
Abstract. Four heart hormones, namely atrial natriuretic
peptide (ANP), long-acting natriuretic peptide (LANP), vessel
dilator and kaliuretic peptide reduce up to 97% of cancer cells
in vitro. These four cardiac hormones eliminate up to 80% of
human pancreatic adenocarcinomas, two-thirds of human
breast carcinomas and up to 86% of human small-cell lung
carcinomas growing in athymic mice. ANP given intravenously
for 3 hours after ‘curative’ lung surgery as an adjunct to
surgery results in a 2-year relapse-free survival of 91%
compared to 75% for those treated with surgery alone. The
anticancer mechanisms of action of these peptides involve
binding to receptors on the cancer cells, followed by 95%
inhibition of the conversion of inactive to active rat sarcoma-
bound guanosine triphosphate (RAS)-mitogen-activated protein
kinase (MAPK) kinases 1/2 (MEK 1/2 ) (98% inhibition)-
extracellular signal-related kinases 1/2 (ERK1/2) (96%
inhibition) cascade in cancer cells. They are dual inhibitors of
vascular endothelial growth factor (VEGF) and its VEGF2
receptor (up to 89%). They also inhibit MAPK9, i.e. c-JUN-N-
terminal kinase 2. One of the downstream targets of VEGF is
β-catenin, which these peptides inhibit by up to 88%. These
four peptide hormones inhibit the Wingless-related integration
site (WNT) pathway 68% and WNT secreted-Frizzled protein
is reduced by up to 84%. Signal transducer and activator of
transcription 3 (STAT3), a final ‘switch’ that activates gene
expression that leads to malignancy, is specifically reduced up

to 88% by these peptides but they do not affect STAT1. There
is crosstalk between the RAS-MEK 1/2-ERK 1/2 kinase
cascade, VEGF, β-catenin, JNK, WNT, and STAT pathways and
each of these pathways and their crosstalk is inhibited by these
peptide hormones. They enter the nucleus of cancer cells where
they inhibit the proto-oncogenes c-FOS (by up to 82%) and c-
JUN (by up to 61%). Conclusion: These multiple kinase
inhibitors have both adjunct and primary anticancer effects. 

The amino acid sequences of atrial natriuretic peptide (ANP)
and the ANP prohormone from which it is derived were
determined in 1984 (1-8). ANP has anticancer effects both
in vitro (9-20) and in vivo (21, 22). ANP eliminates 80% of
human pancreatic carcinomas (21) and 43% of human small
cell lung carcinomas growing in mice (22). Recently ANP
has been used for 3 hours intravenously as an adjunct after
‘curative’ lung cancer surgery, which resulted in a 2-year
relapse-free survival of 91% (77 patients) versus 75%
(p=0.018) in 390 patients treated with surgery alone (23).
When peer-matched patients (77 each) were analyzed by
propensity score matching, the 2-year relapse-free survival
was 91% for those treated with ANP versus 67% for those
treated with surgery alone (p=0.0013) (23). This study would
suggest that adding ANP after surgery as an adjunct may be
helpful in preventing recurrence after surgery (23). The
present review focuses on the mechanism of how ANP and
other cardiac peptide hormones eliminate primary
carcinomas in vivo and metastatic lesions (21, 22).

ANP

ANP prohormone can produce four hormones, one of which is
ANP. The ANP prohormone gene encoding the synthesis of the
126 amino acid ANP prohormone consists of three exons
sequences, separated by two introns, which encode for a
mature mRNA transcript approximately 900 bases long (3, 24-
27). Translation of the human ANP prohormone mRNA results
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in a 151 amino acid pre-prohormone (3, 24-26). A signal
peptide on the N-terminus of the pre-prohormone is cleaved
from the pre-prohormone in the endoplasmic reticulum
resulting in a 126 amino acid prohormone, which is the storage
form of four hormones from this prohormone and they are the
major constituents of the atrial granules found in the heart (24-
26). The ANP prohormone is cleaved into four peptide
hormones upon release from the heart (28, 29). These four
peptide hormones consist of the first 30 amino acids of the
prohormone’s N-terminal end (i.e. amino acids 1-30) named
long-acting natriuretic peptide (LANP), amino acids 31-67 of
the ANP prohormone produce vessel dilator, amino acids 79-
98 produce kaliuretic peptide and amino acids 99-126 produce
ANP (27, 28). These peptides were named for their most potent
known biological effects at the time of naming (28). Each of
these four peptide hormones has anticancer effects in vitro (9-
20) and in vivo,where they eliminate up to 86% of human
small lung carcinomas in mice (21, 22).

Metastatic Lesions

Nojiri et al. reported that mice pretreated with ANP exhibited
dramatic reduction in lipopolysaccharide (which mimics
surgical stress)-induced pulmonary metastasis of introduced
cancer cells, suggesting that ANP can prevent tumor metastasis
in mice (23). This notion is supported by the authors’ finding
that mice which overexpress the receptor for ANP in vascular
endothelium have reduced metastasis (23). This is consistent
with the fact that ANP (and the three other peptide hormones
derived from the ANP prohormone) inhibit vascular endothelial
growth factor (VEGF) and the VEGFR2 receptor (by up to
87%) (30) that cause vascular endothelium to grow into cancer
(31-33). Inhibiting VEGF and the VEGFR2 receptor would
reduce the number of metastases as they would outgrow the
blood supply bringing oxygen and nutrients to the metastasis
(30). In addition to helping to prevent metastatic lesions from
forming, metastatic lesions that are already present can be
dramatically reduced and even eliminated by ANP and the
other cardiac peptide hormones when used either alone or in
combination in a sequential manner (21, 22). 

Other Anticancer Peptides

In addition to the four anticancer peptides synthesized from
the ANP prohormone within the heart (27-29), there are other
peptides with anticancer effects (27-29). Thus, C-natriuretic
peptide (CNP) also synthesized in the heart has anticancer
effects but only at concentrations 100-fold higher than the
four peptide hormones derived from the ANP prohormone
(13, 19). On exposure to 100 μM CNP for 24 hours, there
was a 10% (p=0.04) decrease in human renal carcinoma
cells (13). Brain natriuretic peptide (BNP) originally found
in porcine brain, but misnamed as 50-fold more BNP is

found in the heart, has no significant anticancer effects at any
studied concentration (11-13, 16, 19). 

In the kidney, as opposed to all other tissues, differential
processing of ANP pro hormone occurs, where instead of
cleaving the prohormone between amino aids 98 and 99 to
form ANP and kaliuretic peptide, it is cleaved between
amino acids 95 and 96 (29, 34-36). This results in four
amino acids from the C-terminal of kaliuretic peptide (i.e.
threonine-alanine-proline-arginine) being attached to the N-
terminal of ANP, with the resulting peptide being called
urodilatin (29, 34-36). It is important to note that the amino
acids in urodilatin are identical to the four C-terminal amino
acids of kaliuretic peptide and identical to all of the amino
acids in ANP (29, 34-36). Urodilatin reduces the number of
renal carcinoma cells by 66% at 100 μM, while ANP and
kaliuretic peptide at the same concentration eliminate 70%
and 74% of renal carcinoma cells in 24 hours (13). Similar
findings have been found for the effects of urodilatin on
small cell-lung cancer cells (22).

Dendroaspis augusticeps peptide (DNP) found in the venom
of the green mamba snake, Dendroaspis augusticeps, has
similar amino acids to ANP (37) and also has anticancer effects
(18). DNP has anticancer effects on human glioblastoma cells
but the four peptide hormones derived from the ANP
prohormone eliminate 4-fold more glioblastoma cells (18). 

Mechanism of Action of Cardiac 
Hormones in Cancer Cells

The mechanism of action of cardiac peptide hormones
anticancer effects have been reviewed in detail previously
(38) so a brief summary of their effects will be presented in
this review.

Receptors. Human cancer cells have natriuretic peptide
receptors (NPR) A and C to mediate the effects ANP in cancer
cells (Figure 1) (10-12, 19). Western blot analysis has
confirmed that both the NPR A and C receptors are present on
human cancer cells (19). Metastatic pancreatic
adenocarcinomas are adapted to treatment with ANP by
reducing the NRP A receptor by 33% in abdominal metastases
and 55% in liver metastases compared with the number of
receptors in the primary pancreatic adenocarcinoma; thereby
reducing the ability of ANP to eliminate metastatic lesions
(21). Thus, metastatic lesions lose a significant amount of the
receptor that allows ANP to have anticancer effects (21). Such
metastatic lesions, however, can be eliminated by utilizing one
of the other cardiac peptide hormones (vessel dilator, LANP
or kaliuretic peptide) whose effects are not mediated via the
NPR A receptor, which binds only ring structured peptides
such as ANP; the linear peptide hormones (without a ring
structure) have their own receptors to mediate their anticancer
effects (39-41). 
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Rat sarcoma (RAS)–mitogen-activated protein kinase kinase
(MEK)1/2–extracellular signal-regulated kinases (ERK)1/2
kinase cascade. Inside cancer cells, the cardiac peptide
hormones have multiple targets (Figure 1). Vessel dilator,
LANP, kaliuretic peptide, and ANP are multiple kinase
inhibitors that inhibit the conversion of inactive rat sarcoma-
bound guanosine diphosphate (RAS-GDP) to active rat
sarcoma bound guanosine triphosphate (RAS-GTP) by 95%,
90%, 90%, and 83%, respectively (42, 43). This inhibition
appears to be mediated by cyclic guanosine monophosphate

(cyclic GMP) which inhibits this conversion itself by 89%
(42, 43). In addition to directly inhibiting the conversion to
RAS-GTP, these four cardiac hormones inhibit the
stimulation of RAS by mitogens such as epidermal growth
factor (EGF) and insulin (44, 45).

The next step (Figure 1) in the RAS–MEK1/2–ERK1/2
kinase cascade involves two kinases, MEK1 and MEK2 (46,
47). Vessel dilator, LANP, kaliuretic peptide and ANP inhibit
the phosphorylation of MEK1/2 kinases by 98%, 97%, 81%
and 88%, respectively (48, 49).
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Figure 1. Heart hormones inhibit cellular oncogenes c-FOS (up to 82%) and c-JUN (up to 65%) and inhibit 95% of the conversion of rat sarcoma-
bound guanosine diphosphate (RAS-GDP) to rat sarcoma-bound guanosine triphosphate (RAS-GTP). They inhibit each step of the RAS-mitogen
protein kinase kinase (MEK1/2; 98% inhibition of phosphorylation) and extracellular signal-regulated kinases 1/2 (ERK1/2; 96% inhibition of
phosphorylation) pathways. Other targets which the cardiac hormones inhibit in cancer cells are β-catenin, c-JUN-N-terminal kinase 2 (JNK),
secreted frizzled-related protein 3 (sFRP3), vascular endothelial growth factor (VEGF) and the VEGFR2 receptor, Wingless-related integration site
(WNT) pathway and the signal transducer and activator of transcription 3 (STAT3). As indicated by (−), the cardiac hormones inhibit several steps
in the feedback loop that stimulate each other (kinases) and the nuclear oncogenes c-FOS and c-JUN, interrupting the vicious cycle of cancer
growth. RKT: Tyrosine kinase receptor; SRC: rous sarcoma viral proto-oncogene tyrosine kinase; SHC: rous sarcoma SH2 C-terminal-binding
domain adapter protein; GRB2: growth factor receptor-bound protein 2: SOS: son of Sevenless gene; RAF: rapidly accelerated fibrosarcoma
serine/threonine protein kinase; AKT: AK mouse strain with “T” for thymoma. Modified with permission from (45).



ERK1/2 are important targets for inhibiting the growth of
cancer (50, 51). Growth factors such as EGF and VEGF
mediate their cancer effects via ERK kinase activity (50).
Vessel dilator, LANP, kaliuretic peptide and ANP inhibit the
phosphorylation of ERK kinases by 96% ,88 %, 70% and
94%, respectively (52, 53). ERK1/2 kinases can directly
translocate to the nucleus to stimulate the production of
several nuclear oncoproteins such as c-FOS (50, 51). These
four peptide hormones have been demonstrated by
immunocytochemical techniques to enter the nucleus of
cancer cells (54, 55) where they reduce expression of c-FOS
and c-JUN proto-oncogenes (56).

c-JUN N-terminal kinases. c-JUN N-terminal-kinase-2 is
associated with cancer development (57,58) and the invasion
of cancer cells (59). As part of the crosstalk among the
kinases in cancer cells, JNK is activated by the MEK kinases
(60). Further related to this crosstalk, the activation of JNK
by EGF is dependent upon H-Ras activation (61, 62). The
loss of JNK activation coupled with the loss of ERK
activation promotes cell death (63). Vessel dilator, LANP,
kaliuretic peptide, and ANP maximally reduce the expression
of JNK in human small cell-lung cancer cells by 89%, 88%,
77% and 89% (64).Thus , they inhibit another important
target is cancer cells (Figure 1).

β-Catenin. One of the downstream targets of VEGF is β-
catenin (65). β-Catenin is a multifunctional protein located on
the intracellular side of the cytoplasmic membrane and causes
growth of a variety of different cancer types (68-80). Vessel
dilator, LANP, kaliuretic peptide and ANP reduce β-catenin
expression by up to 88%, 83%, and 73% in human pancreatic,
colorectal adenocarcinoma and renal adenocarcinoma cells,
respectively (81). ANP is associated with a re-distribution of
β-catenin from nuclear and cytoplasmic compartments to cell
to cell junction sites and a decrease in the proliferation of
colonic adenocarcinomas (82). β-Catenin activates JNK and
VEGF as illustrated in Figure 1 (65, 83).

WNT signaling pathway. The WNT signaling pathway is a
signal transduction pathway that is enhanced in a number of
cancer types (68, 84). WNT signaling is stimulated by RAS
and VEGF (85) and both contribute to the pathobiology of
colonic cancer, in part through the WNT pathway (86)
(Figure 1). The four peptide hormones from the heart
maximally reduce WNT3a by up to 68% in human pancreatic
cancer cells (87). The complex interplay of WNT and RAS
in causing cancer and VEGF in maintaining its growth (84-
89) are interrupted by the four cardiac peptide hormones,
which helps to explain their anticancer effects (22).
Secreted frizzled-related protein 3. Secreted frizzled-related
protein-3 (sFRP3) is a 300 amino acid glycoprotein (57-91)
that promotes renal cancer growth when injected into

athymic mice (92). sFRP3 also causes growth of other types
of cancer (93). ANP affects activation of the frizzled receptor
(94, 95). ANP and the frizzled receptor co-localize on the
cell membrane within 30 minutes after ANP addition to cell
culture medium (82). Vessel dilator, LANP, kaliuretic peptide
and ANP reduce the level of sFRP by 77-78% in human
pancreatic cancer cells, 82-83% in human colorectal cancer
cells, and 66-68% in human renal cancer cells (96). 

Signal transducers and activators of transcription (STATs).
STATs are cytoplasmic transcription factors (Figure 1) (97,
98) which are the final ‘switches’ activating gene expression
leading to cancer (97-103). Vessel dilator, LANP, kaliuretic
peptide and ANP reduce STAT3 by 88%, 54%, 55% and 65%
respectively in human small-cell lung cancer cells and by
66%, 57%, 70% and 77% in pancreatic cancer cells (104).
These heart peptide hormones do not reduce STAT1 in
pancreatic adenocarcinoma nor in small-cell lung cancer cells
(104). Thus, these heart peptide hormones are significant
inhibitors of STAT3 but do not affect STAT1 which suggests
a specificity of their anticancer mechanism(s) of action. 

The Best Way to Administer Cardiac Hormones

The treatment of human pancreatic adenocarcinomas (21) and
human small-cell lung carcinomas (22) in mice with cardiac
hormones was via osmotic pumps for 28 days. On the other
hand, the treatment of congestive heart failure with vessel
dilator in humans was via intravenous infusion (105). To
determine which of these methods might be best for treating
humans with cancer, pharmacokinetics were compared
between intravenous bolus (IvB), subcutaneous bolus (ScB)
and subcutaneous infusion for 3 hours in male Fischer 344 rats
(106). The half lives of vessel dilator after ScI, IvB and ScB
were 54, 43, and 30 minutes (106). The time to reach peak
concentrations in plasma (tmax) after IvB, ScB and ScI of
vessel dilator was 1.5, 23, and 156 minutes (106). The peak
plasma concentrations (Cmax) withI ScI, IvB and ScB were
3749, 887, and 471 ng/l (normalized against the dose used for
ScB and IvB) (106). The area under the curve (AUC) for
vessel dilator was 1,166, 880, and 1,652 ng h/ml (normalized)
following IvB, ScB and ScI administration (106). The volume
of distribution for vessel dilator was 2.38, 0.92 and 1.08 l
following IvB, ScB and ScI administration, with its
corresponding clearance being 1.69, 1.50 and 0.78 l/h,
respectively (106). Plasma concentrations of vessel dilator
after each of these three methods of administration mirrored
their predicted concentration profiles (106). Vessel dilator
administered via ScI led to a significantly greater AUC and
half-life and slowed clearance compared to IvB and SCB
(p<0.001), suggesting that based upon pharmacokinetics,
subcutaneous infusion is the preferred method of
administration to treat cancer.
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