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Abstract. Because we found UV-exposed oral tissue cells
have reduced DNA repair and apoptotic cell death compared
with skin tissue cells, we asked if a correlation existed
between personal UV dose and the incidences of oral and
pharyngeal cancer in the United States. We analyzed the
International Agency for Research on Cancer’s incidence
data for oral and pharyngeal cancers by race (white and
black) and sex using each state’s average annual personal
UV dose. We refer to our data as ‘white’ rather than
‘Caucasian, which is a specific subgroup of whites, and
‘black’ rather than African-American because blacks from
other countries around the world reside in the U.S. Most
oropharyngeal carcinomas harboured human papilloma
virus (HPV), so we included cervical cancer as a control for
direct UV activation. We found significant correlations
between increasing UV dose and pharyngeal cancer in white
males (p=0.000808) and females (p=0.0031) but not in
blacks. Shockingly, we also found cervical cancer in whites
to significantly correlate with increasing UV dose
(p=0.0154). Thus, because pharyngeal and cervical cancer
correlate significantly with increasing personal UV dose in
only the white population, both direct (DNA damage) and
indirect (soluble factors) effects may increase the risk of
HPV-associated cancer.
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Oral cavity cancer comprises those found in the lips, cheeks
(buccal mucosa), gums, front two-thirds of the tongue, floor
of the mouth below the tongue, and the hard palate.
Pharyngeal cancer comprises those found in the tonsils,
pyriform sinus, nasopharynx, hypopharynx, and the
oropharynx. Oropharyngeal cancer comprises those found in
the base, or back third, of the tongue, the soft palate, the side
and back wall of the throat, and the part of the throat right
behind the mouth. The American Cancer Society estimates
about 37,000 people in the United States will be diagnosed
with oral cavity or oropharyngeal cancer and about 7,300
will die in 2014 (1), making it almost twice as deadly as
cutaneous malignant melanoma (2). The incidence rates of
oral and pharyngeal cancer are about twice as high in men
as in women, and oral cancer ranks as the eighth most
common cancer among men in the U.S. (3).

The primary causes of most oral and pharyngeal cancer are
tobacco (smoking or chewing), alcohol (4-7), human papilloma
virus (HPV; 8), and UV (290-400 nm) radiation (9-11). Tobacco
use increases a person’s risk for developing cancer via
formation of DNA adducts that lead to mutations (6), while
alcohol enhances the risks associated with other carcinogens (7).
According to the International Agency of Research on Cancer
(IARC), HPV (12) and UV (13) are both independent, complete
human carcinogens. HPV can cause cancer by preventing cell
death (14, 15) and causing cells to evade immune surveillance
(16, 17) and infects the pharyngeal components, i.e. the tonsils,
the tonsillar crypts, the tonsillar pillars, the base of the tongue,
and the back of the throat (oropharynx). The prevalence of HPV
in oropharyngeal cancer increased from about 16% during
1984-1989 to about 72% during 2000-2004 in the U.S. (18), as
evidenced by biopsies (19). UV radiation can cause cancer by
creating four types of potentially mutagenic DNA damages:
cyclobutane pyrimidine dimers, 6-4 photoproducts, Dewar
photoproducts, and 8-hydroxy-2’-deoxyguanine (13). UV-
induced DNA damage can also activate many dormant viruses
(20); UVB (290-320 nm) can activate the herpes simplex virus
(21), the human immunodeficiency virus (22), and some strains
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of HPV (23); UVA (321-400 nm) with a photosensitizer can
also activate the human immunodeficiency virus (22) and HPV
(24). An ecological study first demonstrated a possible
correlation between increasing UV index and increasing
incidence of salivary gland cancer (11). Almost a decade later
(10), a significant increase in the risk of salivary gland cancer
from UV radiation was established by an epidemiological
population-based, case—control study of patients’ head and neck
regions medically irradiated with UV [Odds Ratio (OR)=1.9;
95% Confidence Intervals (CI)=0.89-4.3]. Environmental UV
radiation contributes toward the increase in the incidence of lip
cancer based on the observation that the lower lip has a higher
incidence of cancer than the upper lip (25, 26) and of UV
signature mutations in p53 (9).

In addition to outdoor solar UV exposures, people can
receive indoor UV exposure from sunlight through windows,
and medical, dental and cosmetic devices. For example, most
window glass filters-out UVB radiation but allows significant
amounts of UVA radiation to enter people’s cars (27) and
offices (28). Some medical procedures use UV-emitting devices
to diagnose head and neck tumors (29) and oral cancer (30),
while others treat chronic graft-versus-host disease (31, 32),
allergic rhinitis (33), and oral lichen planus (34). Dental
procedures include UV photography to monitor plaques during
direct bonding (35), UVB excimer laser radiation (308 nm) to
detect and ablate residual organic tissues in root canals (36),
and ultraviolet LED illumination to remove composite resins
(37). But some of the highest indoor UV doses to oral and
oropharyngeal tissues can come from dental lamps and
cosmetic tanning devices when people simply open their
mouths. Additionally, a commercially available teeth whitening
procedure uses a peroxide gel and UV-emitting tanning devices
to theoretically augment the bleaching process by creating
more reactive oxygen species than the gel alone; however, an
independent study did not substantiate that claim (38).

Because we found oral and gingival tissue cells to have
significantly lower DNA damage repair and apoptotic cell
death rates for UVB-induced damage, compared to skin
tissue cells (39-41), we asked if the incidences of oral and
pharyngeal cancer in the general U.S. population correlate
with UV doses. To assess if such cancer in the general U.S.
population correlates with average annual UV doses after
planar correction (42), we analyzed IARC’s epidemiology
data for white and black males and females by weighting the
population of each U.S. states’ incidence and plotting by that
state’s population-centered latitude average annual personal
UV dose estimates (43-45).

Materials and Methods

Oral, pharyngeal, and cervical cancer incidence analysis. IARC’s
oral and pharyngeal cancer incidence data (combined) (C00-14)
comprise those found in the lip (C00), tongue (C01-02), mouth
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(C03-06), salivary glands (C07-08) and pharynx (C09-14). Further
delineation of the codes: tongue includes base of tongue (CO1),
other and unspecified parts (C02); mouth includes gum (C03), floor
of mouth (C04), palate (CO5), other and unspecified parts (C06);
salivary glands include parotid gland (C07), other and unspecified
(C08); pharynx includes tonsil (C09), oropharynx (C10),
nasopharynx (C11), pyriform sinus (C12), hypopharynx (C13), and
pharynx unspecified (C14).

We analyzed IARC’s age-standardized incidence rates per 100,000
people, or ASR(W), of the oral and pharyngeal cancer (combined;
C00-C14), lip (C00), tongue (CO1-02), mouth (C03-06), salivary
glands (C07-08), and just pharyngeal cancer (C09-14) in 2000 for
white and black males and females in the District of Columbia (DC)
and 15 states in the U.S. (46). We excluded Hawaii, Alaska, and New
Mexico because there are either no data for whites (or non-Hispanic
whites) or African Americans (blacks) to make comparisons. We only
used the non-Hispanic white populations in our analysis so we refer
to our data as ‘white’ rather than ‘Caucasian,” which is a specific
subgroup of whites, and ‘black’ rather than African-American because
blacks from other countries around the world reside in the U.S., e.g.
Jamaicans, so that these terms more precisely define the population
groups that were analyzed.

Average annual personal UV dose. IARC had white and black
incident data in the U.S. spanning from 24°N to 46°N, or spanning
average geographic latitudes from 28°N to 44°N for only District of
Columbia and 15 states.

We calculated average annual personal UV doses from the
population centers of each state’s latitudes (47). The U.S. states
analyzed were Florida (27.8°N), Louisiana (30.7°N), Texas
(30.94°N), Alabama (33°N), Georgia (33.33°N), South Carolina
(34.03°N), California (35.46°N), Missouri (38.44°N), District of
Columbia (38.91°N), Illinois (41.28°N), New Jersey (40.44°N), Ohio
(40.48°N), Pennsylvania (40.46°N), Connecticut (41.5 °N), New
York State (41.51°N), and Michigan (42.87°N). The data available
for other races was too sparse for latitudinal analysis. In the year
2000, most of those with oropharyngeal cancer were infected with
HPV (about 72%; 23), so we included cervical cancer incidence as
our internal control on HPV activation by direct UV exposure (48).

The average annual UV doses for populations living in the
regions analyzed were calculated using the equation derived from
the slope of the line (R2=0.988) after geometric conversion from
planar to cylinder measurements, which represent the human body
(42). The countries with average annual personal UV doses that
generated this equation were Sweden (60°N; 5,223 J/m?2), Denmark
(55°N; 6,787 J/m?2), the Netherlands (52.5°N; 6,991 J/m2), and the
U.S. (34°N, 10,084 J/m2 and 44°N, 12,412 J/m?2):

UV dose=-280.25X+22066

where ‘X’ is the latitude. Note that these average annual personal UV
doses are all erythemally weighted UV doses in J/m2 and do not
include vacations that can be taken at any latitude (42-45). To obtain
erythemally weighted UV doses, the solar spectrum in W/m2 is
multiplied, wavelength for wavelength from 290-400 nm, by the
erythemal action spectrum, which indicates the ability to sunburn and
is a common weighting factor for terrestrial and personal readings,
and then the number of seconds a person is exposed to get J/m?2 (45).

Population weighting. Using Minitab® 16.2.4 (Penn State, State
College, Pennsylvania, U.S.), we performed weighted regression of
the cancer incidences on the average annual UV doses at different
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latitudes in the U.S. We based weightings on white and black state
populations from the 2000 U.S. census data (49).

Statistical analysis. To assess the statistical significance of the
relationship between the cancer incidence rates and latitude, we
provide the Bonferroni corrected two-sided p-values for each
independent cancer type, gender, and ethnicity, indicating the
significance of the estimated slopes, or the correlations. Bonferroni
correction is necessary to control the overall probability of type I
error, or the probability of false positive results, when making
repeated significance testing (50). The Bonferroni correction factor
depends on the number of calculations made for each cancer type.
The Bonferroni correction value is 4 for oral and pharyngeal cancer
combined (male and female, black and white), pharyngeal cancer,
and for all other cancer types, whereas it is only 2 for cervical
cancer (black and white females). We considered a Bonferroni
corrected two-sided p-value less than 0.05 to be significant to ensure
the overall type I error rate is less than 0.05 for each cancer type.

Results

Figure 1 shows the scatter plot of the incidences of oral and
pharyngeal cancer combined by the average annual personal
UV dose in each state. The incidence of oral and pharyngeal
cancer combined (10-15/100,000) in white males was more
than twice that in white females (<5/100,000). Statistical
analysis of the white population’s incidences (see Table I)
showed a significant correlation between oral and pharyngeal
cancer combined, and increasing UV dose for males
(p=0.000424) but not for females (p=0.076). Note that for
white females, oral and pharyngeal cancer combined were
significantly associated with UV dose before Bonferroni
correction (see Table I). Conversely, statistical analysis of the
black population’s incidences showed no significant
correlation existed between the oral and pharyngeal cancer
combined and increasing UV dose, neither before nor after
Bonferroni correction (see Table II).

Figure 2 shows the scatter plot of the pharyngeal cancer
incidences in white and black males for the weighted
populations by the average annual personal UV dose of each
state’s population. Statistical analysis of the incidence of
pharyngeal cancer showed pharyngeal cancer in both white
males (p=0.000808) and females (p=0.0031; results not
plotted) significantly correlated with increasing average
annual UV doses (see Table I). Conversely, pharyngeal
cancer in blacks did not correlate with average annual
personal UV dose at all, as noted by the flat trendline across
the entire U.S. and there was no significant correlation
before or after Bonferroni correction (see Table II for p-
values).

Figure 3 shows the cervical cancer incidences in blacks and
whites plotted by the average annual personal UV dose of
each state’s population in the U.S. Although cervical cancer
incidence in blacks was higher than in whites in 2000, they
did not correlate with increasing UV dose (see Table II).
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Figure 1. Incidence of oral and pharyngeal cancer (combined) plotted
by average annual personal UV dose for white populations in the U.S.
The population-weighted incidences of oral and pharyngeal cancer
combined significantly correlated with UV dose (see Table I) for white
males (p=0.000424), but not for white females (p=0.0746; note the flat
trendline with UV dose) or blacks (Table II).

Surprisingly, we found that increasing incidences of cervical
cancer in white females significantly correlated with
increasing average annual personal UV dose before and
especially after Bonferroni correction (p=0.0154; see Table I).

The statistics and the two-sided, uncorrected and
Bonferroni corrected p-values for population-weighted
incidences of the oral and pharyngeal cancer combined,
pharyngeal, and cervical cancer in the U.S. for whites and
blacks are shown in Table I and II, respectively. None of the
p-values for blacks significantly correlated with the average
annual personal UV dose.

Discussion

We found four lines of evidence suggesting UV exposure may
contribute toward pharyngeal and cervical cancer. Firstly, we
found a significant correlation existed between UV doses and
the increasing incidence of oral and pharyngeal cancers
combined in white males (p=0.000424; Figurel and Table I)
that strongly suggested a role for UV in these types of cancer
which may be more than just an interaction with HPV that
infects only a few parts of the oral cavity. Secondly, we found
a significant correlation existed between pharyngeal cancer in
white, but not black, males and UV doses (male p=0.000808;
Table I and Figure 2). Thirdly, when we analyzed the same
cancer types in the black U.S. population, we found no
correlation existed with UV dose (e.g. Figure 2; Table II),
possibly because the skin pigment, melanin, reduces UV
penetration and decreases or eliminates any consequent
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Table 1. Statistics for weighted cancer incidences in the U.S. white population analyzed by population weighting and average annual UV dose for
each state, with Bonferroni corrected two-sided p-values for significance of the slope.

Cancer Type Gender R2 Correlation p-Value p-Value*
Oral and pharyngeal Male 0.671 0.819 0.000106 0.000424
Female 0.335 0.579 0.01865 0.0746
Pharyngeal Male 0.639 0.799 0.000202 0.000808
Female 0.566 0.752 0.000778 0.00311
Cervical Female 0.409 0.640 0.00768 0.0154

*The Bonferroni correction factor for this analysis was 2 for cervical cancer and 4 for the other types. Corrected p-values <0.05 were considered

significant.

Table II. Statistics for weighted cancer incidences in the U.S. black population analyzed by population weighting and average annual UV dose for
each state, with Bonferroni corrected two-sided p-values for significance of the slope.

Cancer Type Gender R2 Correlation p-Value p-Value*
Oral&Pharynx Male 0.040 0.200 0.459 >1
Oral&Pharynx Female 0.005 0.071 0.805 >1
Pharynx Male 0.031 0.176 0512 >1
Pharynx Female 0.038 0.195 0.472 >1
Cervix Female 0.012 0.110 0.690 >1

*The Bonferroni correction factor for this analysis is 2 for cervical cancer and 4 for the other types. Corrected p-values <0.05 determine significance.

biological effects (51). Fourthly, we surprisingly found
cervical cancer, the other type of HPV-16/18-infected tissue,
significantly correlated with UV dose for white (p=0.0154;
Table I) but not for black females (Figure 3; Table II).
Furthermore, we observed the incidence of oral and
pharyngeal cancer combined in white males was over twice
(10-15/100,000) that in white females (<5/100,000), possibly
because males receive about 50% higher annual UV doses
than females receive in the U.S. (40-42). Before Bonferroni
correction but not after it, we also found a significant
correlation between the increasing incidence of lip cancer and
UV dose for white males (p=0.017) but not for white females
(p=0.073) or black males (p=0.768) or females (p=0.619).

In addition to lip cancer (9, 25, 26), UV radiation
contributes toward salivary gland cancer. Spitz et al. found
indirect evidence that the increasing incidence of salivary
gland cancer correlates with the decreasing geographically
centered UV index of each state (11). Horn-Ross et al. found
direct evidence that UV radiation causes salivary gland cancer
from a population-based, case-controlled study examining
medical treatments using UV irradiation of the head and neck
region (10). However, we found no significant correlation
existed between salivary gland cancer and UV doses in the
U.S., neither before nor after Bonferroni correction (results
not shown), possibly because HPV only infects the parotid
and not the submandibular or sublingual glands.
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The surprising correlation between cervical cancer in
whites and UV dose may be explained by the production of
soluble factors such as inflammatory cytokines produced by
UV-exposed skin cells (indirect effects); whereas, the
correlation of oral and pharyngeal cancer in whites with
increasing average annual personal UV dose may be from
both direct (DNA damage) and indirect (inflammatory
cytokine) effects (52-54). UVB-exposed skin cells produce
immunosuppressive inflammatory cytokines (41) and other
soluble factors such as interleukin 10 (IL10; 53, 55), which
causes immune suppression (56) and is associated with a
negative clinical outcome in patients with head and neck
squamous cell carcinoma (57). In fact, non-melanoma skin
cancer develops from both direct UVB-induced DNA
damage and from indirect immune suppression caused by the
systemic release of cytokines including IL10 (53, 55).
Curiously, HPV evades immune surveillance by causing the
infected cervical cell to make IL10 (16, 58), resulting in high
levels of regulatory T-cells (57). Moreover, clinicians found
evidence that UV radiation is involved in cervical cancer
from seasonal fluctuations of HPV in cervical smears (52).

Conversely, UVB-exposed skin also leads to the
production of vitamin D3, a beneficial soluble factor, which
evidently reduces the incidence of some cancer types (59).
The hormonal form of vitamin Dj, calcitriol, boosts immune
surveillance by increasing killer T-cell populations that
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Figure 2. Incidence of pharyngeal cancer plotted by average annual
personal UV dose for white and black male populations in the U.S. The
population-weighted incidence significantly correlated with UV dose
(see Table 1) for white males (p<0.000808) and white females
(p=0.0154; results not plotted), while no significance exists for blacks
(note the flat trendline with UV dose; Table II).

eliminate cancer cells (60). In addition, in some cell types,
e.g. melanoma cells (61), calcitriol initiates an apoptotic
death mechanism that removes DNA-damaged or HPV-
infected cells or both, reducing the incidence of that type of
cancer, as evidenced by polymorphisms in the intranuclear
vitamin D5 receptor [VDR; (62)]. Polymorphisms in the VDR
of oral cells did not reduce the incidence of oral cancer (63),
whereas, they did decrease the incidence of melanoma,
breast, and prostate cancer (64). These findings also support
our observed significant trend in pharyngeal and cervical
cancer with increasing average annual personal UV doses
evidently because oral cells do not trigger a calcitriol-
associated apoptotic death pathway (63, 64).

In contrast, significant correlations exist between
decreasing latitude or increasing UV dose and the kinds of
cancer that have cell types with functional VDR-associated
apoptotic death pathways such as of the breast and colon,
and melanoma (64, 65), as evidenced by VDR
polymorphisms (64). The fact that some types of cancer
significantly correlate with increasing latitude, a proxy for
decreasing annual UV dose and usually lower vitamin D
levels, after considering confounding factors in those
analyses (65) adds weight to our observations that the
opposite situation can occur in the presence of the same
confounding factors. We found that cancer significantly
correlated with UV dose in whites and not blacks, which
suggests UV may directly activate particular strains of HPV
or indirectly produce cytokines such as IL10 enabling HPV
to hide from immune surveillance.
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Figure 3. Incidence of cervical cancer plotted by average annual
personal UV dose for white and black female populations in the U.S.
The population-weighted incidence significantly correlated with UV
dose (see Table I) for white females (p=0.0154), but not for black
females (note the flat trendline with UV dose; Table II).

Because we used IARC epidemiological data, we could not
control for confounding factors so that our analyses only
document an association between increasing incidences of
pharyngeal and cervical cancer and increasing average annual
personal UV dose. Nevertheless, these findings are alarming
because along with the known direct mutagenic effects of UV
radiation and activation of HPYV, they suggest indirect
production of soluble factors by UV-irradiated skin cells may
promote other types of HPV-associated cancer if those cell
types lack a functional VDR-associated apoptotic pathway.
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