophysical tools, due to the
ability to interact with free radicals (Figure 5). They are
stabilized by methyl-groups at the o-position in five-
membered pyrrolidine and six-membered piperidine ring
structures. Methyl-groups could be substituted with other
groups (-R) on the ring. This produces a diverse range of
compounds allowing modulation of specific properties (e.g.,
hydrophobicity, intracellular delivery, delivery across blood-
brain barrier, efc.) and stability to reduction. For example,
TEMPO derivatives with different substitutes at 4-position
in the ring could influence the ROS scavenging activity and
time for interaction with superoxide (84).

Many researchers have reported that stable nitroxide
radicals are appropriate redox sensors for ROS imaging and
undergo bioreduction to hydroxylamine derivatives, which
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can react with superoxide (85-87). For example, nitroxides
as mito-TEMPO and mito-carboxy-PROXYL are
mitochondria-targeted derivatives of TEMPOL and carboxy-
PROXYL, which currently are widely used as redox-sensors
for detection of abnormal superoxide generation in living
cells and tissues (2, 28, 37, 88-91).

During the past 15-20 years, most studies have focused
towards the biochemical interactions, biologically-relevant
effects, and diagnostic and therapeutic applications of
nitroxides. These studies generally describe their ability to
degrade superoxide and hydroperoxides, to inhibit Fenton
reactions and to undergo radical-radical recombination.
Furthermore, they can alter the tissue redox status and to
change the metabolic processes (92).

In vitro studies have demonstrated that various reducers
or oxidizers may convert the contrast form of nitroxide
radical to non-contrast hydroxylamine, which depends on
physiological conditions (2, 28, 91, 93). Figure 5 shows the
transformations between the oxidation radical state of
nitroxide, hydroxylamine, and oxoammonium states. The
radical and oxoammonium forms act as an efficient redox-
pair via reversible one-electron redox reactions, while
hydroxylamine and nitroxide radical forms do not constitute
an effective redox-pair. This feature determines nitroxide
radicals as perfect compounds for imaging of intracellular
redox balance (92, 94). This redox cycle can be detected,
using magnetic resonance imaging techniques as electron-
paramagnetic resonance (EPR) spectroscopy and imaging
(EPRI), as well as magnetic resonance imaging (MRI).

In the living systems, under physiological conditions,
nitroxide radical (which possesses EPR and MRI contrast)
undergos one-electron reduction to hydroxylamine (which is
non-contrast form). Those reactions are reversible (93). The
balance between oxidized and re-duced forms depends on the
environment and especially from the oxygen availability,
super-oxide production and status of the endogenous redox-
pairs (e.g., NADH/NAD*, NADPH/NADP", ascorbate/
dehydroascorbate, efc.), which leads to reduction of nitroxide
radical or oxidation of hydroxylamine. Thus, the ratio between
radical and hydroxylamine forms directly depends on the
redox status of the cells and tissues. Since only the radical
form is characterized by EPR/MRI contrast, this could be used
as a quantitative marker for the as-sessment of the redox status
in biological objects in vitro and in vivo (91). Many excellent
review articles have described this possibility (92, 95-98).

In conclusion, many researchers are focused on the
differences between the redox status of normal and cancer
cells and a variety of other pathologies, accompanied by high
levels of ROS and disturbance of the intracellular redox
homeostasis. Mitochondria are considered the main sources of
intracellular ROS and as such they are essential for the
functioning of normal and cancer cells. Recently, increasing
studies are directed to detection of redox status of cells, tissues
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and body fluids. Development of various methodologies,
including EPR spectroscopy and MRI in combination with
nitroxide radicals as redox-responsive contrast substances, can
improve the diagnosis of many diseases, characterized by
mitochondrial dysfunction and re-dox imbalance.
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