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Abstract. Lung cancer is the leading cause of cancer-
related death around the world; the addition of
chemotherapy to treatment of this disease has been shown to
significantly increase progression-free survival and overall
survival. Despite newer chemotherapies, it is important to
personalize the care (treatment and dose) upon each single
patient’s susceptibility for controlling and reducing adverse
side-effects, at best. The present review describes the current
status of pharmacogenomics studies regarding germline DNA
variants that may alter response and tolerability to
chemotherapeutic agents used to treat lung cancer, including
perspective studies.

Pharmacogenomics is an emerging branch of pharmacology
that studies individual genetic variability in response to
drugs, drug-induced gene expression modulation and the
identification of new pharmacological targets based on the
knowledge of genetic information. In fact, the human
genome sequencing revealed that a single gene may have a
number of differences in sequence at the nucleotide level,
defined as polymorphism by combination of the Greek words
poly (meaning multiple) and morph (meaning form). It is
very important to analyze the correlation between patients’
genotypes and phenotypes in order to define the relationship
between individual polymorphisms and the alterations
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resulting by using drugs and to explain why the same therapy
can have different results in different individuals. In
particular, the aim of a pharmacogenomics analysis is
singling-out any mutation that can affect the drug’s
therapeutic effects or the predisposition to undesired effect’s
occurrence (1). It is known that individual variation in drug
response is due to factors such as age, sex, body weight,
physical fitness, illnesses, level of liver and kidney
functionality, diet, alcohol and tobacco use, but recent studies
have reported that polymorphism of genes encoding proteins
involved in the transport, metabolism and action of drugs
influences in a more prominent way the outcome of
chemotherapy (2-4) and toxicity. The problem of toxicity due
to adverse drug reaction (ADR), despite being a major one,
is often underestimated: it reportedly causes 7% of all
hospitalizations in Europe, while in the USA it causes about
106,000 deaths and costs about 380 million dollars every
year. It is estimated that the total cost to the community of
damages caused by ADRs equals annually the cost of all
pharmacological treatments (5). Chemotherapy-related ADRs
seem to increase the global hospital cost by around 1,9% and
the drug cost by 15% (6).

Such a variety of gene polymorphisms eventually reflects
in a remarkable inter-individual variability both in
chemotherapy response and toxicity, as no reliable and
easily-evaluable markers are currently known to predict the
drug treatments’ efficacy and toxicity in neoplastic diseases.
However, nowadays some peculiar polymorphisms have been
identified that could cause significant side-effects and affect
the tolerability and compliance to chemotherapy; in
particular, in the present review we evaluated all studies
demonstrating that genetic variants of polymorphisms
significantly change the medical outcome in response to the
administered drug in the Non Small Cell Lung Cancer
(NSCLC). The patented methodologies, presented herein
shed light on their identification and, consequently, mode of
clinical approach. Thanks to developments in molecular
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genetics, there are currently several techniques that allow the
identification of known genetic alterations directly, by
examining the differences in the DNA nucleotide sequence.
In particular, semi-automated methods have been patented
for genotyping, based on the polymerase chain reaction
(PCR), permitting the identification of polymorphisms in a
very simple and fast way. For instance, a 2006 patent allows
analysis of the fragments by an automated capillary
electrophoresis system that can separate, detect and analyse
up to 16 capillaries of fluorescently labelled DNA fragments
in one run (7); another patent in 2002 defined a method of
sequencing DNA, based on the detection of base
incorporation by the release of pyrophosphate (PPi) (8),
while an older patent application, nowadays in use, describes
the methodology of allelic discrimination based on chemistry
(9). A more recent invention provides a method to produce
a reduced representation of a genome for sequencing and
DNA polymorphism detection (10).

Pharmacogenomics Analysis: Rationale

The ultimate purpose of a pharmacogenomics analysis is to
carry-out a preliminary analysis of the individual patient’s
genetic characteristics to predict the therapeutic effect and
toxicity of the employed drug, thus allowing for optimization
and personalization of the chemotherapy treatment (11).
Such a personalization is surely a prominent goal especially
in the oncological field. For instance, as several studies have
shown, the administration of the same dose of an anti-blastic
drug in a patient population often results in a wide toxicity
range with lethal consequences in some cases (12).
Moreover, such drugs have a low therapeutic index, i.e. the
ratio between the lowest effective and the highest tolerated
doses, the latter of which is generally employed; this entails
a high risk of developing adverse effects in the sub-
population of genetically predisposed individuals that show
an altered drug metabolism (13). Gene characterization of
each patient would surely help identify the most suitable
treatment protocol (14).

To this day, the dosing of chemotherapy drugs is still
based on the patient’s body surface correlated with the
circulating blood volume and glomerular filtration rate, but
not with their pharmacokinetics. Cancer patients are
practically treated with a trial-and-error approach, by
generally applying the treatment and operating a standard
dose reduction in case of toxicity (15).

Lastly, recent studies have shown that the number of
polymorphisms in various genes affects therapy efficacy
(16). Drugs are involved in a series of complex metabolic
pathways, in which several proteins intervene, any of which
may carry mutations that can cause an alteration of its effect;
the interaction among all such polymorphisms crucially
conditions the treatment’s final outcome.
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Methods

We performed a computerized systematic literature search in
electronic databases: PubMed, Embase, Cochrane Library,
SCOPUS, OVID, Springer.

Studies eligible for this analysis were updated using
the search terms, NSCLC, chemotherapy, patents,
polymorphism, pharmacogenomics analysis and GSTPI,
XRCCI1, ERCC1, MRP2, MDR1,ABCB1, TTSER, MTHFR,
CYP. The inclusion criteria were as follows: (i) Only patients
with advanced NSCLC were considered; (ii) All trials had
to include a treatment of platinum-based agent, i.e.
gemcitabine, vinorelbine, taxanes, pemetrexed; (iii) Only
studies of outcome and toxicity related to polymorphism
were discussed and not studies on the correlation risk of
developing lung cancer due to single polymorphisms; (iv)
Only trials reported in English were included; (v) Patents
were downloaded from: http://www.delphion.com/fcgi-
bin/patsearch, www.google.com/patents, www.uspto.gov,
www.freepatentsonline.com, and www.wipo.int/pctdb/en/
search-simp.jsp, www.freshpatents.com.

Chemoterapeutic Agents in Lung Cancer
and Polymorphic Variants Correlated
with Their Metabolism and Effect

Cisplatin

The activity of platinum (pt) derivatives can be greatly
affected by polymorphisms that can alter the activity or
expression level of proteins intervening in the biochemical
ways in which this class of antiblastic drug is involved. Both
the activity and toxicity of platinum derivatives can be
affected by polymorphisms in genes that encode proteins in
the following three processes.

Transmembrane Drug Transport

Most implied in the efflux mechanism of platinum
derivatives is MRP2 (Multidrug resistance-associated protein
2) from the superfamily of ATP-binding cassette (ABC)
proteins, whose components are integral membrane
glycoproteins working as pumps. The ABCC2 gene and the
encoded protein MRP2 are normally located in hepatocytes,
as well as in kidney epithelium and in intestinal enterocytes,
and are, therefore, deputed to play an important role in the
disposal of drugs (17). Different expression or activity of
ABCC2 gene seems to influence systemic exposure to
cisplatin (18). Two polymorphisms are known: 2366C>T
consisting of the substitution of a thymine for a cytosine in
position 2366 in exon 18 and 4348G>A, caused by the
substitution of an adenine for a guanine in position 4348 in
exon 31; both variations have been observed to be possibly
associated to reduced functionality of the same transporter
(19). In a recent study, in advanced and metastatic lung
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cancer treated with cisplatin, three functional polymorphisms
of ABCC2 (C-24T, G1249A and C3972T) were significantly
associated with a better treatment response (C-24T promoter)
and an increased risk of overall toxicity in particular
hematological toxicity like severe thrombocytopenia
(C3972T exon 28) (20). This finding was confirmed by
another trial on 113 lung cancer patients treated with
platinum-based chemotherapy showing the polymorphic
status of MRP2 C-24T that might be a predictive marker for
treatment response (21).

There is also a recent patent application disclosing the
detection of polymorphism in the ABCC2 gene that can be
realized efficiently in a short time and at low cost (22).

Drug Inactivation

The inactivation process of platinum takes place through its
conjugation with reduced glutathione (GSH) in a reaction
catalysed by the Glutathione S-transferase (GST) enzyme,
protecting the cell from damage and assisting the detoxifying
process. At least three of the genes that code for GST have
been shown to have functional polymorphisms and are
frequently present in general populations: Glutathione S-
transferase M1 (GSTM1), Glutathione S-transferase T1
(GSTT1) and Glutathione S-transferase P1 (GSTPI) (23).
The role of GST in the detoxification of antitumor agents
suggests the possible implication of GST polymorphisms to
the chemotherapeutic response. In particular a GST
overexpression is reported to be associated to phenomena of
innate or acquired resistance to platinum derivatives;
reportedly, the GSTPI subclass is the most involved in such
a process. The main GSTPI polymorphism is 313 A>G,
which implies the substitution in exon 5 of adenine in
position 313 with a guanine. The polymorphic status of
GSTP1 342 A>G might be the predictive marker for the
treatment response of advanced NSCLC patients due to
decreased detoxification of chemotherapeutic agents. In
NSCLC, GSTP1 variant genotypes (Ala/Val or Val/Val) had a
significantly better survival compared to patients who had
the wild type genotype (Ala/Ala; p=0.037) (24). GSTPI also
seems to influence the toxicity of chemotherapy: patients
carrying the homozygous mutant GSTP1 GG genotype were
at considerable risk for severe platinum-associated
polyneuropathy (18% vs. 3% in wild-type vs. heterozygous
mutant patients, respectively; p=0.01) (25); however,
GSTPI*B and GSTPI 105 Val haplotypes were associated,
in a statistically significant way, with toxicity, and
particularly with neutropenia reduction (26). Patients with
deficient-type GSTM1 were superior responders to platinum
drugs than those carrying wild-type GSTM1 (p=0.014) (27).
The GSTTI —/— and GSTM1 null genotype were significantly
associated with overall survival and found to be independent
prognostic factors for shorter lung cancer survival (28-29).
A 2004 patent application relates to a high throughput assay

for detecting the presence of clinically significant GST
polymorphic alleles in a patient (30).

Mechanisms of Platinum-DNA Adducts Repair

DNA repair occurs in three important ways: by excision of
the damaged base with Base-Excision Repair (BER), by
excision of the nucleotide with Nucleotide-Excision Repair
(NER), and by repair of the mismatches with Mismatches
Repair (MMR). The DNA repair protein XRCC1 is an
important component of the BER system. The NER process
involves a complex of binding proteins such as Xeroderma
pigmentosum complementation group C (XPC), Xeroderma
pigmentosum complementation group A (XPA) and
replication protein A (RPA) recruiting the Xeroderma
pigmentosum complementation group D (XPD) enzyme, also
known as excision repair cross-complementing group 2
(ERCC2). Also relevant are the proteins allowing for the
removal of the damaged thread, such as Xeroderma
pigmentosum complementation group G (XPG) and the
Xeroderma pigmentosum complementation group F (XPF)/
Excision repair cross-complementing group 1 (ERCCI)
complex (31).

Both the BER and NER mechanisms are involved in the
repair process of all Pt-DNA adducts, those produced by
cisplatin as well as carboplatin or oxaliplatin. The MMR
system, on the other hand, is capable of discriminating
between different types of adducts, thereby providing the
basis for the efficiency of oxaliplatin in cisplatin/carboplatin-
resistant tumors (32).

X-Ray Repair Cross-Complementing Group 1 (XRCC1)
The XRCCI1 protein is critical for repairing DNA damage
induced by the platinum-based anticancer drugs, suggesting
that XRCC1-mediated DNA repair capacity may markedly
impact the efficacy of platinum-based therapy against
NSCLC; thus, it is possible that XRCC1 could be a future
predictive marker of response to treatment in advanced-stage
disease patients (33).

Two principle polymorphisms have been described for the
encoding gene of XRCCI: the main one consists of a
substitution of an adenine for a guanine in position 28152
(28152 G>A) in exon 10, which leads to amino-acidic
substitution of a glutamine for an arginine in codon 399
(Arg399Gln) (34) and Arg194Trp polymorphism.

The Arg399GIn polymorphism shows an allele frequency
of 14-39% based on the population considered; in particular,
in the Caucasian population the varying allele shows a 32-
36% frequency (35). Such a polymorphism involves the
interaction domain of XRCCl, thus altering its capability to
assemble the complex needed to efficiently repair the lesion.
Several studies have in fact shown that the Arg399GIn
variant is associated with increased levels of DNA damage,
clearly due to a decreased capability of the mutated enzyme

5243



ANTICANCER RESEARCH 34: 5241-5250 (2014)

to repair lesions (36). A study performed on 103 patients
with NSCLC treated with a platinum-based therapy has
shown that polymorphism-carrying patients have a lower
survival rate (37). In the BIO-FAST Trial a polymorphism in
homozygous XRCC1 (Arg399Gln) showed a prognostic role
in patients treated with first line based-cisplatin
chemotherapy (38). In a recent meta-analysis, XRCC1399GIn
was less favorably associated with both response rate and
overall survival to chemotherapy (39).

Other polymorphisms are also involved in chemotherapy
toxicity: patients carrying at least one variant of the XRCCl1
Arg399GiIn allele have a 2.5-fold increased risk of grade 3
or 4 gastrointestinal toxicity when treated with first-line
cisplatin-based chemotherapy (40).

Yuan et al. found that the XRCCI Argl94Trp allelic
variant in Asian patients was particularly associated with the
response to platinum-based therapy (41).

Excision Repair Cross-Complementing Group 1 (ERCCI)
ERCCI1 is a component of the NER system. Several studies
have shown that this protein’s expression level should
apparently be correlated to the cell sensitivity to the
platinum derivatives’ activity. An International Adjuvant
Lung Cancer Trial (IALT) understudy showed cisplatin-
based adjuvant therapy to significantly prolong the survival
rate in ERCC1-negative patients (42). A study by Lord et
al., in patients with locally-advanced or metastatic disease,
showed that a low ERCC1 expression is associated to a
significant improvement of the survival rate in patients
treated with cisplatin and gemcitabine (43). Cobo et al.
showed that ERCCI mRNA levels predict the response to
cisplatin-based treatment in metastatic patients (44). In
patients receiving adjuvant chemotherapy after surgical
resection for lung neoplasms, the relapse rate was lower in
ERCCI-positive subjects compared to ERCCI-negative, and
in patients with C8092 A polymorphism. Frequent ERCCI
polymorphism is the variation of an adenine for a cytosine
in position 8092 (8092C>A); this variant shows an allele
frequency of 27%. This polymorphism seems as well to
have a good predictive value on a platinum-derivative-based
therapy outcome. In a study by Zhou et al., performed on
128 patients with advanced-stage NSCLC treated with a
platinum-derivative-based therapy (cisplatin/carboplatin),
individuals with wild-type C/C genotype had better survival
rates (45). In another study, carriers of at least one
polymorphic allele showed higher gastrointestinal toxicity
with chemotherapy (46). Also in multivariate analysis,
ERCCI expression and C8092A polymorphism were
independent prognostic factors in chemotherapy-naive stage
I patients (47).

One of the ERCC1 polymorphisms is 19007 C>T, due to
the transition from cytosine to thymine in position 19007,
leading to alteration of a codon that encodes for the same
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amino acid asparagine (Asn) but is translated at a
slower speed, thus reducing the gene expression. This
polymorphism has a 55-60% frequency (48) and, affecting
ERCCI expression, can play a positive predictive role on a
platinum-derivative-based therapy outcome. In a study on
109 NSCLC patients, carriers of this variant were found to
have a better survival rate (49).

There are patents providing compositions and methods to
analyze polymorphisms in the ERCCI and XRCCI genes for
determining a patient’s cancer risk and treatment response
(50-51).

Methylenetetrahydrofolate Reductase (MTHFR)
Methylenetetrahydrofolate reductase (MTHFR) is an enzyme
involved in the transformation of 5-10 methylene-
tetrahydrofolate to 5 methyltetrahydrofolate, needed as a
methyl giver for the remethylation of homocysteine in
methionine with the intervention of vitamin B12. Alongside
severe MTHFR deficiency, another common gene
polymorphism due to the substitution of a thymine for a
cytosine in nucleotide 677 (C677T) causing substitution of a
valine for an alanine in the final protein and a 50% reduction of
MTHFR enzyme activity, has been identified. Such a variant
entails high homocysteine levels in the bloodstream, especially
after the administration of methionine (52).

Another mutation in the MTHFR gene, known as genetic
variant A1298C, consists of the transition from adenine to
cytosine in position 1298 leading to the substitution of a
glutamate with an alanine. This genetic variant is associated
with high homocysteine levels and low folate levels in plasma
when combined with the C677T mutation (53). MTHFR has
been related to response at platinum-based chemotherapy in
NSCLC. A recent meta-analysis confirmed that MTHFR
677TT homozygote carriers had a better response to platinum-
based chemotherapy. Patients in treatment with homozygous
mutations for MTHFR C677T had a significantly increased
PES (progression free survival) compared to patients with wild-
type or heterozygous mutations (54). A single nucleotide
polymorphism of MTHFR has also been associated with an
increased risk of toxicity, like irradiation pneumonia
developing in lung cancer patients treated with radiation
therapy to the chest wall (55).

Finally, there is finally a patent disclosing a primer set for
specifically amplifying a target region in the MTHFR gene
by a nucleic acid amplification method (56).

Gemcitabine

Although many reports about single nucleotide
polymorphisms (SNPs) in the family of ABC transporters
have been published, the impact of polymorphisms on
pharmacokinetics and pharmacodynamics of gemcitabine
remains to be defined (57). More studies report multidrug
resistance 1 (MDR1) overexpression to be associated with
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sensitivity to gemcitabine (58). MDR1 plays a major role in
drug resistance by impairing the intracellular retention of
multiple anticancer drugs. The most studied SNP is the
C3435T located in exon 26. This polymorphism has been
found to have a role in the function of the permeability
glycoprotein (P-gp) responsible for substance elimination by
the cell membrane by hydrolysis of ATP; multiple studies
showed that this polymorphism was significantly correlated
with drug response (58). The overall response to treatment
of homozygotes for the wild-type (C/C) allele in MDRI
C3435T was significantly better than in heterozygotes (C/T)
(59) and mutant homozygotes (T/T) (95% confidence
interval (CI): 1.44-3.68; 1=0.0005) (60). The MDRI 2677
polymorphism seems to be correlated with an increase in
grade 3 toxicities in the mutated group (39%) and an
increase in both progression-free and global survival in
patients that had had gemcitabine as an adjuvant for other
cancers (61).

Of note, there is a patent for determining haplotypes or
diplotypes of the 5’ regulatory region of MDRI (multidrug
resistance 1) gene (62). Another recent patent consists of a
single nucleotide polymorphism (SNP) detection kit for
G2677T/A of MDRI (multidrug resistance gene 1) (63).

Taxanes

The overexpression of ABC-transporter genes such as MDR-
1, is a factor of non-response to taxane-based chemotherapy
due to increased toxicity originating from a longer exposure
to the drug, due, in turn, to a reduced elimination rate (64).
Overexpression of P-gpl/ABCBI is in fact associated with
poor prognosis in several tumor types. Moreover,
polymorphisms in cytochromes P450 (3 A4, 3 AS, 2 C8),
that are implied in the hepatic metabolism of taxanes, can
determine an increase in drug concentration due to lack of
elimination and thus an unacceptable toxicity level (65).
Both genes CYP3A4 and CYP3A5 are polymorphic and
several allele variants have been described. Only two allele
variants that are in linkage disequilibrium, namely
CYP3A4*1B and CYP3A5*3, are common to several
ethnicities and have functional relevance (66). As far as the
CYP3A4*1B is concerned, it seems to modify the ability to
metabolize some CYP3A substrates. CYP3A5*3 instead
seems to be the most common CYP3AS5 allele and is
associated with decreased enzyme activity. In a study
published in the Journal of Clinical Oncology (JCO), gaps in
allelic distribution for genes involved in paclitaxel
disposition or DNA repair between Japanese and US patients
were observed. In this exploratory analysis, genotype-related
associations with patient outcomes (progression free
survival) were observed for CYP3A4*1B (p=0.04), however,
this association should be interpreted in the context that only
African-American patients harbored this allele (67). A 2010
patent describes a method for predicting a subject’s response

to at least one CYP3A4-metabolized compound; with the
method comprising the detection of the allelic status of one
or more polymorphisms in a nucleic acid sample of the
subject (68).

Pemetrexed

Pemetrexed (Alimta) is a multi-target agent converted to a
series  of  polyglutamate-derived  metabolites by
folylpolyglutamate synthetase. They inhibit three folate-
dependent enzymes: thymidylate synthase (TS), dihydrofolate
reductase (DHFR) and glycinamide ribonucleotide
formyltransferase (GARF1) (69). Several studies are focused
on the effects of pemetrexed on thymidylate synthase. TS is an
important target for pemetrexed-based chemotherapy. Its
overexpression is correlated to TS-target chemotherapy
resistance. Polymorphic tandem repeats located in the TS
enhancer region (TSER) have been shown to influence the
expression of TS. Three-fold tandem repeats (TSER*3) give
larger in vitro TS expression than two-fold tandem repeats. In
a Korean study, survival was significantly longer with
pemetrexed in patients with high 7'S expression genotypes
(second Nief’s classification) (70) 3RGCC/3RGCC or
3RGGC/3RGGC compared to the other groups (PFS: 5.2
months vs. 3.7 months, p=0.03; OS: 31.8 months vs. 18.5
months, p=0.001) (71). In advanced non-small cell lung cancer
patients treated with pemetrexed-based chemotherapy with the
TS 2R/2R, 2R/3C or 3C/3C genotypes, median PFS times and
response rate were significantly longer than those of patients
with the 2R/3G, 3C/3G or 3G/3G genotypes (I=0.036 and
1=0.044, respectively) (72). Prospective data are needed to
confirm the impact of TSER on the outcome after TS-target
therapy (73). There is a recent patent directed to a method of
predicting a response to a chemotherapeutic regimen based on
loss of heterozygosity at the thymidylate synthase locus in
cancer tissue (74).

A 2009 study published by JCO on patients treated with
Alimta in a second-line treatment for lung cancer has
investigated polymorphisms in MTHFR. Homozygous
mutant patients with MTHFR C677T have a significant
increase in PFS compared to wild-type homozygous mutant
patients, while homozygous mutant patients with MTHFR
A1298C have shorter PFS as a trend (p=0.06) (75). In an
Italian study, a multivariate analysis confirmed the
independent prognostic significance of MTHFR-C677T both
in risk of disease progression (CC-CT genotypes hazard ratio
[HR] 1.94,95%CI: 1.15-3.28; p=0.012) and death (HR 2.00,
95% CI: 1.12-3.54; p=0.018) (76).

Vinorelbine

Vinorelbine is a semi-synthetic vinca alkaloid, mainly
metabolized by CYP3A4 and CYP3A5 (77). CYP3AS is a
highly polymorphic gene: the widespread allele CYP3A5*3
causes a reduced expression, hence a lower drug
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Table 1. Portrayal of the most important polymorphisms identified, their functional effect, the anticancer drugs involved and expected event(s).

Gene polymorphism Functional effect

Anticancer drugs involved Observed event

MRP2 C2366T (16) T allele is associated with
decreased transporter activity
A allele is associated with
decreased transporter activity
T allele is associated with
decreased transporter activity
T allele is associated with
decreased transporter activity
A allele is associated with
decreased transporter activity
G allele is associated with
decreased enzyme activity
G allele is associated with
decreased enzyme activity
Loss of function

MRP2 C4348A (16)
MRP2 C-24T (17)
MRP2 C3972T (17)
MRP2 G1249A (17)
GSTP1 A313G (20)
GSTP1 A342G (19)
GSTMI1 gene deletion (23)
GSTTI gene deletion (24) Loss of function

A allele is associated with
decreased DNA repair activity

A allele is associated with
decreased DNA repair activity

C allele is associated with
decreased DNA repair activity

T allele is associated
with decreased enzyme activity

XRCC1 G28152A (31-37)
ERCC1 C8092A (41-44)
ERCC1 C19007T (45-46)

MTHFR C677T (48-52,70-74)

MTHFR A1298C (49, 70) C allele is associated with
decreased enzyme activity
T allele is associated with

decreased transporter activity

MDRI1 C3435T (56-57,77)

MDR1 G2677T (80) T allele is associated with

decreased transporter activity

CYP3A4*1B (89) Polymorphism associated
with decreased enzyme activity
Polymorphism associated with
decreased enzyme activity
3R allele is associated with
increased TS expression

(increased enzyme activity)

CYP3A5*3 (88, 73)

TTSER 28 bp
VNTR (2R/3R) (68)

Cisplatin Polymorphism associated with
better treatment response
Cisplatin Polymorphism associated with
better treatment response
Cisplatin Polymorphism associated with
better treatment response
Cisplatin Polymorphism associated with better
treatment response and increased toxicity
Cisplatin Polymorphism associated
with better treatment response
Cisplatin Polymorphism associated with
better survival and increased toxicity
Cisplatin Polymorphism associated with better
survival and increased toxicity
Cisplatin Polymorphism associated with better
response to platinum drugs
Cisplatin Polymorphism associated
with shorter survival
Cisplatin Polymorphism associated with
lower OS and response rate
Cisplatin Polymorphism associated with
better survival and increased toxicity
Cisplatin Polymorphism associated
with better survival
Cisplatin, Polymorphism associated with
pemetrexed better response to platinum;
Homozygous mutant shows increased PFS
Cisplatin, Homozygous mutant has shorter PFS
pemetrexed

Gemcitabine, vinorelbine Polymorphism associated with
worse response to gemcitabine;
Lower risk of progression in
patients treated with Vinorelbine
Polymorphism associated
with increased toxicities and better
OS and PFS in patients treated
with Gemcitabine; Better
response to Vinorelbine
Polymorphism associated
with response
Polymorphism associated
with response
Survival observed was significantly
longer in patients with high
expression genotype

Gemcitabine, vinorelbine

Paclitaxel, vinorelbine
Paclitaxel, vinorelbine

Pemetrexed

metabolism in the liver (78). In a study by Pan et al. in 59
NSCLC patients, the CYP3A5*3 polymorphism seemed to
be associated to responses to vinorelbine treatment. No
significant difference in toxicity and survival was observed
according to SNP genotype in lung cancer patients (79).
Vinorelbine is also a substrate for P-gp membrane
transporters (MDR1, ABCB1). MDRI polymorphisms can
cause alterations in the drug’s absorption and elimination
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(80). MDR1 3435CC polymorphisms appear to be related
to lower risk of progression in advanced non small cell
cancer treated with vinorelbine (81). In a 2008 study
published in Respiration, ABCBI C3435T polymorphism
was associated to a better response to vinorelbine-based
chemotherapy for lower P-gp expression levels (82). This
study was in agreement with some reports but in
disagreement with others, thus further studies should be
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carried on with large patient cohorts to confirm these
results (83-84). There is a patent disclosing the detection
of this gene polymorphism having an influence on
pharmacokinetics in a DNA sample from a subject and
predicting the influence of the gene polymorphism on the
kinetics of a drug in the subject (85).

Conclusion

Pharmacogenomics provide a polygenic, global approach in
the genome study, by simultaneously analysing multiple gene
polymorphisms or multiple mutations within a single gene.
The pharmacogenomics analysis, aimed at inquiring the
effect of single polymorphisms on the treatment’s outcome
is still fundamental in situations in which the alteration of
even a single gene can play a crucial role, such as the
predisposition to developing toxic effects.

Integrating results from pharmacogenetics
pharmacogenomics studies surely is a valuable strategy to be
developed in the coming years in order to finally achieve
individualization of the anti-blastic therapy and thus obtain
the highest efficacy and lowest toxicity from each treatment.
Polymorphic variants of enzymes involved in the metabolism
of chemotherapeutics agents used in lung cancer should be
investigated (Table I).

and

Current and Future Developments

Randomized clinical trials are required in order to define not
only the correlation with toxicity, but also with the outcome.
In fact, the effectiveness of therapy may be influenced by
genetic characteristics of the tumor cells because of their
high genetic instability often developing additional somatic
genetic alterations that lead to genotype differences that
are not found in non-neoplastic germ cells. The
pharmacogenomics studies, on the other hand, are based
mainly on an analysis of the germ genetic characteristics
obtained from peripheral blood samples. Thus, the purpose
of these studies is to define a personalized therapy, which
gives the maximum clinical benefit with minimal occurrence
of side effects. Today, such an approach seems as a distant
goal because it is necessary to consider various factors that
may influence the chemotherapy response, such as mode of
drug administration, administration of other drugs/
chemotherapeutic agents, demographic and clinical
characteristics of patients, ethnicity issues, influence of
environmental factors (alcohol, smoking, diet), all of which
interfere with the standardization of the data obtained from
this type of analysis.
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