
Abstract. Cancer heterogeneity may reflect differential
dynamical outcomes of the regulatory network encompassing
biomolecules at both transcriptional and post-transcriptional
levels. In other words, differential gene-expression profiles
may correspond to different stable steady states of a
mathematical model for simulation of biomolecular
networks. To test this hypothesis, we simplified a regulatory
network that is important for soft-tissue sarcoma metastasis
and heterogeneity, comprising of transcription factors,
micro-RNAs, and signaling components of the NOTCH
pathway. We then used a Boolean network model to simulate
the dynamics of this network, and particularly investigated
the consequences of differential miRNA degradation modes.
We found that efficient miRNA degradation is crucial for
sustaining a homogenous and healthy phenotype, while
defective miRNA degradation may lead to multiple stable
steady states and ultimately to carcinogenesis and
heterogeneity.

Heterogeneity is one of the key features of cancer. Even for
cancer cells of the same tissue, their gene expression profiles
show great heterogeneity. We hypothesize that these
heterogeneous expression profiles correspond to different
steady states of the biomolecular network underlying cancer
development. In normal cells, the network dynamics
converge to only a few steady states (e.g. states A, B and C),
and only one steady state (e.g. state A) is actually viable. For
example, if state A corresponds to the viable phenotype, then
cells of states B and C would possess some kind of defect
and have to undergo apoptosis. As a result, normal cells
manifest great homogeneity. In comparison, cancer signaling

networks may possess many more steady states (e.g. 100
steady states). Although some of these correspond to non-
viable phenotypes, there are still many steady states (e.g.
states A, B, C, D, E, F) corresponding to viable and robust
phenotypes, such as, for instance, six abnormal gene-
expression patterns that govern carcinogenesis. The tumor,
thus consists of cells of heterogeneous gene expression: a
cell can adopt any one of the six gene-expression profiles.

In the present article, we use soft-tissue sarcomas (STS)
as an example to test the above hypotheses through
computational modeling of the cancer signaling network.
STS are heterogeneous cancers of mesenchymal tissues,
comprising more than 50 histological subtypes derived from
muscle, fat, blood vessels, nerves, tendons and the synovia.
Some 40% to 50% of patients with STS will develop lethal
metastases (1). Soft-tissue sarcoma is notoriously
heterogeneous–even cells of the same subtype of STS have
significantly different gene expression (2, 3). After
examining a variety of STS gene expression profiles,
Samantarrai et al. found that the NOTCH signaling pathway
is markedly aberrant in STS cells (4). The aberration extends
to regulators of NOTCH signaling, including transcription
factors (TF) such as Finkel-Biskis-Jinkins murine
osteosarcoma viral oncogene homolog (FOS), v-rel avian
reticuloendotheliosis viral oncogene homolog A (RELA),
tumor protein p53 (TP53), v-myc avian myelocytomatosis
viral oncogene homolog (MYC) and micro-RNAs (miRNAs)
such as miR-20b, miR-21, miR-29b, miR-34a. This greater
NOTCH signaling pathway was illustrated elsewhere [Figure
3 of (4)]. To highlight these regulatory steps (TF → gene, TF
→ miRNA, miRNA → gene), we simplified the greater
NOTCH signaling network into a core network comprising
of 12 nodes and 26 edges (Figure 1). We refer to this
simplified version as the miRNA-TF-NOTCH network
throughout the present article. We then used a Boolean
network model to simulate the dynamical changes of the
miRNA-TF-NOTCH network, namely the ON/OFF switches
of all the 12 nodes through a succession of discrete time
steps. For this network, we found that the dynamical changes
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always converge to a steady state. Because the steady states
are not unique, the actual steady state at which the dynamics
finally arrive will depend on the initial state at which the
simulation began. We use the total number of steady states
to measure the degree of heterogeneity. 

Given the importance of miRNA degradation in STS
development and metastasis, we investigated how the modes
of degradation influence network dynamics, especially with

regard to the number of steady states. We considered the two
following modes of degradation: Mode 1: miRNAs undergo
efficient self-degradation. Mode 2: miRNAs are stable by
default; they may degrade only after interacting with other
molecules (5-8). The network dynamics differs under the two
modes of miRNA degradation. We used computer simulation
to compare the two dynamics, which revealed their possible
correspondence with physiological or various pathological
phenotypes. 

Materials and Methods

The Boolean network model. Given the complexity of biomolecular
networks, mathematical modeling based on traditional differential
equations is difficult to use to obtain the system’s steady state in an
acceptable time. We thus use logic-based (Boolean) approaches to
model biomolecular networks here. A Boolean network consists of
N kinds of interacting molecules, each of which is modeled as being
either ON (active) or OFF (inactive). At any given time, these
ON/OFF combinations constitute a network state. Over time, the
system dynamically changes from one network state to another,
depending on the interactions between the molecules. Thus, from a
given state at the start, there is a well-defined sequence of network
states that finally converge to a fixed network state (known as the
attractor in dynamical systems theory). 

The dynamics of a Boolean network model (determining the next
state from the current state) can be described as follows (9, 10):
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Figure 1. The miRNA-transcription factor (TF)-NOTCH network. The
nodes represent biomolecules. The red and green arrows represent
inhibition and stimulation, respectively.

Figure 3. State transition portrait of the miRNA-transcription factor
(TF)-NOTCH network obtained with miRNA degradation mode 2. The
biological meanings of the dots and arrows are the same as in the
legend to Figure 2. The 212=4096 states converge to 58 steady states.
The identities of the nine steady states with the largest basin sizes are
presented in Table III.

Figure 2. State transition portrait of the miRNA-transcription factor (TF)-
NOTCH network obtained with miRNA degradation mode 1. Because
there are 12 nodes with each having two states, there are 212=4096
possible states (indicated by the blue dots). Most of the states are
temporary; they transit step by step following the orange arrows towards
the final steady state. There are only nine steady states, denoted by A, B,
…, I. The identities and basin sizes of these nine steady states are
presented in Table II. A basin size of a steady state refers to the number
of states that converge to the steady state. For example, there are 2764
states converging to steady state A, therefore A has 2764 as its basin size.



(eq.1)

where rji represents an inhibitory (red) arrow from node j to node i;
gji represents a stimulatory (green) edge from node j to node i;
“addition” represents the Boolean operator OR; “multiplication”
represents the Boolean operator AND; the bar on a variable
represents the Boolean operator NOT. Note that rii represents self-
degradation of node i. Indeed, a molecule does not inhibit itself, thus
rii represents degradation instead of inhibition. An edge is defined as
active at time t only when its source node is active at time t. For
example, gji=1, sj(t)=1, sj(t’)=0 means that there is a green edge
from node j to node i, and the edge is active at time t and inactive at
time t’.

Figure 1 depicts an example: r28=1 and g28=0 because there is a
red arrow pointing from node 2 to node 8; r59=0 and g59=1 because
there is a green arrow pointing from node 5 to node 9. Figure 1 does
not provide information of degradation, thus here, rii remains as a
variable for all i=1, 2, …, 12.

miRNA-TF-NOTCH regulatory network. By removing those
peripheral nodes having low connectivity with the major nodes, the
greater NOTCH signaling network described in (4) is simplified into
a core network comprising 12 nodes and 26 edges (Figure 1). This
simplified network is called the miRNA-TF-NOTCH network. In
the network, the four purple nodes shown in Figure 1 represent the
four miRNAs whose degradation behaviors were the focus of the
present study. We considered the two modes of miRNA degradation:
(i) Mode 1: Active degradation. In terms of our discrete time
dynamical model, if an miRNA is ON (i.e. present at a high
concentration) at time step t, then it switches off automatically (i.e.

the concentration becomes low) at time step t + 1, unless some other
node(s) in the network stimulate the miRNA at time step t. If a
miRNA (node i) is active at time t [i.e. si(t)=1], then it automatically
becomes inactive at time t + 1 [i.e. si(t + 1)=0], unless there is an
active green edge pointing to it. As far as the computational model
is concerned, this means rii=1 for i=1, 2, 3, and 4. This actually
removes the term Eq. 1 for nodes i=1, 2, 3 and 4 only. 

(ii) Mode 2: Degradation not automatic. Only if one of its
targeted nodes is active at time t, does the miRNA degrade. Under
this condition, rii(t) (for i=1, 2, 3, and 4) become time-dependent.
For example, node 1 in Figure 1 (miR-20b) has one targeted node
(node 6, namely signal transducer and activator of transcription 3
(STAT3)); thereby r11(t)=s6(t). That is, if node 6 is active at time t
[s6(t)=1], then node 1 degrades [r11(t)=1]; if node 6 is inactive at
time t [s6(t)=0], then node 1 does not degrade [r11(t)=0]. Node 2
(miR-21) has two targeted nodes (nodes 6 and 8); thereby
r22(t)=s6(t) + s8(t). Note that addition means OR in our model; thus
node 2 degrades when either node 6 or node 8 is active. 

Both of these two modes were considered in our simulations.
Starting from an arbitrary initial network-state (e.g. the t=0 row of
Table I), one obtains the next network state (e.g. the t=1 row of Table
I) by Eq. 1, according to the network connections shown in Figure 1
and one of the two degradation modes. The subsequent network states
are obtained in the same way. When Eq. 1 no longer produces new
network states, a steady state has been reached. For example, t=5 row
of Table I is identical with the t=4 row of Table I, indicating that t=5
row is a steady state. One then starts from another initial network
state to obtain a new state transition trajectory. 

Figure 2 gives an overview of all state transitions, where each
blue dot represents one network state. Because the network has 12
nodes and each node has only two states, there are 212=4096 states,
namely 4096 blue dots in Figure 2. Among the 4096 states, there
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Figure 4. Histogram of the steady-state basin sizes for mode 1 (red) and mode 2 (green) miRNA degradation. 



are only nine steady states, namely A, B, C, … I. The collection of
all the network states that converge to a steady state is called the
basin of that steady state; and the number of network states in a
basin is called the basin size. For example, the basin of steady state
A is illustrated in the upper-left corner of Figure 2. Because there
are 2764 states in the basin, the basin size of A is 2764. More
intuitively, we say that the steady state A comprises 2764 states.

Computational facilities and methods. The computations were
performed on the computer cluster of the Department of Biology,
South University of Science and Technology of China, consisting of
five AMAX ServMax servers (https://www.amax.com/default.asp).
The software used to implement the mathematical model (i.e. Eq.
1) was Mathematica 10.3.0.0. Because the model is deterministic,
no probability and statistics are involved in the present study. For
example, the number of iterations is completely determined by Eq.
1 and the network connections in Figure 1. In Figure 2, each arrow
corresponds to one transition of a network state, namely one
iteration of Eq. 1.

Results

Simulation of network dynamics with miRNA degradation
mode 1. Table I gives an example sequence obtained with
degradation mode 1, where the t=0 row gives an initial
network-state (0 1 0 0 0 0 0 0 0 1 1 0), namely the molecules
miR-21, Yin Yang 1 (YY1), specificity protein 1 transcription
factor (SP1) are active and molecules miR-20b, miR-29b,
miR-34a, RELA, STAT3, STAT4, MYC, TP53 and FOS are
inactive. Note that the t=4 and t=5 rows are identical, which
implies that the network state has reached a steady state, after
four time steps of molecular interactions dictated by the
network structure in Figure 1. The steady state is (0 1 0 1 1 0
1 0 1 0 0 1). This corresponds to the stable phenotype,
namely when molecules RELA, miR-21, STAT4, TP53, miR-
34a and FOS are active (or highly expressed) and molecules
STAT3, MYC, miR-29b, YY1, SP1 and miR-20b are inactive. 

Note that Table I only represents the trajectory starting
from one particular initial network state. If the initial state
changes, then the trajectory changes, but the final steady
state may or may not change. Because there are in total
212=4096 states, there are 4096 trajectories and that shown in
Table I is only one of them. Figure 2 gives a full view of the
4096 states (represented by the blue dots) and the direction
of transitions among them (the orange arrows). These 4096
states converge to nine steady states A, B, … I. Steady state
A is the state described above (0 1 0 1 1 0 1 0 1 0 0 1). It is
actually the steady state with the largest basin size,
comprising 2764 states. 

Table II presents the identities of all nine steady states, as
well as their basin sizes. 

Simulation of network dynamics with miRNA degradation
mode 2. With degradation mode 2, the state transition
landscape is shown in Figure 3, which has 58 steady states,

which is many more than in the degradation mode 1. Table
III presents nine steady states whose basin sizes are the
largest among the total 58 steady states using this mode.
Even the steady state with the largest basin size comprises
only 995 states, far fewer than 2764, the largest basin size
found with degradation mode 1. 

Mapping steady states to physiological/pathological
phenotypes. Figure 4 presents the histogram of basin size for
both mode 1 (red) and mode 2 (green). Mode 1 is
characterized by one super stable steady state, namely the
one comprising 2764 states. This super stable steady state
may correspond to the physiological (healthy) phenotype, for
a deviation from the steady state can easily be corrected after
at most four steps of adjustments. One may argue that there
is still a total chance of (4096-2764)/4096=33% that the
deviated state finally returns to one of the other eight states
(see Figure 2). Although that is possible, the other eight
steady states may correspond to nonviable phenotypes, with
which the cells will undergo apoptosis. In this event, at the
macroscopic level is healthy tissue comprising of
homogeneous cells, namely cells expressing miR-21, miR-
34a, RELA, STAT4, TP53 and FOS, but with inactive miR-
20b, miR-29b, STAT3, MYC, YY1 and SP1. 

In comparison, mode 2 of miRNA degradation is
characterized by the co-existence of multiple steady states.
There are in total 58 steady states, and many of them are of
comparable basin sizes. As a consequence, even the tallest
green bar apparent in Figure 4 is much shorter than the
middle red bar (which represents 2764, the largest basin size
under mode 1). This multiplicity of stable steady states may
correspond to cancer heterogeneity. The two most stable
steady states, namely the one with basin size 995 and that
with basin size 983, are equally stable and may correspond
respectively to two dominant cancer sub-types. The actual
number of viable cancer phenotypes may well be much
larger than two. Taking a conservative assumption that only
one in 10 of these 58 steady states are viable, there are about
six pathological phenotypes. The great heterogeneity is
certainly a characteristic of cancer in general and STS in
particular.

Our analysis revealed that the mode of miRNA
degradation is crucial to the correct regulation of the
NOTCH signaling pathway and ultimately to a person’s well-
being. Micro RNAs are small non-coding RNA molecules of
about 22 nucleotides found in plants, animals, and some
viruses, which function in RNA silencing and post-
transcriptional regulation of gene expression. According to
our Boolean network analysis, miRNA should undergo
efficient degradation (mode 1) to correctly regulate TF-
NOTCH signaling. If miRNA somehow becomes resistant to
degradation, then the network state would be stuck at one of
many stable states that may correspond to various cancer
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Table I. An example time course of the network dynamics. The initial state was arbitrarily chosen. After four time steps, the dynamics converge to
a steady state (indicated by the identical data in rows t=4 and t=5). The steady state is that represented by plot A in Figure 2. miR: micro-RNA;
RELA: v-rel avian reticuloendotheliosis viral oncogene homolog A; STAT: signal transducer and activator of transcription; MYC: v-myc avian
myelocytomatosis viral oncogene homolog; TP53: tumor protein p53; YY1: Yin Yang 1; SP1: specificity protein 1 transcription factor; FOS: Finkel-
Biskis-Jinkins murine osteosarcoma viral oncogene homolog.

Signaling molecule

t miR-20b miR-21 miR-29b miR-34a RELA STAT3 STAT4 MYC TP53 YY1 SP1 FOS

0 0 1 0 0 0 0 0 0 0 1 1 0
1 0 0 1 0 1 0 0 0 1 1 1 1
2 0 1 1 1 1 0 1 1 1 1 0 1
3 1 1 1 1 1 0 1 0 1 0 0 1
4 0 1 0 1 1 0 1 0 1 0 0 1
5 0 1 0 1 1 0 1 0 1 0 0 1

Table II. The nine steady states of miRNA- transcription factor (TF)-NOTCH network dynamics with miRNA degradation mode 1. Each steady state
is represented in a row. The last column is the size of the basin of attraction for the steady state. The middle columns show the individual molecular
states. miR: micro-RNA; RELA: v-rel avian reticuloendotheliosis viral oncogene homolog A; STAT: signal transducer and activator of transcription;
MYC: v-myc avian myelocytomatosis viral oncogene homolog; TP53: tumor protein p53; YY1: Yin Yang 1; SP1: specificity protein 1 transcription
factor; FOS: Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog. 

Signaling molecule

Steady state miR-20b miR-21 miR-29b miR-34a RELA STAT3 STAT4 MYC TP53 YY1 SP1 FOS Basin size

A 0 1 0 1 1 0 1 0 1 0 0 1 2764
B 0 0 0 1 0 0 0 0 1 0 0 1 448
C 0 1 0 1 0 0 1 0 1 0 0 1 448
D 0 1 0 1 1 0 1 0 1 0 1 1 180
E 0 1 0 1 1 0 1 0 1 0 0 0 128
F 0 0 0 0 0 0 0 0 0 0 0 0 32
G 0 1 0 0 0 0 1 0 0 0 0 0 32
H 0 0 0 1 0 0 0 0 1 0 0 0 32
I 0 1 0 1 0 0 1 0 1 0 0 0 32

Table III. The nine distinguished steady states of miRNA- transcription factor (TF)-NOTCH network dynamics with miRNA degradation mode 2.
The other 49 steady states are not listed due to their small basin sizes. miR: micro-RNA; RELA: v-rel avian reticuloendotheliosis viral oncogene
homolog A; STAT: signal transducer and activator of transcription; MYC: v-myc avian myelocytomatosis viral oncogene homolog; TP53: tumor
protein p53; YY1: Yin Yang 1; SP1: specificity protein 1 transcription factor; FOS: Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene
homolog. 

Signaling molecule

Steady state miR-20b miR-21 miR-29b miR-34a RELA STAT3 STAT4 MYC TP53 YY1 SP1 FOS Basin size

A 0 1 1 1 1 0 1 0 1 0 0 1 995
B 1 1 1 1 1 0 1 0 1 0 0 1 983
C 0 1 0 1 1 0 1 0 1 0 0 1 479
D 1 1 0 1 1 0 1 0 1 0 0 1 295
E 0 1 1 1 0 0 1 0 1 0 0 1 230
F 0 1 1 1 0 0 0 0 1 0 0 1 224
G 1 1 1 1 0 0 1 0 1 0 0 1 182
H 1 0 1 1 0 0 0 0 1 0 0 1 158
I 0 1 0 1 1 0 1 0 1 0 1 1 144



phenotypes. Clinically this may manifest as different gene-
expression profiles of different cells with the same
macroscopic tumor type.

Discussion

Soft-tissue sarcomas are tumors of mesenchymal tissues with
a high degree of heterogeneity, comprising of more than 50
histological subtypes derived from muscle, fat, blood vessels,
nerves, tendons and the lining of the joints. STS also possess
a high metastatic potential (including primary site escape,
local invasion, intravasation, extravasation, colonization,
expansion). They account for more than 90% of cancer-
associated mortality and are thus of extreme clinical
relevance. Both aspects of malignancy (i.e. heterogeneity and
metastasis) are related to de-regulation at the transcriptional
and post-transcriptional levels.

As we have shown, a complex network of interactions
between biomolecules such as TFs, mRNAs, miRNAs and
protein kinases that ultimately account for the different
physiological or pathological phenotypes. Computational
systems biology thus can provide a better understanding of
cancer biology. It can also serve for the planning of
individualized cancer therapy and determination of
prognostic data. Samantarrai et al. constructed a moderately
large miRNA-TF network that modulates NOTCH signaling
pathway through curated regulations, with a focus on the
mechanisms of metastasis (4). 

We focused more on the heterogeneity aspect of STS
complexity. We first simplified the network constructed by
Samantarrai et al. into a minimal network comprising of 12
nodes and 26 edges. This simplified network allowed us to
use Boolean network modeling to reveal systems level
properties of miRNA-TF regulation of NOTCH signaling
pathway in STS with satisfactory computational efficiency.
Study of a larger network by Boolean modeling is possible
but computationally costly. One key assumption of our
Boolean network modeling is that the number of steady
states correlates strongly with the degree of heterogeneity,
namely the number of subtypes of a macroscopic STS tumor. 

Because miRNA degradation appears to be important to
STS development, we studied how the two modes of miRNA
degradation affect the number of steady states. We found that
with the first mode (fast degradation), the system usually
converges to a single steady state, which may correspond to
homogeneity of normal tissue. With the second mode
(conditional degradation), the system has many stable steady
states, which may correspond to heterogeneous cancer
phenotypes. 

We, therefore, propose that under normal conditions, the
miRNA action is transient, and efficient degradation of
miRNA is crucial to the cell’s normal functioning. Given the
power of miRNAs in gene silencing and regulation, miRNAs

are double-edged swords – their actions are necessary but
prolonged actions would do harm to the cell. Once their
tasks have been completed, miRNAs have to be degraded
rapidly to avoid any ill effects. Indeed, we have shown that
defective miRNA degradation generates many stable steady
states. Since the normal phenotype usually corresponds to
only one steady state, the other steady states may well
correspond to pathological phenotypes such as cancer. These
discoveries may stimulate studies on the mapping between
our theoretical steady states and existing experimental data,
such as differential profiles of gene expression or protein
concentration within the same tumor. Such intratumoral
heterogeneity has been well documented in recent years (11-
13). Our results would also provide valuable insights into
future experimental investigations. 

This work also demonstrates the power of Boolean
modeling. For complex interactions such as miRNA–TF
network of STS, the strength of detailed interaction between
a pair of molecules is far less important than the topology
of the network. This allows molecular concentrations to be
condensed simply to one of two molecular states, ON or
OFF. Moreover, interactions are modeled as either
stimulatory or inhibitory. Such abstractions allow an
efficient analysis of complex networks with possibly some
reduction of precision. In comparison, mathematical models
based on differential equations are usually difficult for
studying large-scale networks due to their computational
complexity.
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