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Active Hexose-correlated Compound Down-regulates Heat
Shock Factor 1, a Transcription Factor for HSP27, in
Gemcitabine-resistant Human Pancreatic Cancer Cells
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Abstract. Background: Active hexose-correlated compound
(AHCC) is an extract of a basidiomycete mushroom that
enhances the therapeutic effects and reduces the side- effects
of chemotherapy. Our previous studies demonstrated that
heat-shock protein 27 (HSP27) was involved in gemcitabine-
resistance of pancreatic cancer cells and it was down-
regulated by AHCC-treatment. However, how AHCC down-
regulated HSP27 is unknown. In the present study, we
focused on two transcription factors reported to induce
HSP27, heat shock factor 1 (HSF1) and high-mobility group
box 1 (HMGBI) and investigated the effect of AHCC on their
expression. Materials and Methods: KLMI-R cells were
treated with AHCC and the protein expression of HSF1 and
HMGBI were analyzed by western blotting. Results: The
protein expression of HSF1 in KLM1-R was down-regulated
by AHCC treatment. On the other hand, the protein
expression of HMGB1 was not reduced in KLMI-R cells
after AHCC treatment. Conclusion: The possibility that
AHCC down-regulated HSP27 through down-regulation of
the HSF1, was herein shown.

Pancreatic cancer has a poor prognosis, and the 5-year
overall survival rate is less than 5%. It is the fifth leading
cause of cancer death (1, 2). Surgical resection is the only
radical treatment, but most patients are not diagnosed until
an advanced, unresectable stage (3). Gemcitabine (2’-deoxy-
2’,2’-difluorocytidine monohydrochloride) improved the
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quality of life in many patients and moderately extended
survival, and thus gemcitabine is currently one of the
standard drugs for patients with pancreatic cancer (4).
However, usually gemcitabine therapy is interrupted by
intrinsic or acquired resistance of pancreatic cancer (5).

In our previous studies, we compared protein expression
of the gemcitabine-resistant human pancreatic cancer cell
line, KLM1-R, against those of sensitive parental KLM1,
revealing that heat shock protein 27 (HSP27) was up-
regulated in KLMI-R compared to KLM1 (6, 7).
Furthermore, since down-regulation of HSP27 in KLM1-R
elevated the cytotoxic effect of gemcitabine, HSP27 is
thought to be involved in gemcitabine resistance (8-10).

Active hexose-correlated compound (AHCC) is derived
from the basidiomycete mushroom Lentinula edodes that is
composed of polysaccharides, amino acids, lipids and
minerals. The principal components of AHCC are
oligosaccharides and al, 4-glucans occupy the major
portions of these. AHCC has been reported to have
immunomodulatory and antitumor effects (11). We
previously showed that AHCC down-regulated HSP27 in
KLMI1-R cells in vitro (12).

Heat shock factor 1 (HSF1) is a transcription factor that
is a regulator of heat-shock proteins, including HSP27 (13).
Recently, several studies have reported that HSF1 has been
found increased in several human cancers and was essential
for the proliferation of cancer cells (14-16). High-mobility
group box 1 (HMGBI1) is also involved in the regulation of
HSP27 (17, 18). HMGBI is a nuclear factor that is important
for transcription (19). HMGBI1 is expressed following
chemotherapy and depletion of HMGB1 increased sensitivity
to anticancer chemotherapy (20, 21). However, whether
AHCC-treatment affect HSF1 or HMGB1 in KLM1-R cells
is unknown. To investigate the effect of AHCC on HSF1 and
HMGBI1 in KLM1-R cells, we analyzed the expressions of
HSF1 and HMGB1 in AHCC-treated or untreated KLM1-R
cells by western blot analysis.
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Materials and Methods

Cancer cell line and conditions. The gemcitabine-resistant
pancreatic cancer cell line, KLM1-R, was kindly provided by the
Department of Surgery and Science, Kyushu University Graduate
School of Medical Science. KLMI1-R cells were established by
exposing gemcitabine-sensitive KLM1 cells to gemcitabine (22).
KLMI1-R cells were incubated in RPMI-1640 medium added 10%
fetal bovine serum (inactivated at 56°C for 30 min), 2 mM L-
glutamine, 1.5 g/l sodium bicarbonate, 10 mM N-2-
hydroxyehylpiperazine-N’-2-ethanesulfonic acid (HEPES), and 1.0
mM sodium pyruvate, and maintained in a humidified 5% carbon
dioxide-95% air mixture at 37°C.

Agents. Active hexose-correlated compound (AHCC) was kindly
given by the Amino Up Chemical Co., Ltd. (Sapporo, Japan).
AHCC was dissolved in RPMI-1640 medium and filter-sterilized.

Sample preparation. KLM1-R cells were treated with or without
AHCC (10 mg/ml) for 48 h in vitro. After treatment, the cells were
homogenized on ice in lysis buffer [SO mM Tris-HCI, pH 7.5, 165
mM sodium chloride, 10 mM sodium fluoride, 1 mM sodium
vanadate, 1 mM phenyl methyl sulfonyl fluoride, 10 mM
ethylendiaminetetra-acetic acid, 10 pg/ml aprotinin, 10 pg/ml
leupeptin, and 1% nonylphenocypolyehoxylethanol-40]. After
centrifugation at 15,000 rpm for 30 min at 4°C, the supernatant was
collected and used for western blotting. Protein concentrations were
measured by the Lowry method (23).

Western blot analysis. In order to analyze the expression levels of
intracellular proteins from KLMI1-R cells, 15-ug protein samples
were subjected to western blot analysis. Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was performed in
pre-cast gels (4-20% gradient polyacrylamide gels; Mini-PROTEAN
TGX Gels, Bio-Rad, Hercules, CA, USA). After the samples were
separated by  electrophoresis, gels were transferred
electrophoretically onto polyvinylidene difluoride membranes
(Immobilon-P; Millipore, Bedford, MA, USA) and blocked
overnight at 4°C with Tris-buffered saline (TBS) containing 5%
skimmed milk. The primary antibodies used were: rabbit
monoclonal antibody against HSF1 (1:1,000, CST, Beverly, MA,
USA), rabbit polyclonal antibody against HMGB1 (1:1,000, CST)
and goat polyclonal antibody against actin (1:200, Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA). Membranes were
incubated with the primary antibody overnight at 4°C. The
membranes were washed three times with TBS containing 0.05%
Tween-20 for 3 min and then incubated with horseradish
peroxidase-conjugated secondary antibody (dilution 1:10,000;
Jackson Immuno Research Laboratories Inc., West Grove, PA, USA)
for 1 h at room temperature. After washing, bands of HSFI1,
HMGB1 and actin were visualized by an enhanced
chemiluminescence system (ImmunoStar Long Detection; Wako,
Osaka, Japan), and recorded using an Image Reader LAS-1000 Pro
(Fujifilm Corporation, Tokyo, Japan). Expression levels of HSF1,
HMGBI and actin in AHCC-treated or untreated KLM1-R cells
were quantified by analyzing the intensity of each band using the
Multi Gauge ver. 3.0 software (Fujifilm Corporation).

We calculated the ratio of intensities of HSFI1 to actin
(HSF1/actin) and HMGBI1 to actin (HMGB1/actin) in AHCC-
treated or untreated KLMIR cells from four independent
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experiments. The ratio of band intensities in untreated KLM1-R
cells was considered 100%. Statistical significance of differences in
the ratio of intensities of HSF1/actin and HMGB 1/actin in AHCC-
treated or untreated KLM1R cells were calculated by the Student’s
t-test. A value of p<0.05 was considered statistically significant.

Results

In order to evaluate the effect of AHCC on the HSF1 and
HMGBI1, we analyzed the intracellular proteins from KLM1-
R cells treated with or without AHCC by western blot
analysis with a primary antibody against HSF1, HMGB1 and
actin (Figure 1). The protein expression of HSF1 was
reduced by AHCC treatment in KLM1-R cells, whereas
HMGBI1 and actin were almost the same in all cells. The
ratio of intensities of HSF1/actin and HMGB1/actin in
KLMI1-R cells were measured (Figure 2). The ratio of band
intensities in untreated KLM1-R were considered 100%. The
ratio of intensities of HSF1/actin in AHCC-treated or
untreated KLM1-R cells were 100%+20.1 and 73.5%+4 .6,
respectively. On the other hand, the ratio of intensities of
HMGB1/actin in AHCC-treated or untreated KLM1-R cells
were 100%+26.5 and 102%=+50.7, respectively. The ratio of
intensity of HSF/actin was significantly different (p<0.05)
between AHCC-treated and untreated KLM1-R cells. These
results suggested that HSF1, but not HMGB1, was down-
regulated by AHCC treatment in vitro.

Discussion

HSPs are induced by various stress factors and are
implicated in cell survival, thus controlling the apoptotic
signaling pathway. In cancer cells, HSPs are involved in anti-
apoptotic function and resistance to chemotherapy. Thus,
HSPs have been considered anticancer therapeutic targets in
many cancers (24, 25).

In pancreatic cancer cells, we previously showed that
interferon-y and N-formy1-3.4-methylenediosy-benzylidene-y-
butyrolactam (KNK437) reduced the expression of HSP27 to
enhance the gemcitabine sensitivity in the gemcitabine- resistant
pancreatic cancer cell line KLM1-R (9, 10). HSP90 is also a
molecular target of pancreatic cancer therapy (26). HSP90
inhibitors, such as geldanamycin, inhibit many oncogenic client
proteins, whereas this agent induces heat shock response and
increases HSP27 expression through HSF1 activation (27).
HSF1 normally exists as the inactive monomer in unstressed
cells. Under stress conditions, HSF1 forms a trimer and
translocates to the nucleus to activate the expression of HSPs. In
the nucleus, HSF1 is phosphorylated and transcriptionally
activated (28). HSF1 is a master transcription factor for heat
shock responses and HSPs, thus the inhibition of HSF1 is an
anticancer therapy strategy. Recent studies reported that
knockdown of HSFI by siRNA induced apoptosis in pancreatic
cancer cell lines (29). The triazole nucleoside analog reduced
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Figure 1. Expression levels of HSF1 and HMGBI in active hexose-
correlated compound (AHCC)- treated and -untreated KLMI1-R cells.
Western blot analysis of HSF1, HMGBI1 and actin in AHCC- treated
(10 mg/ml) or -untreated (0 mg/ml) gemcitabine-resistant pancreatic
cancer KLMI-R cells. The protein expression of HSF1 (bands of
82 kDa) was reduced by AHCC treatment in KLM1-R cells compared
to untreated KLM1-R cells. On the other hand, protein expression of
HMGBI (bands of 29 kDa) and actin (bands of 43 kDa) did not change
significantly in the cells.

HSF1 expression and HSPs expression and inhibited tumor
formation in pancreatic cancer cell lines (30). Furthermore, high
levels of HSF1 are implicated in poor prognosis of breast cancer
(31). Herein, we showed that AHCC-treatment significantly
down-regulated the expression of HSFI in a gemcitabine
resistant pancreatic cancer cell line in vitro.

AHCC has been used as an immunotherapeutic agent for
cancer patients and healthy volunteers (32, 33). AHCC has
attenuated the side-effects of antitumor agents (34, 35). AHCC
is thought to enhance the chemotherapeutic efficacy. AHCC
plus UFT reduced the metastasis of rat mammary
adenocarcinoma cells (36). The present study showed that
AHCC down-regulated the expression of HSF1. As described
above, HSF1 is activated by phosphorylation at Ser326 (37).
Human epidermal growth factor receptor-2 (HER2; ErbB2/Neu)
signals induce HSF1 phosphorylation via the PI3k-AKT-mTOR
pathway. Recently, it was reported that HER2 induces HSF1
trimerization and phosphorylation and facilitates HSF1 protein
synthesis (38, 39). In our previous study, AHCC down-regulated
HSP27 expression and enhanced the cytotoxic effect of
gemcitabine in vitro (12). We also reported that AHCC down-
regulated Sex-determining region Y-box2 (SOX2) of KLM1-R
cells (40). SOX2 is part of the sox gene family encoding
transcription factors. It has been reported that SOX?2 associated
with HSP27 and HMGBI in the regulation of HSP27
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Figure 2. The intensity of the HSF1/actin bands in KLM1-R cells. This
graph shows the ratio of the intensities of HSFI protein to actin
protein bands in AHCC-treated or untreated KLMI-R cells. The
intensity of HSF1/actin in KLM1-R cells was significantly reduced by
AHCC treatment in vitro (p<0.001 by Student’s t-test). A value of
Pp<0.05 was considered statistically significant (n=4).

expression (17, 41). We thought that AHCC down-regulated the
expression of HSP27 through down-regulation of HSFI,
although further studies are required to elucidate the mechanism
by which it reduces the expression of HSF1. AHCC can be
considered a valid candidate for combinatorial therapy in
anticancer drug regimens for drug-resistant cancer cells.
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