
Abstract. Persistent androgen signaling is functionally
significant in castration-resistant prostate cancer (CRPC)
and it is actually considered a validated therapeutic target.
Residual intra-tumoral androgens compensate for the effects
of androgen ablation, activating the androgen receptor (AR),
AR-mediated gene expression and driving CRPC. The intra-
tumoral biosynthesis of androgens takes place in different
ways and cytochrome P450 17A1 (CYP17A1) has a crucial
role in this context. Abiraterone, a CYP17A1 inhibitor, has
shown impressive results in pre- and post-chemotherapy
settings, prolonging the survival of patients with CRPC.
However, not all patients respond to the treatment and most
responders develop resistance, with a widely variable
duration of response. Although many hypotheses are
emerging, the mechanisms of resistance to abiraterone
treatment have not yet been elucidated. The aim of the
present review is to describe the main data currently
available on resistance to abiraterone.

Persistent androgen signaling is functionally significant in
castration-resistant prostate cancer (CRPC) and it is actually
considered a validated therapeutic target. The intra-cellular
levels of testosterone and dihydrotestosterone (DHT) also do
not decrease in CRPC (1). Residual intra-tumoral androgens
compensate for the effects of androgen ablation activating the

androgen receptor (AR), AR-mediated gene expression and
driving castration-resistant tumors (2). The synthesis of
testosterone  in the testes (canonical pathway) (Figure 1)
starts from cholesterol as the initial substrate and ends with
the conversion of Δ4-androstendione by 17β-hydroxysteroid
dehydrogenase-3 to testosterone. Finally, testosterone  is
converted  to DHT by the steroid-5α-reductase-2 in prostate
cells. The intra-tumoral or intracrine biosynthesis of
androgens takes place in two ways: conversion of adrenal
androgens, i.e. dehydroepiandrosterone (DHEA) and de-
hydroepiandrosterone sulfate (3), and potentially via de novo
steroidogenesis (4). The intracrine androgen synthesis from
adrenal precursors (5α-androstenedione pathway) differs from
the canonical pathway because it bypasses testosterone as an
intermediate metabolite (5). The de novo ‘backdoor’ pathway
is an alternative and more complex route for androgen
synthesis in CRPC cells which does not requires andrenal
precursors but requires more than eight enzymatic steps.

In the human male, the cytochrome P450 17A1 enzyme is
expressed in adrenal glands, testes and CRPC and is crucial
for adrenal and tumor-derived extragonadal androgen synthesis
(2). Abiraterone is principally a CYP17A1 inhibitor. It was
recently reported that it is also able to inhibit 3β-
hydroxysteroid dehydrogenase (which is responsible for the
conversion of dehydroepiandrosterone to androstenedione and
androstenediol to testosterone) (6) and AR mRNA/protein
expression (7). Abiraterone has shown impressive results in
terms of progression free survival (PFS) compared with
placebo in patients with metastatic CRPC, both in pre and post
docetaxel therapy settings (8, 9). However, not all patients
respond to the treatment and most responders develop
resistance, with a widely variable duration of response.
Although many hypotheses are emerging, the mechanisms of
resistance to abiraterone treatment have not yet been
elucidated. The aim of this review is to describe the main data
currently available on resistance to abiraterone. 
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Hypotheses on Mechanisms of 
Resistance to Abiraterone

AR splice variants, up-regulation of CYP17A1 and other
consideration on AR signaling axis. The truncated AR
variants are alternative splicing products of AR gene
transcription. Many of these AR mutant forms show a strong
ligand-independent activity, being able to promote
proliferation and expression of AR target genes in the
absence of the ligand. Mostaghel et al. showed in CRPC
xenografts that abiraterone may be able to reduce cancer
growth through intra-tumoral androgen suppression (10).
They also observed that treatment with abiraterone was
associated with an increased expression of full-length AR,
truncated AR variants and CYP17A1. Therefore, they
hypothesized that mechanisms concurring with abiraterone
resistance may be the up-regulation of CYP17A1 or the
induction of constitutively active AR and AR splice variants
(10, 11). Efstathiou et al. showed in patients with metastatic
CRPC that pretreatment intense nuclear AR expression,
coupled with ≥10% cytoplasmatic CYP17 lyase expression
were linked to a longer time to abiraterone treatment
discontinuation (>4 months) (12). More recently, a
constitutively active AR receptor splice variant has been
proposed as one of the possible mechanism of resistance to
abiraterone and enzalutamide. Antonarakis and colleagues
showed that AR-V7 is an AR splice variant expressed at
approximately 20-fold higher levels in patients with CRPC
than in those without, and its detection in circulating tumor
cells from men with metastatic CRPC is associated with

resistance to enzalutamide and abiraterone. They proposed
AR-V7 status as a putative biomarker to predict resistance to
AR-targeting agents, facilitate treatment selection and enable
the development of new-generation AR inhibitors (13).
Based on these observations, it is also reasonable to
hypothesize that patients with metastatic CRPC which
maintain an active AR signaling axis are more likely to
benefit from therapy with androgen biosynthesis inhibitors.

AR activation by noncanonical ligands. Other potential
mechanisms of resistance include activation of mutant AR by
noncanonical ligands. Data also suggest the possibility of AR
activation by exogenous corticosteroids or steroid precursors
upstream of CYP17A. 

Exogenous corticosteroids: Pre-clinical models showed
that hormones upstream of CYP17, which are increased as a
result of high adrenocorticotropic hormone (ACTH) levels in
patient receiving AA, activated a promiscuous AR (14). In a
phase I study, addition of dexamethasone suppressed ACTH
and steroids upstream of CYP17, and reversed resistance to
AA (15). However, the exogenous glucocorticoids or
mineralocorticoid antagonists used to reduce the side-effects
of abiraterone may themselves activate mutant AR. Zhao et
al. showedthat glucocorticoids could activate mutated AR
and promote androgen-independent growth of the MDA PCa
2b prostatic cancer cell line, which expresses low-affinity
mutant AR with lower responsiveness to DHT, (16).

Steroid precursors upstream of CYP17A: In patients
receiving abiraterone, hormones upstream of CYP17A1 are
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Figure 1. Pathway of androgen metabolism. CYP11A1, cytochrome P450, family 11, subfamily A, polypeptide 1; CYP17A1, cytochrome P450, family
17, subfamily A, polypeptide 1; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; 3βHSD, 3β-hydroxysteroid dehydrogenase; SRD5A, 5α-
reductase; 17βHSD, 17β-hydroxysteroid dehydrogenase; 3αHSD, 3α-hydroxysteroid dehydrogenase. The canonical pathway is shown in light grey,
the 5α-androstenedione pathway in grey, and the ‘backdoor’ pathway in dark grey.



increased as a result of the compensatory high levels of
ACTH. CYP17A1 inhibition with abiraterone is associated
with increased substrates of the ‘backdoor’ pathway of DHT
synthesis (17). Preclinical data suggest that this hormone
activates a promiscuous AR (7, 18, 19). Grigoryev et al.
suggested that sometimes in patients with prostate cancer,
hormone independence may arise as a result of stimulation by
pregnenolone via mutated AR. They showed that pregnenolone
sustained its proliferative activity in vivo and stimulated the
growth of LNCaP tumor xenografts in intact male severe
combined immunodeficiency mice, as well as in castrated
animals, through binding to the cellular mutated AR (14).
Interestingly, pregnenolone is upstream of the abiraterone
target, CYP17A, in the androgen metabolism pathway.

Preventing DHT loss and the glucuronidation pathway. DHT
is the ligand with the highest binding affinity for AR. It is
reversibly converted by 3α-hydroxysteroid dehydrogenase
and 17β-hydroxysteroid dehydrogenase to a very low
binding affinity steroids (back conversion). Back conversion
is the chief mechanism of negative regulation of the level of
DHT in CRPC. The interruption or reversal of DHT loss
mechanisms could provide an alternative explanation for
elevated DHT concentrations in CRPC (20). Testosterone,
DHT and the two metabolites 5α-androstane-3α,17β-diol
and 3α-androsterone are substrates of the enzyme UDP-
glucuronosyltransferase, responsible for their glucuronidation
resulting in modulation of their activity and protection of the
androgen-sensitive tissues from harmful high concentrations
of DHT, androsterone  and 5α-androstane-3α,17β-diol (21).
Conversely, the main precursors of testosterone and DHT in
the alternative 5α-androstenedione pathway (i.e.
androstenedione and 5α-androstenedione) are not substrates
of this enzyme (5). Therefore, the prevalence of this
alternative pathway of androgen synthesis in CRPC could
lead to a net increase of DHT.

MicroRNA (miRNA). A suggestive hypothesis on the androgen
sensitivity of prostate cancer with possible implication in
resistance to anti-androgen therapy concerns miRNAs.
miRNA is a small non-coding RNA, which may have both
oncogenic and tumor-suppressing roles, which regulates many
cellular processes (e.g. invasion, progression, metastasis,
apoptosis, epithelial−mesenchymal transition of cells,
regulation of cancer stem cells and chemoresistance) at a
post-transcriptional level (22). Of particular interest is their
interaction with the AR pathway. Many studies suggest that
miRNAs are modulators of AR signaling, regulating AR gene
expression and its targets (23). Conversely, evidence suggests
that miRNAs may be regulated by androgens (24). Ribas and
colleagues measured levels of miRNA-21 in prostate cancer
and benign tissue, reporting that the up-regulated expression
of this molecule, as observed in malignant tissue, may

promote cancer cell growth in a ligand-dependent or ligand-
independent way (25). miR-21 and miR-616 may be also
overexpressed in CRPC. Conversely, several tumor-
suppressive miRNAs may be down-regulated in CRPC,
including miR-146a (26), miR-let-7c (27), miR-124 (28),
miR-34a and miR-34c (29, 24), miR-148a (30), miR-31 (31),
miR-200b-3p (32), miR-185 (33) and miR-205 (34), leading
to cancer progression and resistance to androgen deprivation
therapy. These molecules involved in prostate cancer cell
growth by the regulation of AR signaling and other crucial
cellular processes in an androgen-independent way, may also
have a role in promoting resistance to new-generation anti-
androgens, such as abiraterone, which interferes with
mechanisms upstream of those regulated by miRNAs.

Role of other pathways. The phosphatidylinositol-3-kinase
(PI3K)/tyrosine kinase A (AKT)/mammalian target of
rapamicin (mTOR) pathway constitutes an important
pathway regulating multiple biological processes.
Phosphatidyl-inositol,3,4,5-triphosphate (PIP3) is the product
of PI3K activity. PIP3 recruits AKT to the cell membrane
where it is activated by other kinases also dependent on
PIP3. AKT regulates several cellular processes, including
protein synthesis, cell survival, proliferation, and
metabolism. The activity of the PI3K–AKT signaling
pathway is negatively-regulated by the protein phosphatase
and tensin homolog deleted on chromosome ten, whose main
substrate is PIP3. Alterations of this pathway have been
described as causal forces in prostate cancer (35, 36). The
PI3K/AKT/mTOR pathway also contributes to prostate
cancer development and progression through interaction with
other critical pathways. Carver et al. showed in pre-clinical
models that the AR and PI3K signaling pathways cross-
regulate each other by reciprocal feedback. Therefore,
inhibition of the AR pathway may lead to an increase in
PI3K pathway activity and may enable the development of
resistance to therapy with AR pathway inhibitor (37). These
observations highlight a possible mechanism of resistance to
therapy with AR pathway inhibitor and also suggest
alternative therapeutic strategies, currently under evaluation
(38). Combining different therapies may further increase
their clinical activity or reverse resistance.

Conclusion

AR and AR signaling have key roles in prostate oncogenesis,
including disease development, progression, response to
initial hormonal therapy, and subsequent resistance to it.
Several genetic and epigenetic mechanisms have been
described whereby prostate cancer may progress to the lethal
castration-resistant form. Generally, they include a number of
mechanisms such as AR amplification/overexpression,
alternative sources of androgens, mutated or promiscuous AR,
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overexpression of AR co-regulators, which keep the
androgen-responsive program active (39, 40). Both clinical
and pre-clinical data suggest that resistance to novel drugs
such as abiraterone is also associated with the reactivation of
AR signaling, due to different causes. The mechanisms that
may contribute to the development of resistance to
abiraterone are to be found among the more general
mechanisms that lead to CRPC. In this review, we attempted
to select which of these mechanisms could continue to have a
role in the development of resistance to treatments for CRPC.
As these are only hypotheses, their real role should be
investigated in patients under treatment with abiraterone.
Such knowledge, in our opinion, might help future studies on
the tailored therapy of prostate cancer move towards the
identification of predictive biomarkers of response to
CYP17A1 inhibitors.
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