
Abstract. Background/Aim: Virotherapy may be a
promising alternative to chemotherapy of malignant
melanoma. In clinical trials using strains of Newcastle
disease virus (NDV), only a fraction of patients with cancer
responded to virotherapy. In the present study, we tried to
find a correlation between the susceptibility of human
melanoma cell lines to NDV and growth factor signaling
pathways. Materials and Methods: Using an ATP assay,
cytotoxicity of an NDV strain (MTH-68/H) was tested in 13
human melanoma cell lines. The activation state of growth
factor signaling pathways was studied by the analysis of key
signaling proteins. Results: MTH-68/H was found to be
cytotoxic in all melanoma cells tested, but the IC50 values
varied significantly. No correlation between the IC50 values
and the rate of extracellular signal-regulated kinase (ERK)
and AKT phosphorylation and phosphatase and tensin
homologue (PTEN) expression was found. Conclusion:
Susceptibility of tumor cells to NDV may be affected by
alterations other than those of RAS/ERK and
phosphatidylinositol 3-kinase (PI3K)/AKT signaling in
uninfected cells. 

Malignant melanoma is an aggressive malignancy of
melanocytes: it can be cured by surgical excision of the
tumor in its early phase; metastasizing melanoma, however,
is highly resistant to most conventional therapies and
qualifies as one of the most deadly malignant diseases (1).

Recent advances in molecular pathology has identified
several signaling pathways and regulatory circuits activated
in melanoma cells (1-6). The most frequently activated

pathways in advanced melanoma are the RAS/extracellular
signal-regulated kinase (ERK) pathway and the
phosphatidylinositol-3-kinase (PI3K)/AKT pathway, up-
regulated in 90% (2) and in 70% (5) of melanomas,
respectively. Besides these, the retinoblastoma/p53, WNT,
nuclear factor-ĸB and microphthalmia-associated
transcription factor signaling mechanisms (2), cell-cycle
regulation, hypoxia signaling and cell adhesion are also often
affected (3). The complexity of regulatory defects in
melanomagenesis provides an explanation for the relative
inefficiency of radio- and chemotherapeutic treatment
protocols, and even attempts at targeted molecular therapies
(6). Although drugs targeting key proteins of these signal
transduction pathways hold promise of becoming effective
anti-melanoma therapeutic agents, their pre-clinical and
clinical testing is still in early phase (1, 3, 5, 6).

Oncolytic virotherapy has become an alternative approach
to cancer treatment (7-9). Selective anti-tumor cytotoxicity
of dozens of viruses, both natural and genetically engineered,
have been tested in cell culture, and in animal and human
studies (9). Out of the natural viruses, vesicular stomatitis
virus (10), HF10 [an attenuated herpes simplex virus (11)],
Coxsackievirus (12), Myxoma virus (13) and Newcastle
disease virus (NDV) were found to be cytotoxic to melanoma
cells. Viruses expressing a transgene e.g.
adenovirus/interleukin 24 (IL24) (14), adenovirus/arrestin
(15), vaccinia/ granulocyte macrophage-colony stimulating
factor (GM-CSF) (16) NDV/IL2, NDV/GM-CSF and NDV/
tumor necrosis factor (TNF) (17) were also tested for
melanoma cytotoxicity, with some success.

Unmanipulated, natural NDV was among the first viruses
whose oncolytic potential was suspected (18). NDV is an
avian paramyxovirus; its various strains are strongly
pathogenic (velogenic), moderately virulent (mesogenic) or
non-pathogenic (lentogenic) in birds, and are invariably non-
pathogenic in humans (17). Its oncolytic effect may stem
from two mechanisms: direct cytotoxicity causing apoptotic
death of tumor cells, including melanoma cell lines (19);
immunostimulatory effects leading to increased expression
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of proteins involved in anti-tumor immune responses e.g.
major histocompatibility complex, IFNs, chemokines (18,
20-22). Clinical trials using various NDV strains to treat
patients with different types of advanced tumors indicated
that only some patients had complete or partial response to
NDV, while others were resistant to virotherapy (23-28). The
reasons for the differences in susceptibility to NDV are
currently unknown.

The aim of the present study was to determine the sensitivity
of several human melanoma cell lines to MTH-68/H, an
attenuated mesogenic NDV originating from the Herts’33
Hertfordshire strain (29). MTH-68/H is cytotoxic to rodent and
human tumor cell lines of various tissue origin, it replicates in
tumor but not in non-transformed cell lines, activates several
signaling mechanisms in infected tumor cells [including IFN
signaling, endoplasmic reticulum stress and apoptosis pathways
(19)] accompanied by the up- or down-regulation of hundreds
of genes (30). Among other tumor cell types, three human
melanoma cell lines, HT-168-M1/9, HT199 and WM983B,
were found to highly sensitive to MTH-68/H infection (19).

In the present study, 13 additional human melanoma cell
lines were tested for MTH-68/H susceptibility by
determining the 50% inhibitory concentration (IC50) and
80% inhibitory concentration (IC80) values using an ATP
assay. Correlations between NDV sensitivity and the genetic
status of key regulatory mechanisms (RAS/ERK pathway,
PI3K/AKT pathway, and p53 protein) were sought.

Materials and Methods

Cell culture. Human melanoma cell lines UCSD-242L, SK-MEL-2,
SK-MEL-5, SK-MEL-28, MALME-3M, UACC-62, UACC-257, and
LOX-IMVI were obtained from the National Cancer Institute,
Frederick National Laboratory for Cancer Research (Frederick, MD,
USA), A375 (American Type Culture Collection (ATCC) cat. no.
CRL-1619), A7 (CRL-2500), HMCB (CRL-9607), RPMI-7951
(HTB-66), and SK-MEL-3 (HTB-69) were purchased from the
ATCC (Wesel, Germany). The Rat1 cell line (a gift from G. M.
Cooper, Boston University) was used as control in the western blot
experiments. UCSD-242L, SK-MEL-2, SK-MEL-5, SK-MEL-28,
MALME-3M, UACC-62, UACC-257, LOX-IMVI cells were
cultured in RPMI-1640 AQ media (Sigma, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco, Carlsbad,
CA, USA). A375 cells were grown in Dulbecco’s modified Eagle’s
medium (Sigma) containing 10% FBS. A7 cells were cultured in
Eagles minimum Essential medium (EMEM) (Sigma) supplemented
with 2 mM glutamine, 1 mM sodium pyruvate, 10 mM HEPES, 
0.5 g/l geneticin (G418) and 10% FBS. HMCB cells were grown in
EMEM containing 2 mM glutamine, 10 mM HEPES, 1 mM sodium
pyruvate and 10% FBS. RPMI-7951 cells were cultured in EMEM
containing 2 mM glutamine, 1 mM sodium pyruvate and 10% FBS.
SK-MEL-3 cells were grown in McCoy’s 5A medium (Sigma)
supplemented with 15% FBS.

ATP assay. Cells were plated onto white flat-bottom 96-well plates
(Greiner, Frickenhausen, Germany) in triplicates. The optimal seeding

number for each cell line was determined individually in preliminary
experiments: 2000 SK-MEL-2 cells; 1000 SK-MEL-5, MALME-3M,
UACC-257, LOX-IMVI, and SK-MEL-3 cells; 750 HMCB cells; 500
UCSD 242L, SK-MEL-28, UACC-62, A7 and RPMI-7951 cells; and
250 A375 cells were plated. On the next day, cells were infected with
different titers [multiplicities of infection (MOIs, particle/cell) 0.0005,
0.0025, 0.013, 0.064, 0.32, 1.6, 8, 40, 200, 1,000] of MTH-68/H for
72 h. For the positive control, cells were treated with 1 μg/ml
anisomycin, whereas for the negative controls, cells were treated with
medium only. A luciferase-based ATP assay (Promega, Madison, WI,
USA) was performed according to the manufacturer’s instructions and
luminescence was analyzed by FLUOstar Optima (BMG Labtech,
Offenburg, Germany). IC50 and IC80 values were determined by
Origin 8.0 (OriginLab, Guangzhou, China).

Western blotting. The preparation of protein extracts and the
procedure of western blotting was performed as described elsewhere
(31). Antibodies to phospho-ERK, phospho-AKT (Ser473),
phosphatase and tensin homologue (PTEN) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) were purchased from Cell
Signaling Technology (Beverly, MA, USA). Horseradish peroxidase
conjugated anti-rabbit antibody was obtained from Pierce
Biotechnology (Rockford, IL, USA).

Results and Discussion
The susceptibility of 13 human melanoma cell lines to the
oncolytic NDV strain MTH-68/H was analyzed in this study.
The IC50 and IC80 values of all cell lines were determined
(Table I), and arbitrary categories of MTH-68/H sensitivity
were established: <0.1 MOI, highly sensitive; 0.1-10 MOI,
moderately sensitive; 10-1,000 MOI, weakly sensitive; >1,000
MOI, MTH-68/H-resistant. Using these criteria, five and eight
melanoma cell lines were found to be highly and moderately
MTH-68/H sensitive, respectively. The IC50 values covered a
200-fold range (from 0.013 to 2.57 MOI), giving an average of
0.548 MOI. The Rat-1 cell line used as control in this study
was found to be resistant to MTH-68/H (19).

The aim of the present study was to determine the
correlation between previously identified features of key
melanomagenic genes (summarized in Table I), the state of
activation of these signaling pathways in the melanoma cell
lines (shown in Figures 1 and 2), and their susceptibility to
NDV oncolysis.

Several signaling pathways and regulatory mechanisms are
affected by mutations and gene expression alterations in
melanoma. The most frequently affected pathway in the
melanoma cell lines tested is the RAS/ERK pathway (12 out
of 13 cell lines, no information was available for the A7 cell
line; Table I): stimulation of this pathway may be caused by
the activation/overexpression of growth factor receptors
[point-mutation of epidermal growth factor receptor (EGFR)
in SK-MEL-28, overexpression of the ephrin receptor EPHA
in A375 and HMCB], activating NRasQ61R mutation (in SK-
MEL-2), and BRAF mutation (in 10 cell lines). These 12 cell
lines with activating mutations in signaling elements of the
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RAS/ERK pathway, including the 10 cell lines carrying the
BRAFV600E mutation, the most common genetic feature in
melanoma, cover a wide range of MTH-68/H sensitivities
(IC50 between 0.013 and 2.57 MOI). 

In five of the cell lines, a mutant p53 gene was identified
(SK-MEL-2, SK-MEL-28, SK-MEL-3, HMCB, and RPMI-
7951). The absence of p53 mutation was demonstrated in
another six melanoma cell lines (SK-MEL-5, MALME-3M,
UACC-257, LOX-IMVI, A375 and UACC-62). There was no
significant difference between the mean IC50 (0.686 and
0.479 MOI) and the range of susceptibility (0.013 to 2.57
MOI and 0.017 to 1.00 MOI, respectively). This is in
agreement with our earlier findings that the function of p53
protein is not required for the apoptotic effect of MTH-68/H
on tumor cells (19).

Based on literature data (Table I) the PI3K/AKT pathway
is expected to be constitutively active in SK-MEL-28 (EGFR
mutation, PTEN mutation), HMCB, A375 (EPHA
overexpression) and UACC62 (lack of PTEN expression).
The average MTH-68/H sensitivity of these cells was not
significantly different from the average for the 13 melanoma
cell lines (Figure 1). 

In order to determine the actual activation states of the
RAS/ERK and PI3K/AKT pathways, western blot analysis of all
the 13 melanoma cell lines using anti-phospho-ERK, anti-
phospho-AKT and anti-PTEN was performed (Figure 2). Since
the cell lines were arranged on the western blot according to their
decreasing sensibility toward MTH-68/H, it is clearly apparent
from Figure 2 that no correlation between ERK or AKT
phosphorylation and NDV susceptibility exists. In addition,
unexpectedly, the level of ERK or AKT phosphorylation did not
always correlate with the genotype of the cell lines (see Table I).
For example, although both MALME-3M and SK-MEL-3 cells
carry the BRAFV600E mutant allele that codes for a

constitutively active RAF kinase acting upstream of ERK
kinases, ERK proteins were found to be highly phosphorylated
and under-phosphorylated, respectively, in these cell lines.
Similarly, SK-MEL-28 cell line carrying a mutated PTEN gene
had a very low level of AKT phosphorylation (Table I, Figure
2). The PTEN tumor-suppressor protein acts upstream of AKT
and thus an inverse relationship between PTEN expression and
AKT phosphorylation is expected, and is in fact seen in most of
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Figure 2. Extracellular signal-regulated kinase (ERK) and AKT
phosphorylation and phosphatase and tensin homologue (PTEN)
expression in individual cell lines. Western blot analysis of cell extracts
using antibodies against phospho-(p)-ERK, p-AKT and PTEN was
performed. Rat1 cells were used as controls. The melanoma cell lines
were arranged in decreasing sensitivity to MTH-68/H according to the
50% inhibitory concentration (IC50) value. Antibody against
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a
loading control.

Figure 1. MTH-68/H sensitivity of various groups of human melanoma cell lines. The mean 50% inhibitory concentration (IC50) values±SD were
determined for the indicated groups of cell lines. Numbers in parentheses indicate the number of cell lines in the specific group.
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Table I. Genotypic and phenotypic features and susceptibility of human melanoma cell lines to Newcastle disease virus (NDV). Cell lines were
cultured, infected with MTH-68/H at different multiplicities of infection (MOIs, particle/cell) and the 50% inhibitory concentration (IC50) and 80%
inhibitory concentration (IC80) values were determined using an ATP assay as described in the Materials and Methods. Measurements were
performed for each cell line in at least two independent experiments, in triplicates. 

Cell line Origin of cell line IC50 (MOI) IC80 (MOI) Genotypic/phenotypic feature

Highly sensitive to MTH-68/H
SK-MEL-2 Skin metastasis 0.013 0.058 NRAS Q61R [35]

wt BRAF [35,36]
No constitutively active AKT [33]

p53 G245S [37]
SK-MEL-5 Axillary node metastasis 0.017 0.065 wt NRAS [35]

BRAF V600E [35, 36]
wt p53 [38]

A7 (M2A7) ABP (filamin-1)-transfected M2 0.020 0.363
skin melanoma cell line

MALME-3M Lung metastasis 0.038 0.155 wt NRAS [35, 40, 42]
BRAFV600E [35, 38-40]

wt p53 [37-40]
wt PTEN [40, 42]

Weakly invasive [41]
UACC-257 Malignant melanoma 0.083 0.370 wt NRAS [35, 40]

BRAFV600E [35,40]
High phospho-ERK [32]

wt p53 [38, 40]
wt PTEN [40]

Moderately sensitive to MTH-68/H
SK-MEL-28 Malignant melanoma 0.257 0.922 EGFR P753S [40]

wt NRAS [35, 40, 42]
BRAF V600E [35, 36, 39, 40]

High phospho-ERK [32]
p53 L145R [37, 39, 40]

PTEN T167A [42],
Low PTEN expression [43]

Constitutively active AKT [33]
Weakly invasive [41]

SK-MEL-3 Lymph node metastasis 0.286 1.80 wt NRAS [40]
BRAF V600E [36, 40]

p53 R267W [40]
wt PTEN [40]

HMCB Bowes melanoma 0.310 6.10 High EPHA expression [44]
wt BRAF [39]

p53 H193R [39]
LOX-IMVI Lymph node metastasis, 0.788 6.00 wt NRAS [35, 40]

amelanotic BRAF V600E [35, 40]
wt p53 [38, 40]
wt PTEN [40]

Strongly invasive [41]
UCSD-242L Malignant melanoma 0.798 2.25 wt NRAS [35]

BRAF V600E [35]
A375 Primary melanoma 0.948 4.43 High EPHA expression [44]

wt NRAS [35, 40, 42]
BRAFV600E [35, 36, 39, 40]

High phospho-ERK [32]
wt p53 [37, 38, 40]
wt PTEN [40, 42]

Strongly invasive [41]
UACC-62 Malignant melanoma 1.000 2.46 wt NRAS [35, 40]

BRAF V600E [35, 40]
wt p53 [38,40]

PTEN P248fs [40],
No PTEN expression [43]

RPMI-7951 Lymph node metastasis 2.565 8.80 wt NRAS [35]
BRAF V600E [35, 39]
p53 S166X [37, 39]

Strongly invasive [41]



the melanoma cell lines (Figure 2). These observations suggest
that the activation state of these mitogenic/pro-survival pathways
is affected by features other than those that have already been
identified (e.g. the level of expression of the activated BRAF
protein, activity and level of specific phosphoprotein
phosphatases, cross-talk between signaling pathways etc.). In
addition, some of our western blot results contradict observations
published earlier. For example, SK-MEL-28 cells were reported
to contain highly phosphorylated ERK (32) and AKT (32, 33)
protein kinases. In contrast, we found both enzymes to have
phosphorylation states comparable in SK-MEL-28 and non-
transformed Rat1 cells (Figure 2). The reason for this
discrepancy is not clear; it may reflect individual differences
between different batches of the same cell line or differences in
cell-culture conditions. 

The results presented herein indicate that high basal
activity of the ERK and AKT pathway is not required for the
oncolytic action of MTH-68/H, SK-MEL-5, for example,
while being highly susceptible, displayed very low levels of
both ERK and AKT phosphorylation. On the other hand,
overactive ERK and AKT pathways (as in RPMI-7951 cells)
are not sufficient to provide high NDV susceptibility. In
contrast to our findings with NDV, oncolysis by reovirus
requires an activated RAS pathway that is essential to
stimulate the synthesis of viral proteins (34). In NDV-infected
melanoma cells, activation of this pathway alone does not
determine the relative susceptibility of melanoma cell lines
toward the virus. The lack of correlation between MTH-68/H
sensitivity and the state of ERK and AKT signaling may be
interpreted in several ways. Firstly, hundreds of cellular
proteins may be involved in the process of viral oncolysis and
their basal levels or activation states may be more important
in NDV sensitivity than activation of ERK and AKT
signaling. Secondly, it may be the response of these proteins
to NDV infection rather than their basal state that matters. It
may be of importance that MTH-68/H infection of PC12 rat
pheochromocytoma cells leads to the induction and repression
of hundreds of genes (30). The products of the affected genes
are involved in diverse cellular processes (e.g. IFN signaling,
apoptosis, anti-viral responses, endoplasmic reticulum stress,
and cell-cycle regulation) that may have a role during NDV
infection. Differences in NDV induction/repression patterns
of these genes may correlate with the sensitivity of cell lines
to NDV infection. Systematic analysis of key signaling
proteins of these regulatory mechanisms may lead to
identification of useful markers of NDV susceptibility. 
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