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HMGA?2 Expression in the PC-3 Prostate Cancer Cell
Line Is Autonomous of Growth Factor Stimulation
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Abstract. Background: High-mobility group AT-hook 2 (HMGA2)
protein acts as an oncofoetal transcriptional regulator. In
mesenchymal tissues, its expression can be induced by a variety
of growth factors such as fibroblast growth factor-1 (FGF1) and
platelet-derived growth factor-BB (PDGF-BB) as well as by
foetal bovine serum (FBS), thus enhancing proliferation.
Materials and Methods: To examine these effects in epithelial
malignancies, we used the PC-3 prostate cancer cell line for
assaying proliferation and HMGA2 expression in response to
incubation with growth factors and FBS. The HMGA2 locus was
investigated by fluorescence in situ hybridisation (FISH) for loss,
amplification or re-arrangement. Results: PC-3 is a cell line that
moderately overexpresses HMGA2. None of the growth factors
nor FBS caused significantly increased expression of HUGA2.
In contrast, a significantly augmented proliferation rate was
observed when applying FGF1 or PDGF-BB for 12 h.
Conclusion: HMGA?2 is expressed independently of external
stimuli, whereas proliferation stimulated by growth factors is
independent of further elevated HMGA?2 expression.

The gene encoding mammalian high-mobility group AT-hook 2
(HMGA?2) protein is abundantly expressed during early
embryonic development (1-3). In contrast, it is lacking in most
differentiated cells and tissues but apparently retains the ability
to be activated in some types of somatic stem cells in vivo as
well as in vitro (4-7). Re-expression of HMGA? is a frequent
finding in a variety of benign tumours mostly of mesenchymal
origin, as well as in subgroups of malignant neoplasms (8-10).
Whereas in the former cases e.g. lipoma, uterine leiomyoma,
endometrial polyp and pulmonary chondroid hamartoma, as
well as in pleomorphic adenomas of the salivary glands, the

Correspondence to: Jorn Bullerdiek, Centre for Human Genetics,
University of Bremen, Leobener Str. ZHG, 28359 Bremen,
Germany. Tel: +49 42121861500, Fax: +49 42121851505, e-mail:
bullerd@uni-bremen.de

Key Words: HMGA?2 expression, growth factor, proliferation, PC-3
cell line, prostate cancer.

0250-7005/2013 $2.00+.40

transcriptional up-regulation of HMGA2 results from
chromosomal rearrangements affecting its locus at the
chromosomal segment 12ql4~15 (9, 11, 12), malignant
tumours only very rarely display these typical chromosomal
translocations despite overexpression of HMGA2, and
amplification of its locus also seems to be a rare finding (13,
14). However, overexpression of HMGAZ2 in malignant solid
tumours has been found to be associated with epithelial-
mesenchymal transition (15-17) thus, at least in part, explaining
the worse prognosis observed for patients with malignant
tumours with an abundant expression of HMGAZ2. Apparently,
HMGA?2 can enhance de-differentiation of epithelial tumour
cells, leading them into a more motile mesenchymal-like state
that facilitates tumour metastasis (18, 19). HMGAZ2 is involved
in a variety of cellular processes, such as differentiation (8),
stem cell renewal (5, 6), as well as cell growth and proliferation
(20), but the detailed role of HMGA2 in malignant
transformation has not been fully-elucidated.

In general, the main routes of HMGA2 transcriptional
regulation remain obscure, as the main characteristics of its
expression apparently differ between the cell types it is
expressed in (11). In somatic stem cells, a temporarily very
restricted expression can be stimulated by a plethora of growth
factors such as fibroblast growth factor (FGF)-1 and -2,
platelet-derived growth factor (PDGF)-BB and bone
morphogenic protein (BMP)-4 (7, 21, 22). In benign tumours
with rearrangements of 12q14~15 the expression of HMGA2
is much higher than in their malignant counterparts not
exhibiting these chromosomal rearrangements (12, 23). This
points to a removal of negative regulatory elements such as
the 3’untranslated region (3’UTR) with microRNA [et-7-
binding sites (24-26) and positively acting as yet unidentified
regions juxtaposed to the HMGA?2 locus as a result of varying
translocations (11, 27). Its expression drastically decreases,
however, when these cells are put into culture (28) indicating
a lack of (unknown) factors necessary for the activation of the
rearranged allele in vitro. In contrast, cell lines of malignant
tumours are often characterized by an overexpression of
HMGA2. Nevertheless, almost nothing is known about
possible mechanisms that could still force its expression.
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Herein, we have used the PC-3 cell line, derived from
prostate carcinoma, in order to test the hypothesis that in
malignant tumours the re-expression of HMGA2 becomes
independent of external stimuli such as foetal bovine serum
(FBS), FGF1 and PDGF-BB, thus leading to the
constitutional expression of the onco-embryonic gene.
Additionally, we were interested in the correlation between
external stimuli and proliferation, as well as its possible
connection with HMGA?2 expression.

Materials and Methods

Cell lines and tissue. Cell lines MCF-7 (breast cancer; DSMZ,
Braunschweig, Germany), HCT116 (colon carcinoma; DSMZ),
LNCaP (prostate carcinoma, Cell Lines Service, Eppelheim,
Germany), PC-3 (prostate carcinoma; Cell Lines Service), S277
(anaplastic thyroid carcinoma; Centre for Human Genetics, Bremen,
Germany) and MRI-H215 (cervix carcinoma; Tumorbank DKFZ,
Heidelberg, Germany) were maintained in a humidified atmosphere
at 37°C with 5% CO,. RNA was isolated using the NucleoSpin
RNA II Kit (Macherey-Nagel, Diiren, Germany) according to the
manufacturer’s instructions.

As a control, RNA was isolated from a snap-frozen sample of
uterine leiomyoma cytogenetically displaying a t(12;14) (12) with
the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions, including the DNase I digestion.

Cell culture. PC-3 cells (Cell Lines Service) were cultured in RPMI-
1640 medium (Life Technologies, Darmstadt, Germany)
supplemented with 10% (v/v) foetal bovine serum (Life
Technologies) for stimulation experiments or in Dulbecco’s
modified Eagle’s medium (DMEM):Ham’s F12 (1:1) supplemented
with 10% FBS (Cell Lines Service) for chromosomal analysis.
When grown till confluence, cells were detached using TrypLE
Express (Life Technologies) and passaged. The medium was
changed twice per week.

Chromosome preparation and Giemsa banding. For chromosome
preparation, 300 ng colcemide (Biochrom AG, Berlin, Germany) were
added to the medium and cells were incubated for 1 h at 37°C in 5%
CO,. Cells were then detached with TrypLE Express and incubated
with hypotonic solution (1:7) on a rocking shaker for 20 min at room
temperature. Thereafter, cells were centrifuged for 10 min at 1000 xg.
The pellet was resuspended in the remaining fluid and fixative
(methanol:acetic acid 3:1) added. Centrifugation followed by fixation
was repeated twice. The cell suspension was dropped onto a glass
slide, air dried, and incubated at 37°C for at least 24 h.

For Giemsa banding, 15 mg trypsin were dissolved in 50 ml
prewarmed banding buffer at 37°C and incubated for 8 min. Slides
were incubated therein for 8 s followed by incubation in 1.5%
Giemsa solution for 10 min then washing twice in water. The
amount of trypsin in G-banding was reduced to 1.5 mg for
subsequent fluorescence in situ hybridisation (FISH) analyses.
Metaphases were photographed (data not shown) and then
decoloured in 70% ethanol. After air drying, the slide was incubated
at 60°C over night followed by FISH.

Fluorescence in situ hybridisation. For investigation of the HMGA2
locus in PC-3 cells, a phage artificial chromosome covering intron
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Figure 1. Schematic workflow of the cell culture experiments presented
herein. PC-3 cells were seeded in the respective multiwell-plates and
allowed to attach for 24 h. Thereafter, the medium was replaced with
starvation medium supplemented with 1% foetal bovine serum (FBS).
After 24 h, the medium was replaced with either fresh starvation
medium (serving as control) or stimulation medium supplemented with
either 10% or 20% FBS, 1% FBS with 25 ng/ml fibroblast growth factor
1 (FGF1) or 1% FBS with 25 ng/ml platelet-derived growth factor-BB
(PDGF-BB). After 12 h or 24 h, respectively, either RNA was isolated or
5-bromo-2’-deoxyuridine (BrdU) was added for another 24 h incubation
to assess proliferation.

3 of the gene (29) and a probe specific for centromere 12 were used.
Probe DNA was labelled using the Nick Translation Kit according
to the manufacturer’s instructions (Abbott Laboratories, Abbott
Park, OH, USA) with SpectrumOrange (Abbott Laboratories,
HMGA2) or SpectrumGreen (Abbott Laboratories, Centromere 12),
respectively. Probe DNA and previously prepared metaphases were
co-denatured for 3 min at 80°C then hybridisation was performed at
37°C overnight in a humidified chamber. Thereafter, slides were
washed for 5 min in 0.1x standard saline citrate (SSC; USB,
Cleveland, IL, USA) at 61°C, rinsed three times in 1x phosphate
buffered saline (PBS) solution and dehydrated in an increasing
ethanol series. The slides were covered with 25 pl mounting
medium with 4’,6-diamidino-2-phenylindole (DAPI; Vectorlabs,
Burlingame, CA, USA). BAC clones RP11-269K4 (AQ478964 and
AZ516203, proximal) in combination with RP11-745010
(AC078927, distal) or RP11-293H23 (AC012264, distal) were used
as break-apart probes for the detection of rearrangements of
HMGA2. Digestion with 5 ng pepsin (Merck, Darmstadt, Germany)
for 3 min at room temperature was followed by fixation with
paraformaldehyde (0.1% PFA/1x PBS) for 10 min and dehydration
in an increasing ethanol series. Co-denaturation of probe and
chromosomal DNA for 7 min at 77°C and hybridisation at 37°C over
night were performed. Slides were washed in 0.4x SSC/0.3% NP-40
at 71°C for 2 min and briefly dipped in 2x SSC/0.1% NP-40. After
air drying, the slides were covered with mounting medium with
DAPI (Vectorlabs).
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Figure 2. Relative expression of high-mobility group AT-hook 2 (HMGA?2) in the cell lines LNCaP, MCF-7, MRI-H215, PC-3, S277, HCT116, and
in a uterine leiomyoma (ULM) with de-regulated HMGA?2 expression. 185 rRNA was used for normalisation of the amount of mRNA. Error bars

indicate standard deviation.

Spectral karyotyping. Spectral karyotyping (SKY)-FISH was
performed using the Spectral Karyotyping Human Reagent and CAD-
Kit (Applied Spectral Imaging, Edingen-Neckarhausen, Germany)
according to the manufacturer’s protocol with modifications. Briefly,
step A (trypsin digestion) was skipped. Chromosomes were denatured
using the denaturation solution on a slide warmer followed by an
increasing ice-cold ethanol series. Hybridisation (overnight), post-
hybridisation including the treatment with blocking agent, and
detection were carried out according to the original protocol.

Stimulation of HMGA2 expression with serum and growth factors. For
stimulation with FBS or FGF1 and PDGF-BB, PC-3 cells were seeded
in multiwell plates and allowed to attach for 24 h. Thereafter, cells
were starved with RPMI-1640 supplemented with 1% FBS for another
24 h. Starvation medium was substituted with either fresh starvation
medium (negative control), or medium supplemented with either 10%
or 20% FBS, 1% FBS with 25 ng/ml FGF1 (Jena Bioscience, Jena,
Germany) or 1% FBS with 25 ng/ml PDGF-BB (Sigma-Aldrich,
Munich, Germany) and cells were incubated for 12 h or 24 h. Finally,
cells were either harvested for subsequent RNA isolation or a
proliferation assay was performed (see Figure 1 for workflow).

Proliferation assay. Proliferation was measured using the Cell
Proliferation ELISA, BrdU (colorimetric) Kit (Roche Applied Science,
Penzberg, Germany) according to the manufacturer’s instructions.
Briefly, 7,500 cells per well were seeded in a 96-well plate (Greiner
Bio-One, Frickenhausen, Germany) and stimulated with serum or
growth factor as described above. 5-bromo-2’-deoxyuridine (BrdU)

incubation was carried out for 24 h and incubation with the secondary
antibody was carried out for 90 min. The incubation settings with the
different stimuli were performed in octuplicates each. These were
averaged and normalised to the negative control incubated with 1%
FBS only for the respective time period. Outliers were removed.
Absorbance was measured using a Synergy HT Multi-Mode
Microplate Reader and the corresponding software KC4 (BioTek
Instruments, Bad Friedrichshall, Germany). Results were analysed
using Excel software (Microsoft, Unterschleiheim, Germany) and
GraphPad Instat (GraphPad Software, La Jolla, CA, USA) performing
a one-way analysis of variance (ANOVA).

RNA isolation from stimulated PC-3 cells. For RNA isolation from
stimulated PC-3 cells, 200,000 cells per well were seeded in a 6-
well plate (Nunc, Langenselbold, Germany) and treated as described
above. RNA was then isolated using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions. The optional on-
column DNase I digestion was included in the protocol. Each
incubation setting was carried out in duplicates.

cDNA synthesis. Total RNA (250 ng) was reverse-transcribed using
Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase
(Life Technologies) with random primers (Life Technologies)
according to the manufacturer’s instructions.

Real time reverse transcription (RT)-PCR. Transcripts of HMGA2

were quantified in triplicates on a 7300 Real-Time PCR System (Life
Technologies) using Sequence Detection Software version 1.2.3 (Life
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Technologies) and a commercial assay (Hs00171569_ml, Life
Technologies). Either hypoxanthine phosphoribosyltransferase 1
(HPRTI) (with the primers fw5’-GGC AGT ATA ATC CAA AGA
TGG TCA A-3’, rev5’-GTC TGG CTT ATA TCC AAC ACT TCG
T-3”, probe5’-6-FAM-CAA GCT TGC TGG TGA AAA GGA CCC
C-TAMRA-3’; Biomers, Ulm, Germany) or 18S rRNA (fw5’-GGA
TCC ATT GGA GGG CAA GT-3’, rev5’-AAT ATA CGC TAT TGG
AGC TGG AAT TAC-3’, probe5’-6-FAM-TGC CAG CAG CCG C-
MGB-3’; Life Technologies) served as endogenous control to
normalise the RNA amount used for reverse transcription. Results
were analysed using Sequence Detection Software (Life
Technologies) and Excel (Microsoft).

Results

Choice of an appropriate cell line. In order to choose an
appropriate epithelial cell line with a moderate HMGA2
expression, we compared the expression level of various cell
lines. A sample of uterine leiomyoma with de-regulated
HMGA2 gene due to chromosomal rearrangement was
included as a control for high expression. The PC-3 cell line
was found to express HMGAZ2 at an intermediate level
(Figure 2), thus allowing further increase of HMGA2 mRNA
as a response to stimulation with growth factors and FBS.
Therefore it was chosen for the stimulation and proliferation
experiments.

Cytogenetics and FISH analysis of the HMGA2 locus.
Although chromosomal rearrangements of the HMGA2 locus
have been very rarely reported in malignant solid tumours,
amplifications may be more frequent. Classical cytogenetics
revealed a hyperdiploid karyoytpe with a variety of
structurally rearranged chromosomes. In the absence of
normal chromosome 12, three derivative chromosome 12s
were detected (Figure 3A). By multicolour FISH, these
derivatives were found to be two apparently identical t(8;12)
translocation chromosomes and one other t(4;12)
translocation chromosome (Figure 3B). In neither of these
chromosomes was evidence for rearrangement of the HMGA2
locus obtained. Nevertheless, to exclude amplifications or
rearrangements that escaped identification by classical
cytogenetics, we used FISH with appropriate locus-specific
probes. In line with the presence of a hyperdiploid karyotype,
as a rule, two or three copies of the HMGA?2 locus/metaphase
were detected by FISH: From a total of 24 metaphases
scored, five (20.83%) and 19 (79.17%) showed two or three
copies, respectively, of the HMGA2 locus (Figure 3C).
However, the use of break-apart probes detecting most of the
chromosomal rearrangements of the HMGA?Z locus as seen in
benign solid tumours did not reveal any evidence for the
existence of hidden rearrangements of this locus in the cell
line (data not shown). Thus, there is no evidence that the high
expression of HMGAZ2 is explained by a rearrangement of the
HMGA?2 locus.
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HMGA?2 expression in response to stimulation with FBS and
growth factors. Firstly, we were interested to determine if
HMGA2 can be induced by FBS and growth factors. In
contrast to untransformed mesenchymal cells, expression of
HMGA?2 did not increase in response to stimulation with FBS
(Figure 4A), FGF1 nor PDGF-BB (Figure 4B) in the PC-3
prostate cancer cell line, as its expression remained stable at
the same level in any incubation tested.

Proliferation of PC-3 cells stimulated with FBS, FGF1 and
PDGF-BB. As proliferation of cell lines is inducible by FBS
as well as growth factors, we then tested proliferation in
response to the same settings tested for stimulation of
HMGA2 in order to establish a possible correlation between
proliferation and HMGA?2 expression. The cell line did not
display any significant increase of proliferation when
incubated with FBS (Figure 5A), whereas significant
changes in the proliferation rate induced by both growth
factors were observed. An incubation period of 12 h with 25
ng/ml PDGF-BB, and with FGF1 resulted in a 1.64-
(»<0.01) and 1.78-fold (p<0.001) increase in proliferation,
respectively, when compared to the negative control (Figure
5B). After 24 h of incubation, the proliferation induced by
FGF-1 or PDGF-BB decreased to 1.2-fold (p>0.05) that of
the negative control, and significantly increased proliferation
for 24 h incubation was only observed in PC-3 cells treated
with FGF1 and 10% or 20% FBS, respectively (p<0.05). The
differences between the remaining samples were non-
significant (p>0.05).

Discussion

HMGAZ? belongs to the group of oncofoetal proteins involved
in a variety of cellular functions, such as differentiation,
apoptosis, cellular growth and proliferation [for review see
(30, 31)]. It is expressed mainly during embryogenesis and in
neoplastic tissues, where its expression is re-activated (30).
Nevertheless, the fundamental differences between expression
of HMGA?2 during embryogenesis, in benign tumours and in
malignant tumours are obscure. Whereas as a rule, the
expression in benign tumours is often higher than in malignant
tumours, in the latter case, a strong expression of HMGA?2 is
actually associated with a worse prognosis (10, 17, 32, 33).
However, expressional re-activation, mainly in benign
mesenchymal tissues, involves chromosomal translocation
fusion partners characteristic of the tumour type, such as
chromosomal band 3q27~28 in lipomas (34, 35) and 14924 in
uterine leiomyomas (36). In these translocations, the
12q14~15 breakpoint is often located in the third intron of
HMGA?2 or downstream but intragenic, leading to the loss of
regulatory sequences in the 3’UTR that serve as binding sites
for the let-7 miRNA (25, 26). Thus, the re-expression of a
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Figure 3. Conventional and molecular cytogenetics did not reveal evidence for rearrangements or amplification of the high-mobility group AT-hook 2
(HMGA2) locus: Giemsa-banded derivative chromosomes 12 (A) and spectral karyotyping (SKY-FISH) (B) of both of the derivative chromosomes (8;12)
and 1(4,12). FISH analysis revealed the HMGAZ2 locus (red) on the g-arm of both of the derivate chromosomes t(8;12) and on the p-arm of the derivative
dicentric 1(4,12). Arrows indicate derivative chromosomes 12. Centromere 12 (green) was present on all chromosomes with HMGA2 locus (C).

truncated version containing the three AT-hooks as functional
units might contribute to tumourigenesis (37, 38). Breakpoints
located outside of HMGA2 also occur frequently (39), possibly
separating regulatory units from the gene locus itself (40).

Generally, post-transcriptional down-regulation of HMGA2
occurs via a variety of miRNAs such as miRNA-365 in lung
cancer (41) and miR-10a* and miR-21 in endothelial
progenitor cells (42). The 3’UTR constitutes a negative
regulatory element (43), as the binding sites for the let-7
miRNA, which is the best known miRNA for the down-
regulation of HMGA?2, are located herein (25). Additionally,
histone deacatelysases 1 and 2 suppress HMGAZ2 expression
via up-regulation of miRNAs of the let-7 family and miR-23a,
miR26a and miR-30a in human cord-blood derived
multipotent stem cells (44). In contrast, miRNA-182 enhances
the expression of HMGAZ2 in high-grade serous ovarian
carcinoma probably via regulation of breast cancer 1, early
onset (BRCAI) (45). Additional influence on the regulation
of HMGA?2 has been ascribed to a (TC),-repeat sequence
upstream of the ATG start codon, with a longer sequence
being associated with increased expression (46, 47).

Little is known about the contribution of HMGA?2 to
tumourigenesis in malignant epithelial tumours. HMGAZ2 is
overexpressed in non-small cell lung cancer when compared
to the normal surrounding tissue (10), and increased
expression has also been linked to tumours of the prostate in
dogs (48). In human prostate cancer, increased amounts of
HMGA?2 were found in the tumour when compared to the
adjacent non-tumourous tissue, and have been associated
with EMT in the PC-3 cell line (49). As to possible paracrine
effects of cells overexpressing HMGAZ2, Zong et al. recently
showed that in mice, Hmga2 overexpression in prostate
stromal cells is sufficient to induce prostatic intraepithelial
neoplasia and hyperplasia and, in cooperation with
overexpression of androgen receptor, can induce poorly-
differentiated adenocarcinoma (50). On the other hand,
concerning the influence on proliferation in epithelial tumour
cells, the ectopic expression of Hmga2 in the Dunning rat
prostate tumour cell line, which does not endogenously
express HmgaZ2, did not reveal any significant alteration in
its growth ability (51), which is supported by our findings
that PC-3 cells treated with FGF1 or PDGF-BB display a
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Figure 4. Relative expression of high-mobility group AT-hook 2 (HMGA?2) after stimulation with foetal bovine serum (FBS) (A) and fibroblast growth
factor-1 (FGF1) or platelet-derived growth factor-BB (PDGF-BB) (B). A control taken before stimulation and after starvation referred to as 0 h
was set as an expression value of 1 for calibration. Hypoxanthine phosphoribosyltransferase 1 (HPRT1) served as endogenous control. Error bars

indicate standard deviation.

higher proliferation rate than unstimulated controls without
an increase in expression of HMGA2 mRNA.

Nevertheless, the regulation of HMGA?2 via growth factors
is of interest in the field of tumour development and
progression. Ayoubi et al. demonstrated that expression of
HMGA?2 is inducible via the phosphatidylinositol 3-kinase
and mitogen-activated protein kinase pathway by a variety of
growth factors, where FGF1 and PDGF-BB have been
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identified as the most potent ones in the pre-adipocyte cell
line 3T3-Li (21). Interestingly, this strong inducing effect is
lost in the epithelial cell line PC-3, as is indicated by our
data. Accordingly, HMGA?2 is neither inducible by FBS,
which may be ascribed to the explanation by Ayoubi et al.
stating that growth factors in the serum are responsible for
the induction of delayed early response genes such as
HMGA?2 (21). Although there is a significant increase in the
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and platelet-derived growth factor-BB (PDGF-BB) (B). For normalisation of the proliferation assay, a control grown in medium supplemented with
1% FBS was set as a value of 1 for the respective incubation period. Error bars indicate standard deviation.

proliferation rate after an incubation period of 12 h with
FGF1 and PDGF-BB (Figure 5), this does not correlate with
a further increase of the HMGA2 mRNA level. The exact
mechanism by which HMGA?2 induces proliferation is not
known yet, although it has been shown that HMGA2
promotes proliferation in a variety of cells such as
chondrocytes (52, 53), and that silencing of HMGA?2 leads
to reversible reduction of proliferation in e.g. retinoblastoma

cells (54), human umbilical cord blood-derived stromal cells
(55) and a non-small cell lung carcinoma cell line (56).
Additionally, the prostate cancer cell lines PC-3 and LNCaP
were used by Peng et al. to demonstrate the influence of let-
7c expression on viral transfection-induced HMGA2
expression and proliferation rate, resulting in decrease in
proliferation correlating with a diminished expression of
HMGA?2 (26).
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In prostate cancer, FGF1 expression is elevated in more
than 80% of the tumours investigated (57), as well as in the
PC-3 cell line (58) investigated here, whereas it is barely
detectable by northern blot and RT-PCR in normal prostatic
tissue (59). FGF1 immunoreactivity in malignant epithelium
correlates with tumour stage and Gleason score (60).
Exogenous FGFs promote proliferation in normal,
immortalised and fully transformed prostatic epithelial cells
(57), which is confirmed by our data for FGF1.

As for PDGF-BB, its proliferation-stimulating role rather
correlates with an increase in the amount of the
corresponding receptor than in the cytokine itself, as stated
by Nazarova et al. (61). They investigated the proliferation-
inducing properties of PDGF-BB in the prostate cancer cell
line LNCaP and found the cytokine did not cause any effect
on proliferation due to a lack of the receptor, which is slightly
more greatly expressed in PC-3 cells (61). Interestingly, both
cell lines express the cytokine itself, favouring proliferation
of the surrounding stroma (61). In this context, it should be
noted that the expression of PDGF-BB by epithelial prostate
cancer cells promotes the proliferation of mesenchymal stem
cells in vitro and in vivo as shown by Cheng et al. (62).
Therefore, the development of prostate cancer seems to be a
complex and delicate cooperation between stroma and
epithelium, in which one tissue produces or overexpresses
factors that influence the other, and can, once disturbed,
enhance tumour progression in the epithelial part.
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