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Curcumin and Cancer Stem Cells: Curcumin Has Asymmetrical
Effects on Cancer and Normal Stem Cells
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Abstract. Curcumin has been shown to have numerous
cytotoxic effects on cancer stem cells (CSCs). This is due to
its suppression of the release of cytokines, particularly
interleukin (IL)-6, IL-8 and IL-1, which stimulate CSCs, and
also to its effects at multiple sites along CSC pathways, such
as Wnt, Notch, Hedgehog and FAK. In spite of its multiple
actions targeting CSCs, curcumin has little toxicity against
normal stem cells (NSCs). This may be due to curcumin’s
different effects on CSCs and NSCs.

The use of cytotoxic therapies remains the standard treatment
for patients with metastatic cancer. The efficacy of these
treatments is limited, with recurrence common. According to
the cancer stem cell paradigm, cancers contain distinct
subpopulations of cancer stem/progenitor cells (CSCs)
characterized by self-renewal mechanisms and resistance to
conventional treatments (1-3). When CSCs are transferred to
an immune-deficient mouse, these cells can reconstitute the
original cancer in the animal (4-6). Even a small number of
stem cells (as few as 100) can be effective in bringing about
the transplantation (7). However, tumors depleted of stem cells
do not grow as xenografts (8).

These CSCs have been shown to be resistant to
chemotherapy (9), radiation (10) and hormone therapy (11).
For this reason, metastases from solid tumors, in particular,
will re-appear even after initially successful treatments and
prolonged periods of complete remission. Further, an
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unintended consequence of induced cancer cell death is the
release of inflammatory cytokines, which can stimulate
replication of CSCs (12-14). The percentage of CSCs in the
cancer has been shown to increase in patients receiving
neoadjuvant chemotherapy (9, 15, 16). Thus, an “equilibrium”
may be formed where chemotherapy-induced tumor cell death
results in increased stimulation of tumor growth (12). In
addition, the cytokines secreted during induced cancer cell
death can result in resistance to cytotoxic agents, so that
metastases, when they occur, may be refractory to therapy (14,
17, 18). This suggests, for therapy to be effective on a
consistent basis, it must eliminate both CSCs and non-stem
cell cancer cells.

Curcumin and Interleukin-6 (IL-6)

IL-6 (also known as interferon (IFN)-[32) is a multi-functional
cytokine involved in the immune and inflammatory response
and progression from inflammation to cancer. Increased IL-6
activity has been found in multiple cancers, including multiple
myeloma, as well as breast, colon and prostate carcinoma, and
IL-6 has been associated with decreased survival and more
aggressive disease in these patients (19-22). IL-6 signals
through a heterodimeric receptor complex that contains the
ligand binding IL-6a chain (CD126) and the common
cytokine receptor signal-transducing subunit glycoprotein-130
(gp130, CD130) (19, 23). This leads to activation of the JAK
family of tyrosine kinases (Janus kinases), which stimulate
multiple pathways, including MAPK, STAT-3 and AKT (19,
23-25). IL-6 promotes chemoresistance, angiogenesis and
invasion (12, 17, 26-29). Furthermore, IL-6 has been shown
to convert regular cancer cells to CSCs in established breast
and prostate cancer cell lines (12). When investigators in this
latter study added an anti-IL-6 antibody to the culture
medium, this did not occur, demonstrating the crucial role of
IL-6 in non-stem cell cancer cell to CSC conversion (12). Shi
et al. used multiple chemotherapy agents, including 5-
fluorouracil, paclitaxel and doxorubicin, standard drugs for the
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treatment of breast cancer, to induce formation of the multi-
drug-resistant tumor breast cancer cell line MCF-7/R (30). IL-
6 levels were markedly increased in the line previously treated
with chemotherapy compared to the untreated line.
Suppression of IL-6 and companion cytokine IL-8 in this
study was shown to reverse the multi-drug resistance in the
treated cell line, while increased expression of IL-6 or IL-8
increased the resistance of the cells to treatment.

One mechanism by which curcumin targets CSCs is
inhibition of IL-6 release from cells, thus preventing CSC
stimulation. Curcumin has been shown to decrease IL-6 levels
or inhibit IL-6 function in multiple experimental systems. Jain
et al. studied the effects of curcumin on the human pro-
monocytic cell line U937, which had been maintained with a
high concentration of glucose. A marked inhibition of IL-6
secretion from the monocytes was noted (31). This effect was
dose-dependent. The investigators also studied rats with
streptozoticin-induced hyperglycemia. The diabetic animals
demonstrated high IL-6 levels compared to controls. Curcumin
significantly reduced the previously elevated IL-6 levels (31).
In another study, curcumin was found to prevent IL-6
expression in human rheumatoid synovial fibroblasts (32).
Moriasi et al. found that IL-6 expression could be suppressed
in a colon cancer cell line treated with curcumin (33). Cohen
et al. reported that curcumin inhibited IL-6 production in four
head and neck squamous cell carcinoma cell lines (34). Of
note was the fact that this effect was also dose-dependent, with
the more aggressive head and neck carcinoma cell lines
demonstrating higher levels of IL-6 before treatment and
requiring higher concentrations of curcumin to inhibit IL-6
compared to the less aggressive cell lines. Similarly, a dose-
dependent decrease in IL-6 levels was found in human
pancreatic cell lines after treatment with a nanoparticle-
encapsulated formulation of curcumin (35). Curcumin was
shown to block production of IL-6 in an experimental acute
pancreatitis rat model (36). Bharti et al. reported that curcumin
was able to block IL-6-induced STAT-3 phosphorylation in a
multiple myeloma cell line (37). The curcumin analog FLLL3
was also shown to reduce IL-6-induced STAT-3
phosphorylation (38). Park et al. showed that curcumin
increased the activity of bortezomib against human multiple
myeloma U266 cells by decreasing IL-6 production and
blocking STAT-3 phosphorylation (39).

Curcumin and Interleukin-8 (IL-8)

IL-8 (CXCLS) is an important cytokine, which increases after
tumor cell death, stimulates CSCs and results in tumor re-
growth and resistance to chemotherapy (18, 40). IL-8 is a 72-
amino-acid protein belonging to the CXC cytokine family.
This cytokine has numerous functions including the induction
of neutrophil chemotaxis, neutrophil activation, regulation of
cell adhesion, promotion of angiogenesis, histamine release
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and regulation of receptor protein signaling pathways (13, 41-
45). Release of IL-8 can be caused by many stimuli, including
infection, trauma, hypoxia, acidosis, corticosteroids, androgens
or chemotherapy (18, 46-47). Docetaxel, a commonly-used
chemotherapeutic agent for the treatment of prostate, breast,
lung and ovarian cancers, has been shown to markedly
increase IL-8 levels (48). As with IL-6, elevated levels of IL-
8 have been detected in human cancers and have been
associated with a poor prognosis (13, 49-52). IL-8 has been
found to increase tumor growth in cancer cell lines and in
xenografts (53-57).

Curcumin is a potent inhibitor of IL-8 production, as well
as of numerous IL-8 cancer-promoting bio-activities. Hidaka
et al. measured IL-8 levels in the human pancreatic
carcinoma cell line SUIT-2 after incubation with 10-100 uM
concentration of curcumin. The magnitude of the decrease in
IL-8 production was dose-dependent. The investigators also
reported that curcumin markedly reduced IL-8 receptor
internalization. These changes were accompanied by marked
suppression of tumor cell growth (58). Curcumin prevented
the acid-induced production of IL-8 in human esophageal
epithelial cells (59) and reduced IL-8 levels in cultured
monocytes previously treated with a high concentration
glucose (31). Curcumin caused a dose-dependent blockage of
IL-8 production in human head and neck carcinoma cell lines
(34). Wang et al. reported that curcumin suppressed
neurotensin-mediated IL-8 production in the human colon
cancer line HCT166, thus blocking colon cancer cell
migration (60). It has been reported that curcumin blocked
IL-8 release in alveolar epithelial cells (61) and in human
peripheral blood monocytes and alveolar macrophages (62).
Curcumin was found to reduce chronic non-bacterial
prostatitis in rats by blocking IL-8 release (63).

Curcumin and Interleukin-1 (IL-1)

The interleukin-1 family is a group of proteins intimately
involved in the body’s response to injury or infection (64-66)
but which also play a key role in the development and spread
of tumors (67-70). Voronou et al. have shown that one of these
cytokines, IL-1f, is required for tumor angiogenesis (71).
Elevated levels of IL-13 have been found in patients with cancer
(72), while increased cancer cell growth after IL-1f stimulation
has been found in multiple experimental systems (73-75). Li et
al. found that this cytokine was effective in stimulating the
growth of a subpopulation of cancer cells with characteristics
of CSCs (74).

As with IL-8, curcumin inhibits the production of IL-1f3 and
other cytokines by monocytes and macrophages (62). Kloesch
et al. found that curcumin caused significant anti-
inflammatory effects against fibroblast-like synoviocytes, by
blocking IL-1f and IL-6 (32). Curcumin has been shown to
block NF-kB activation induced by this cytokine in bone
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marrow stromal cells (76), human articular chondrocytes (77-
78) and colonic epithelial cells (79). Kalinski et al. have
shown that IL-1p-induced NF-kB gene expression could be
blocked by curcumin in two human chondrosarcoma cell lines
(80). They also showed that curcumin blocked recruitment of
the receptor-associated kinase (IRAK) to the IL-1 receptor,
thus preventing signaling. Inhibition of IRAK likely occurs
because of curcumin’s blockage of IRAK thiols.

CXCR1 and CXCR2

Cytokines of the CXC family bind to transmembrane (7-TM)
proteins on the target cell, primarily CXCR1 and CXCR2
(81-86). While CXCR2 binds multiple cytokines, including
GROa (CXCL1) and GROf (CXCL2), CXCR1 only binds
IL-8 and CXCL6 (87). CXCR1 appears to be the most
important mediator of IL-8-stimulated chemotaxis (85).
These receptors occur not only on leukocytes but also on
tumor cells, as well as on most normal cells (46, 88-89).
Increased production of inflammatory cytokines can, thus,
result in increased stimulation of CXCR1 and CXCR2 on
tumor cells, particularly on CSCs (51, 53, 90). Studies on
human cancer cells lines have confirmed that malignant cells
respond to the effects of autocrine/paracrine IL-8 signaling,
resulting in cell proliferation and metastases (91-95).
Therefore, it has been suggested that these receptors may be
primary targets for prevention of tumor growth and
recurrence (58, 90, 96-98). Ginestier et al. has reported that
in both human breast cancer cell lines and human breast
cancer cells heterotransplanted into nude mice, the use of an
anti-CXCR1 antibody, or of repertaxin, a CXCRI1 inhibitor,
not only caused a reduction in the number of bulk tumor
cells but a major reduction in CSCs as well (48). Likewise,
the CXCR2 antagonist A210397767 has been shown to
inhibit leukocyte-infiltration into cancerous tissue, thus
retarding tumor growth (99).

In addition to blocking cytokine release, curcumin inhibits
cytokine bioactivities by its actions against CXCR1 and
CXCR2 (58, 100). For example, Hidaka et al. have reported
that curcumin has major effects on cytokine function by both
a reduction of IL-8 production and an effect on CXCR1 and
CXCR2. Curcumin was found to regulate the “recycling” of
CXCRI and CXCR?2 from the cytoplasm to the cell surface,
thus preventing cytokine-induced receptor internalization (58).
In another study, by the same investigators, Takahashi et al.
reported that curcumin’s prevention of IL-8-induced neutrophil
chemotaxis appears to occur because of the regulation by
curcumin of the Rabl11 trafficking molecule, a low-molecular
weight G protein (101, 102), which in malignant cells
associates more with CXCR1 and CXCR2. The anti-CSC
effect induced by curcumin is caused by the stacking of the
Rab 11 vesicle complex with CXCR1 and CXCR2 in the
endocytic pathway (41).

The Wnt Pathways

The Wnt signaling pathways regulate multiple processes
during embryonic development, as well as gene transcription,
cell migration, cell proliferation and tissue homeostasis in the
adult organism (103-107). These pathways occur in multiple
species, including drosophila, where much of the original
work was done, as well as mice and humans (103). Mutations
involving the Wnt pathways have been shown to lead to the
development of multiple diseases including type 2 diabetes,
Alzheimer’s, autism, osteoporosis and schizophrenia (106,
108-113), as well as to multiple types of cancer (103, 105,
114-118). Wnt signaling regulates levels of the protein {3-
catenin. Wnt signaling is associated with a decrease in f3-
catenin phosphorylation, so f3-catenin accumulates and, in
turn, stimulates the genes for VEGF, cyclin D1 and c-Myc.
Aberrant Wnt signaling and excessive levels of B-catenin can
result in carcinogenesis and uncontrolled cell proliferation.
Kanwar et al. studied colon carcinoma cells that had been
made resistant to FOLFOX chemotherapy and were enriched
with CSCs (119). These cells can be made to grow in spheroid
colonies called colonospheres. Decreased levels of
phosphorylated [3-catenin, a marker of [3-catenin degradation,
and increasing levels of (3-catenin were associated with an
increased number of cells in the colonosphere that were
positive for CD44*. Decreased levels of (-catenin were
correlated with a decreased number of CSCs and decreased
colonosphere formation. Similar results were found with
mammospheres by Korkaya et al. (120). Zhao et al. developed
a strain of P-catenin deficient mice and reported that the
absence of P-catenin resulted in the impairment of self-
renewal of both normal hematopoetic stem cells and chronic
myelogenous leukemia stem cells (121).

Curcumin modulates Wnt signaling. Karkarala et al. have
shown that curcumin can inhibit Wnt signaling and the
formation of mammospheres in breast cancer cell lines, as
well as in normal breast cell lines (122). Likewise, curcumin
has been shown to cause a marked decrease in cell migration
and invasion in a human osteosarcoma cell line (123). This
effect was dose-dependent. In this study, no change in the
cytosolic 3-catenin was seen but there was a marked decrease
in nuclear B-catenin with curcumin. Evidence indicates that
curcumin can act at multiple points along the Wnt pathway.
Xu et al. reported that curcumin induced apoptosis in a human
hepatocellular carcinoma cell line by decreasing -catenin
activity, thus reducing stimulation of the B-catenin target genes
(124). They suggested this was an effect of the maintenance
of the P-catenin destruction complex by curcumin, which
prevented axin recruitment to the cell membrane (124). In a
human head and neck carcinoma cell line, MDA-1986,
curcumin reduced cell growth by increasing activating factor
3, thus causing the inhibition of the receptor Frizzled-1 (125).
Prasad studied the effects of curcumin on the human breast
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cancer cell lines MCF-7 and MDA-MB-231 and found that
curcumin blocked malignant cell growth at multiple sites
along this pathway, causing suppression of B-catenin, cyclin-
D1, slug and dishevelled and also altering the levels of E-
cadherin and GSK3p (126). Derivatives of curcumin have
been shown to inhibit colon cancer cells by decreasing the
amount of the transcriptional coactivator p300 (127).

The Notch Pathway

Like the Wnt pathways, the Notch pathway has been
conserved among species through evolution. The Notch
signaling pathway plays a critical role in regulating cell
differentiation, cell proliferation and apoptosis (128-133).
Notch signaling is known to regulate the functioning of
normal stem cells (134-139). Aberrant Notch signaling has
been implicated in the progression from Barrett’s esophagus
to esophageal carcinoma (140-141), as well as in the
development of carcinomas of the breast, lung and pancreas,
of multiple myeloma and of other cancers (142-146). The role
of the Notch pathway in the preservation of CSCs has been
emphasized (8, 147). A ten-fold increase in mammosphere
formation was seen after addition of a Notch activating peptide
to a breast cancer cell line (139). Phillips showed that the
number of breast cancer stem cells could be increased by the
use of recombinant human erythropoetin, which stimulated the
Notch pathway by induction of Jagged-1 (148).

Curcumin acts to suppress tumor cells at multiple sites
along the Notch pathway. Liu et al. showed that increasing
doses of curcumin caused increasing inhibition of SMMC-
7721 hepatoma cells in culture and these changes paralleled
decreases in NOTCH-1 mRNA and protein expression (149).
Subramanian et al. showed that curcumin inhibited the
formation of esophagospheres through its actions on the Notch
pathway causing capsase 3 activation and reducing Notch-1
activation through reduction of y-secretase complex proteins
(142). Kong showed that curcumin inhibited Notch-1 activity
in two prostate cancer cell lines by down-regulating the genes
MTI-MMP and its target molecule MMP2 (150). Aziz et al.
showed curcumin caused destruction of hepatoma cells
through down-regulation of Notch-1 and its target genes HES
and CyclinD1 (CCND1I) (151).

The Hedgehog Pathways

Like the Wnt and Notch pathways, the Hedgehog pathways
have a key role in embryonic development (152-154), as well
as the regulation of normal stem cell activity (155-157). Three,
closely related, pathways are known but the Sonic Hedgehog
pathway (Shh) is the most investigated. Abnormal functioning
of the Hedgehog pathways has been implicated in the
development of many types of cancer and has been associated
with stimulation of CSCs, thus, with an increased risk of
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tumor recurrence after therapy (158-161). It has also been
shown that blockage of the Hedgehog pathway can suppress
CSCs and reverse chemoresistance (162-164). Tumorigenesis
occurs in these pathways because of the 7-transmembrane
protein Smoothened. Smoothened is normally suppressed by
the 12-transmembrane proteins Patched-1 and Patched-2.
During aberrant Hedgehog signaling, one of the Hh proteins
is released and binds to Patched, freeing Smoothened and
leading to the activation of the transcription factors Gli2 and
Gli3, which cause transcription of the target genes, such as
GLII, cyclinD (CCNDI), cyclinE (CCNE), Patched 1
(PTCHI), c-MYC and n-MYC (165-167).

Curcumin can inhibit these pathways by multiple
mechanisms. Sun et al. studied the effects of curcumin on the
pancreatic carcinoma cell line PANC-1 and found a marked
inhibition of cell proliferation (168-169). Significant
decreases in Shh and Glil expression were noted, suggesting
one of curcumin’s many effects is through suppression of the
Hedgehog pathway. Elamin et al. studied curcumin’s effect
on medulloblastoma cells and found cell-cycle arrest at the
G,/M phase. Down-regulation of Shh, Glil and Patched-1
was seen, as well as of effectors cyclinD1, c-Myc and n-Myc
(170). Lim et al. utilized a unique polymeric nanoparticle
formulation of curcumin against medulloblastoma and
glioblastoma cell lines and found inhibition of the expression
of Glil and Patched-1, as well as marked reduction in the
number of CSCs expressing the stem cell marker CD133
(171). Slusarz reported that curcumin caused major
reductions in GLII mRNA concentrations in transgenic
prostate carcinoma (TRAMP) mice and in prostate carcinoma
cell lines (172).

The FAK/AKT/FOXO3A Pathway

The FAK/AKT/FOXO3A pathway plays an important role in
the regulation of normal stem cells (173-174). Aberrant
signaling through the pathway can stimulate the formation of
CSCs, resulting in tumor recurrence and the conferring of
resistance to chemotherapy (175-178). Under normal
conditions, activity of this pathway is suppressed by the
phosphatase and tensin homolog (PTEN), which acts as a
tumor suppressor gene (179-181). Inhibition of PTEN allows
for uncontrolled pathway signaling, blocking apoptosis of
CSCs. Loss or a deficiency of PTEN has been linked with
many diseases, including autism (182). PTEN deficiency has
been associated with myeloproliferative disorders and pre-
leukemia (183-184). Loss of PTEN results in increases in
CSCs in prostate cell lines (185), while epidemiological
studies show that up to 70% of prostate cancer patients have
lost a PTEN gene (186).

Multiple investigators have shown that curcumin is effective
in destroying CSCs by inhibition of this pathway. Shu et al.
have shown that addition of curcumin to a human
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medulloblastoma cell line resulted in marked decreases in
phosphorylated Akt and phosphoinositide 3-kinase (PI3K),
markers of FAK/AKT/FOXO3A pathway activity (187).
Likewise, Chen et al. have shown that curcumin inhibited
focal adhesion kinase (FAK, PTK2) phosphorylation at
multiple sites (TYR397,407, 576,577,861 and 925) in HCT-
116 colon carcinoma cells, causing pathway suppression and
allowing apoptosis (188). Yu et al. reported similar results
(189). Wang et al. showed that curcumin could inhibit this
pathway in human bladder carcinoma cells by increasing the
activity of PTEN (190). Hussain et al. showed that addition of
curcumin to T-cell acute lymphoblastic leukemia caused the
de-phosphorylation of Akt and of FOXO transcription factor,
thus inhibiting the FAK/AKT/FOXO3A pathway and allowing
apoptosis of cancer cells to proceed (191). Wu reported that
curcumin caused apoptosis in a nasopharyngeal carcinoma cell
line by inducing p53 and FOXO3A, a downstream effector of
PTEN (192).

Curcumin and Normal Stem Cells

The safety of curcumin has been long established, as it has
been used for centuries as a dietary spice. The question arises
as to why curcumin does not seem to have the same
deleterious effects on normal stem cells (NSCs) as it does on
CSCs. There are several possible reasons that curcumin has
toxic effects on CSCs, while sparing NSCs. Curcumin has
been shown to have a much greater uptake by malignant cells
compared to normal cells. Kunwar et al. studied the
differential uptake of curcumin and the fluorescence spectra
of curcumin-loaded cells in two normal cell lines (NIH373
mouse fibroblast cells and a mouse spleen lymphocyte line)
and in two malignant cell lines (MCF human breast
carcinoma and EL4 murine T-cell lymphoma) (193). Much
higher uptake was measured in the malignant lines. In
addition, fluorescence intensity was at least 3-8 times greater
in the two malignant cell lines. Since curcumin has been
shown to accumulate more in cancer cells than in bulk tumor
cells, it might be expected as well that it would accumulate
more in CSCs compared to NSCs.

Another explanation is that curcumin not only directly
affects cells but their microenvironment as well. Under normal
conditions, there is a delicate balance between proliferation-
promoting and proliferation-inhibiting signals from the
environment (194). Curcumin appears to shift the
microenvironment around these cells to one that is adverse to
proliferation of CSCs, but conducive to NSCs. As noted,
curcumin has been shown to suppress the release of pro-
inflammatory cytokines (Table I).

A third explanation is that curcumin’s direct actions against
CSCs may not be solely through its toxic effects. It has been
suggested that it is possible to target CSCs not by causing cell
death but by inducing these stem cells to differentiate. Many

Table 1. Curcumin: Suppression of key inflammatory cytokines.

Cytokine Reference

IL-6 (interferon-p2) 31-39, 59, 63

IL-8 (CXCLS) 31,34, 35, 58-63,79, 259
IL-1 32,33, 62,76-80, 259

TNF-a 31,35, 36, 62,63,
76,78, 196, 259
MCP-1 (monocyte chemotactic

protein-1) (CCL2)

MIP-1a (macrophage

31, 62,257,258

inflammatory protein-o.) 62
Interferon-y 195, 196
1L-12 195, 196
1L-2 196
GROa (CXCL1) 197
GROf (CXCL2) 197
SDEF-1 (stromal cell-derived

factor-1, CXCL12) 198
IP-10 (CXCL-10) 258

authors have suggested this as a strategy for depleting the
CSC population and, thus, preventing recurrence (199-200).
Almanaa et al. have suggested that induction of CSC
differentiation may be one of the ways curcumin depletes
CSCs. They tested cell lines that contained a large number
(up to 40.4%) of ALDHI1A1-stained cells with curcumin.
After treatment, the cells with this stem cell marker were
either markedly diminished or gone, suggesting either the
destruction of the CSC population or their differentiation into
less malignant cells (201). Studies have shown that curcumin
indeed causes differentiation of both CSCs and NSCs. Gu et
al. showed that curcumin can stimulate rat mesenchymal stem
cell differentiation into osteoblasts (202). Likewise, Mujoo et
al. showed curcumin could induce the differentiation of
human embryonal stem cells (203). In another study,
curcumin increased the differentiation rate of neural stem
cells in rats (204). Curcumin was also shown to increase
differentiation of mesenchymal stem cells in culture by
suppression of NF-kB, one of the mechanisms by which
curcumin attacks CSCs (205). Zhuang et al. showed that
curcumin could cause the differentiation of glioblastoma—
initiating cells in immunocompromised mice (206). Roy et al.
have shown that difluorinated-curcumin could stimulate
differentiation of colonic stem cells causing restoration of
PTEN (207). Likewise, Batth et al. reported that curcumin
could induce differentiation in a murine embryonal carcinoma
cell line (208).

These factors may help explain why curcumin has a less
toxic effect against NSCs than on CSCs. Still, in view of
curcumin’s activities at numerous sites along multiple
cancer pathways, curcumin’s lack of substantial toxicity to
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Table II. Curcumin: Major actions against molecular targets along key CSC pathways.

Effect on Pathway Effect on NSCs Effect on Pathway Effect on NSCs
(Reference) (Reference)
Wnt | Nuclear B-catenin (122%, 123, 124, 126, 1 (204, 222) Hedgehog | Shh (168, 169, 170%*)
127, 170%, 217, 224, 226, 227) | Gli-1(168, 169, 170*, 171*, 172) 1(222)
| c-Myc (123, 124, 170%*, 223, 226, 227, | Cyclin D1 (39, 123, 126,
229, 268) 142%*, 151, 170%*, 221,
| Wnt 3 (127) 1 (204, 222) 224,226, 229, 230, 239, 243%)
| Matrix metalloprotenase-2 (150, 219) | Vimentin (169, 242%)
| Matrix metalloprotenase-9 (123, 229) | Patched-1 (170%, 171%)
1 Axin (124) | (222) 1 Olig 2 (206%*)
| Frizzled-1 (125, 229) 1 (222) 1 E-cadherin (161, 188, 242%)
| SLUG (SNAI2) (126, 230, 242%) 1 GSK3p (126, 189, 191, 224, 234) | (222)
| Dishevelled (126) 1(222) FAK | Phosphorylation of Akt (170%, 171%*, 1 (269+)
| Transcriptional coactivator p300 (127) 187, 188, 189, 191, 207%)
| TcF/LeF (223, 226, 227, 229) 1(222) | PI3K (187)
1 Adenomatous polyposis cell protein (229) | (222) | VEGF (31, 219, 229, 230, 246%,269) 1 (269+); | (261%%)
| Nestin (206%*) 1(222) | VEGFR (269) 1 (269+)
1 B-tubulin (206%); | (225) 1(222); | (255) | Phosphorylated m-Tor/m-Tor (189, 269) 1 (269+, 271+)
! Wnt inhibitory factor-1 (WIF-1) (228) | (222) | HIF1a (hypoxia-inducible factor 1a) (269) 1 (269+)
| BDNF (273) 1 (272) | Signal tranducer CD24 (188)
| EGFR (HER1) (244%*) 1 Acetylation histone H1 (247%)
! Dnmt 1 (DNA methyltransferase) (244*) <> Acetylation histone H2 (247%)
ND - Neuro D1 1(222) 1 Acetylation histone H3 (247%*) | (248)
ND - DCX (Doublecortin) 1(222) 1 Acetylation histone H4 (247%*) | (248, 249)
ND — Neurogenin 1 (222) 1 Acetylation histone H8 (247%)
ND - Neureglin 1(222) | Bel-2 (B-cell lymphoma 2) (142%, 170%*, 1 (270+)
ND - Neuroligin 1(222) 171%, 190, 209, 215*, 216, 230, 239, 243*)
ND - Reelin 1 (222) | Bel- xL (142%*, 170%*, 217, 221,
ND - Serotonin receptor 1A RNA 1 (272) 235,239, 243*, 266*, 268)
ND - Pax 6 (Aniridia type II protein) 1(222) | SRC (241) 1 (205)
ND - LRP5/6 1(222) | IGF-1 (insulin-like growth factor 1) (171%)
ND - DKKI1 (Dickkorf-related protein 1) | (220) | IGF-2 (171%)
ND - Wnt 1 < (222) | IGF-1R (171%)
ND - Wnt 5 < (222) | P-IGFIRf (171%)
Notch | Notch-1 (142*, 149, 151, 243%, 266%*) 1 IGFBP (250) | (261%%)
| Notch-3 (243%) 1 Heme oxigenase-1 (214) 1 (202, 261%%)
| Jagged-1 (142%) | B-integrin (237) 1 (205)
1 Caspase 3 (142%, 190, 191, 215, | (205,232, 271%) | Fibronectin (242%*)
235,236, 243%) 1 PTEN (190, 207%*, 246%*)
1 Caspase 7 (239, 246%*) | Conversion of LC3-1 (microtubule- (271"
1 Caspase 8 (235, 236) associated protein-1 light chain 3) to
1 Caspase 9 (235, 239) | (271%) LC3-11 (235)
! PARP cleavage (215%*, 235, 236, 239, | (232) 1 FOXO3a (192)
243% 245%) ND - mlc 2 (myosin light chain 2) 1 (233)
| miR-21 (142%, 207*, 246%*) ND — Homebox protein Nkx-2.5 1 (233)
| miR-34a (142%) MAPK 1 p38 MAPK (189,209, 210, 211) 1 (231)
1 let 7a (142%) | Survivin (BIRC5) (123, 209, 219,
| HES 1 (142%, 150, 151, 226%); <= (171%) 220,229, 241, 243%*,263)
< HES 5 (171%) " ERK (210, 212, 213) ; 1 (205, 231);
<> HEY 2 (171%) <(171%,211) | (233)
1 BAX (142%*,216) | (270%) 1 JNK (210,211,212, 213, 233) | (232, 261%%)
| Presenilin 1 (142%) 1 ATF 3 (Activating transcription
| Presenilin 2 (142%) factor 3) (125)
| Nicastrin (142%) | ABCG2 (214%*,253%)
| APH 1 (142%) | ABCC1 (254%)
| PEN 2 (142%) | Oct-4 (260) 1 (255)
1 p53 (192, 251); | (267, 268) 1(233) | GPX (glutamate peroxidase) (264) 1 (261%%)
1 p21/WAF1 (142%) 1 (233) | Cyclin B1 (219)
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Table II. continued

Effect on Pathway Effect on NSCs

Effect on Pathway Effect on NSCs

(Reference) (Reference)
1 PKD1 (protein kinase D1) (115) | SOD-2 (superoxide dismutase 2, 1 (261%%)
| Nanog (260) 1(255) mitochodrial) (263)
| SOX-2 (SRY-box2) (260) | RB phosphorylation (243%*)
1 miR-145 (260) | ICAM-1 (intercellular adhesion
| EZH2 (Zesle homolog 2) (210, 230) molecule; CD54) (219)
| beclin-1 (235) T @271 | CKD4 protein (39)
1 c-jun (211, 213, 241) <> STAT 1 (243%)
| AP-1 (activator protein-1) (256) | (76) <> STAT 6 (243%)
CCL2 (MCP-1) (257) | (76) | Nitric oxide synthase (252) 1 (233)
| pPp2A (protein phosphatase 2A) (212) 1 SOCS 1 protein (247%)
| pp5 (protein phosphatase 5) (212) 1 SOCS 3 protein (247%*)
1 jun-B (213) ND - CXCL10 (IP-10) | (258)
1 ROS (reactive oxygen species) (235) | (232, 261%%) NF-kB | NF-kB (170%, 201%, 239, 246*, 268) | (76, 205)
! PPAR vy (peroxisome proliferator- | (202) | Ix-Ba (239) | (205)
activated receptor y) (238) | TNFa (35, 196, 263) | (76)
| Transcription factor sp-1 (188) | IL-1a (256) | (76)
| Calmodulin (188) JIL-16 (80) | (205)
| EphB2 (Ephrin type-B receptor 2) (188) | IL-6 (239, 242%)
| AIP-1/Alix protein (230) | s IL-6R (242%)
| PCNA (proliferating cell nuclear | SOX-9 (242%)
antigen) (230) | ADAM 17 (ADAM metallopeptidase
| Ki67 (230) domain 17; TNF-o converting enzyme)
1 GFAP (glial fibrillary acidic (242%)
protein) (206%) | Hsp90 (heat shock protein 90)
1 C/EBPa. (Ccaat-enhancer binding protein o) | (202) | COX2 (234,236, 246%) 1 (205)
(250) 1 Cytochrome-C release (235, 236)
ND — RUNX 2 (Runt-related transcription 1(202, 265) | ¢-FLIP (CFLAR) (235)
factor 2) | X-linked IAP (BIRC4) (235), <> (215%) | (205)
ND — CSPG (chondroitin sulfate 1 (205) | cIAP-2 (BIRC3) (235)
proteoglycan)
JAK/ | DNA replication licensing *Study done on lines with high proportion of CSCs. **Study done on
STAT3 factor MCM2 (218, 219) induced pluripotent stem cell line. *Study done on human umbilical vein
| STAT3-p (39, 171%, 218,219, 221, 243%) endothelial cells, not progenitor cells. ND- No data on curcumin’s effect
| PDGFB (platelet-derived growth | (261%%) on cancer cell lines.

factor B) (262)

normal tissues is significant. Table II lists important targets
of curcumin along key CSC pathways. The assignment of
these targets is somewhat arbitrary as many of these
biomolecules are situated along the intersection of multiple
pathways. It is clear, however, that curcumin often has
different effects on CSCs and NSCs in these crucial
pathways. For example, studies on CSCs have demonstrated
that part of curcumin’s toxicity to CSCs involves
suppression of molecular abnormalities in the Wnt pathway,
such as its inhibition of [-catenin (122, 125-126).
Curcumin has opposite effects on neural stem cells as it
stimulates neurogenesis. Curcumin increases [-catenin,
cyclin D1, dishevelled and frizzled but reduces expression
of the components of the -catenin destruction complex,
including the tumor suppressors GSK-3p, APC

(adenomatous polyposis cell protein) and axin. Curcumin
has contrary, but doubly-beneficial, actions like inhibiting
CSCs, while at the same time stimulating normal NSC
function (204, 222).
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