
Abstract. Cancer patients suffer from cancer-induced bone
pain, hypercalcemia, and reduced quality of life caused by
pathological fractures. Many of these complications related to
cancer can be treated, or at least controlled, using new
anticancer agents. Recently, two agents used initially to treat
osteoporosis demonstrated direct and indirect anticancer
activity. In this review, we summarize current knowledge about
direct and indirect anticancer activity of zoledronic acid (a
third-generation bisphosphonate), and denosumab antibody
against RANKL. Zoledronic acid influences the proliferation
and viability of tumor cells in vitro, and effectively reduces
tumor burden, tumor-induced pain, and tumor growth in vivo.
Denosumab is a fully human monoclonal antibody preventing
the binding of RANKL to its receptor on osteoclasts’ membrane,
and through this mechanism inhibits the resorption of the bone.
Furthermore, this agent demonstrates direct anticancer activity
through the RANKL signaling pathway. Because of these
features both drugs may gain broader application for the
treatment of cancer patients. However, further pre-clinical and
clinical evaluation is needed for both agents to fully assess the
antineoplastic mechanisms of activity of both agents.

Long bones are the most common site of spread of tumors
such as breast, prostate, and kidney cancer (1-5) and
hematological cancers such as multiple myeloma (6, 7).
Patients suffering from these types of cancers experience
cancer-induced bone pain, hypercalcemia, and loss of
function from pathological fractures (8-10). All these
complications related to cancer have a major influence on a
patient’s quality of life. There is, therefore, an emerging need
to develop and introduce into clinical practice agents which
could more effectively control tumor growth, and its burden
in bone and distant sites. In recent years, two agents were

introduced to the therapy of skeletal metastases. Besides
inhibition of osteoclastogenesis and bone resorption, these
two agents possess a direct antineoplastic activity. In this
review we describe the direct and indirect effect of the
bisphosphonate zoledrenic acid (ZA) and the (RANKL)-
binding antibody denosumab on tumor growth. 

ZA, a third-generation bisphosphonate, has been widely
used to treat osteoporosis (11, 12), and skeletal metastases;
recent reports also suggest direct activity against cancer cells
(13-16). Bisphosphonates directly inhibit osteoclast activity
through selective affinity to the site of increased bone turnover
e.g. fracture sites. In addition, the latest studies demonstrated
the induction of apoptosis of cancer cells in vitro in prostate
cancer, breast cancer and multiple myeloma cell lines (17-20).
Moreover, ZA successfully inhibits angiogenesis in the tumor
environment, and reduces the invasive ability of cancer cells
(21, 22), including the one of soft tissue tumors (13, 17, 23).
ZA influences the proliferation and viability of tumor cells in
vitro, and effectively reduces tumor burden, tumor-induced
pain, and tumor growth in vivo. ZA may decrease tumor
growth indirectly by inhibition of tumor-induced osteolysis in
bone, and down-regulation of expression and secretion of
cytokines and other growth factors in the tumor environment
(24, 25). In addition, it reduces new blood vessel formation at
the tumor site (26). ZA also exhibits a direct effect on cancer
cells through induction of apoptosis, and reduction of migration
and adhesion ability (17, 19). 

Denosumab is an inhibitor of the receptor activator of
nuclear factor-KB (RANK)/RANKL signaling pathway. It
was developed using XenoMouse transgenic mouse
technology (27). It is a fully human monoclonal antibody
which prevents the binding of RANKL to its receptor on
osteoclast membrane, and through this mechanism it inhibits
the resorption of bone. Recent reports suggest the direct
antitumor activity of this antibody (28, 29).

Mechanism of Action of Zoledronic Acid

Bisphosphonates accumulate in the mineralized bone matrix
and are released during bone resorption. Bone has a very
high affinity for bisphosphonates, this is possible only
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because of very specific uptake of these agents by activated
osteoclasts (30). The nitrogen-containing bisphosphonates
(N-BPs), which include ZA affect osteoclast activity and
survival through inhibition of farnesyl diphosphonate (FPP)
synthase, in the biosynthetic mevalonate pathway. This
disrupts many cellular functions which are of great
importance for osteolytic activity of the osteoclasts and their
survival (31-33). Furthermore, ZA affects several signaling
proteins such as: Rat sarcoma (RAS), Ras homology (RHO),
and Ras-related C3 botulinum toxin substrate (RAC)
involved in cytoskeleton and cellular motility (34-36).
Selective inhibition of RAS signaling within osteoclasts
causes disruption of intracellular vesicle transport, which
reduces the ability of the cells to migrate and aggregate at
the tumor bone border (30, 37). In addition, ZA may induce
intracellular production of triphosphoric acid 1-adenosin-5’-
yl ester 3-[3-methylbut-3-enyl] ester (ApppI), which can
directly induce apoptosis (38, 39). This is induced by ZA by
inhibition of farnesyl pyrophosphate synthase (FPPS), which
causes down regulation of the mevalonate pathway, and
secondary accumulation of isopentenyl pyrophosphate (IPP),
which in turn, is conjugated to AMP to form a novel ATP
analog (ApppI). ZA has a high potency at inhibiting FPPS
activity and increase synthesis of ApppI in osteoclasts.
Induction of synthesis of ApppI directly influences the
proliferation, migration and apoptosis of osteoclasts, as well
as tumor cells (39-42). Correlation between the osteolytic
activity of osteoclasts and increased inhibition of FPPS was
demonstrated in vitro and in vivo by Dunford et al. (43).
Moreover, inhibition of signaling protein prenylation in
cancer cells may produce the direct antineoplastic effect of
ZA (Figure 1 a). In addition, ZA may directly influence the
survival of cancer cells, by activation of caspases. ZA may
directly enhance production of ATP analogs which interfere
with mitochondrial ATP/ADP translocase. Treatment of
MCF-7 breast cancer cells with ZA increased the release of
cytochrome c from mitochondria and activation of caspase-
3 which was associated with increased apoptosis (14, 44,
45). Furthermore, regulation of expression of B-cell
lymphoma 2 (BCL-2) through ZA induces release of
cytochrome c (46). Inhibition of activation of RAS signaling
pathway may modulate both apoptotic pathways (47). ZA
significantly inhibits the ability of tumor cells to invade and
migrate into surrounding tissue. In in vitro experiments, ZA
demonstrated dose-dependent reduction of invasion of tumor
cells through the extracellular matrix. The inhibition of
matrix metalloproteinase (MMP) activity may be one reason
for this reduction in invasion ability of tumor cells (24, 48,
49). In addition, the induction of caspase activity and
inhibition of RAS signaling pathway are very important
mechanisms inhibiting tumor cell adhesion to extracellular
matrix and affecting invasiveness. In some pre-clinical
studies, ZA was found to have potent antiangiogenic effect.

ZA exhibited in vitro dose-dependent inhibition of
proliferation of human umbilical vein endothelial cells
(HUVECs) (50, 51). Similar results have been observed in
animal studies: in the 5T2 myeloma model, ZA significantly
reduced tumor-associated angiogenesis. The antiangiogenic
effect of ZA is mediated at least in part by modulation of
αvβ3 and αvβ5 integrins, which are also required for
osteoclasts for attachment to the bone at the resorption site
(52). The integrins (αvβ3) also play an important role in the
metastatic ability of tumor cells (53-55). This suggests that
ZA directly affects the ability of tumor cells to spread,
invade and migrate, as well as directly inhibit adhesion and
resorption ability of osteoclasts. Moreover, ZA down
regulates the release of some pro-angiogenic growth factors,
such as vascular endothelial growth factor (VEGF) and
basic fibroblast growth factor (BFGF) in patients with
cancer (24, 56). 

Mechanism of Action of Denosumab

Denosumab is a human monoclonal antibody possessing a
very high affinity for RANKL. The monoclonal antibody can
directly modulate the RANK/RANKL signaling pathway
(57). This pathway is very important for maturation,
activation, and survival of osteoclasts and tumor cells (Figure
1 b), and tumor cell ability to spread to distant sites (58-60).
Specific binding of denosumab to RANKL prevents
stimulation of RANK receptor, which is expressed on the
surface of osteoclasts (61, 62). The balance between
osteoclastic and osteoblastic activity is directly related to
remodeling of bone and its resorption. The osteoclasts
differentiate from monocyte-macrophage lineage, after
maturation and final differentiation; they resorb bone in
physiological and pathological states. Furthermore, some
cytokines and growth factors such as RANKL modulate this
process. RANKL is a tumor necrosis factor (TNF) family
member released by activated T-cells (63). Binding of
RANKL to RANK, expressed on osteoclasts and their
precursors, increases their activity, migration and adhesion,
and reduces apoptosis. This activation of osteoclasts causes
osteolysis in bone. T-Cells and osteoblast lineage cells
produce RANKL. The soluble and membrane-bound forms
are produced by activated T-cells. The osteoblast lineage cells
express RANKL on their membrane surface. Many cytokines,
growth factors and hormones such 1,25(OH)2 vitamin D3,
parathyroid hormone (PTH), TNF, and corticosteroids are
involved in the modulation of the RANKL/RANK pathway
(64-66). By binding to RANKL, denosumab neutralizes its
action. Similar activity to denosumab is demonstrated by
osteoprotegerin (OPG) (a decoy receptor for RANKL).
Because of this, OPG has been widely used in animal models
to study inhibition of RANKL. The reports showed that OPG
can significantly reduce osteolysis in the bone (67-69). 
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In Vitro Studies of ZA

Recent reports suggest a direct antineoplastic activity of ZA
on variety of tumor cells e.g. multiple myeloma, lung cancer,
and renal cancer. Pre-clinical studies with MDA-MB-231 and
MCF-7 breast cell lines demonstrated dose-dependent
reduction of proliferation, and survival by treatment with ZA
(14, 47). Moreover, breast cancer cells treated with ZA
exhibited an increased apoptosis rate, which could, however,
be reversed by geranylgeraniol, which suggests that inhibition
of prenylation in cancer cells may induce apoptosis (70, 71).
In addition, PC-3 prostate cancer cells treated with ZA
exhibited significantly increased apoptosis and reduced
proliferation in vitro (72). This suggests the direct antitumor
activity of ZA against tumor cells in in vitro studies. In
addition, many preclinical studies demonstrated additive or
synergistic effect of ZA with other anticancer drugs e.g.
paclitaxel, and doxorubicin (73-76). 

In Vivo Models – Studying ZA

Pre-clinical data from animal studies support the
antineoplastic effect of ZA observed in many in vitro studies.
N-BPs very efficiently reduce osteolytic lesions in bone
caused by tumor. In addition, they reduce formation of
metastases and tumor-induced bone pain, and induce
apoptosis of tumor cells (77-81). Some antineoplastic effect

has also been observed in soft tissue and visceral models (13,
17, 82). Most of these experiments have been carried out with
breast and prostate cancer. The activity of ZA on tumor cells
was documented indirectly by reduction of tumor-induced
pain, or by reduced bone osteolysis around tumor. Direct
antitumor activity of ZA on tumor cells has been assessed
using pathohistological analysis. A breast cancer model with
MDA-MB-231 cells treated with ZA showed significantly
reduced osteolytic lesions as compared to non-treated animals
(83). Another study with 4T1 murine breast cancer cells
treated with ZA at the time of inoculation of the tumor cells
demonstrated significantly lower metastatic ability of the cells
(84). In addition, the histomorphorogical analysis showed
increased apoptosis of osteoclasts and tumor cells. Similarly
to in vitro experiments, ZA demonstrated additive effect in
combination with conventional anti-neoplastic drugs, e.g.,
doxorubicin. Animal models carried out with prostate cancer
PC-3 and LuCaP 23.1 reported an anti-neoplastic effect on
tumor burden (85). After injection of these cells into tibia of
mice and treatment with ZA either at the time of inoculation
of tumor cells or after establishing the tumors, mice
demonstrated fewer osteolytic lesions of tibia by x-ray
analysis. Moreover, prostate-specific antigen in serum of
LuCaP 23.1-bearing mice significantly decreased after
treatment with ZA, which provides additional evidence of the
direct antitumor activity of ZA. In some animal models ZA
had a preventive effect in terms of metastatic ability of tumor
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Figure 1. Direct anticancer activity of zoledronic acid (a) and denosumab (b).



cells. Mice injected with PC-3 cells and treated with ZA had
a significantly lower incidence of bone metastases (86). Some
animal models suggested that ZA can inhibit development of
visceral metastases. Animals injected with 4T1 murine breast
cancer and treated with ZA demonstrated a lower tumor
burden in bone and reduced the number of lung and liver
metatstases (84). The presented data suggest that ZA can
significantly reduce osteolytic lesions in bone, tumor burden
in soft tissue, and also reduce development of metastases
through direct and indirect antitumor activity.

In Vitro Activity of Denosumab

Recent reports interestingly demonstrated no antiangiogenic
activity of denosumab in in vitro assays as compared to ZA
(21). HUVECs treated with 0.31 to 160 μM of denosumab
demonstrated no decrease in viability and no effect on invasion
and tubule formation. In addition, the treatment did not affect
the viability of MDA-MB-436 and CG5 breast cancer cells.
Mice treated with 10 mg/kg of denosumab twice a week for
four consecutive weeks did not show reduced angiogenesis or
any effect on growth of xenograft in that model. This clearly
demonstrates that ZA has an additional antitumor effect
through antiangiogenic activity as compared to denosumab.
There are some data available suggesting that RANKL can
modulate the migration of different tumor cells (87, 88).
Human breast cell lines (MDA-MB-231, MCF-7 and Hs578T)
treated with RANKL demonstrated dose-dependent increased
migration. This increase in migration was significantly reduced
after treatment with OPG. In the same study, OPG treatment
of colon cancer cells (Colo205), which did not express RANK,
did not affect migration. Migration of B16F10 melanoma cells
increased in a dose-dependent manner after stimulation with
RANKL and was again significantly inhibited with OPG (87).
In addition, colony-stimulating factor-1 (CSF-1) did not
stimulate B16F10 migration in the presence of RANKL. This
additionally provides evidence that RANK stimulation has a
direct effect on tumor cells in the context of the significant role
of CSF-1 in oncogenesis. 

In Vivo Studies of Denosumab

In another study, high doses of OPG and ZA were used to
inhibit the progression of the MDA-231-B/LUC + breast
cancer cells (80). Histological and radiographic analysis
demonstrated a significant decrease of osteolysis in bone.
Interestingly, no (TRAP)-positive osteoclasts were identified
in animals treated with Fc-OPG. However, OPG did not
significantly affect tumor growth itself. Osteolysis of the bone
caused by tumor growth is modulated by dysregulation of the
RANK/RANKL pathway. Mice bearing MDA-MB-231 breast
cancer cells expressed higher levels of RANKL than control
mice (59). In addition, mice treated with increasing doses of

OPG-Fc demonstrated significantly lower osteolysis of the
tumor bone border. Furthermore, this treatment significantly
inhibited growth of tumor cells in preventive as well as
therapeutic modes. The OPG-increased activation of caspase-
3, through this apoptosis mechanism, reduced tumor burden
and tumor growth. Osteoclastogenesis induced by prostatic
cancer CaP in an intratibial model treated with OPG (89), was
significantly inhibited. In this study, the authors showed that
CaP cells produce a soluble form of RANKL which can
modulate osteoclastogenesis. The number of osteoclasts at the
tumor bone border decreased after treatment with OPG,
however, there was no effect on viability, and proliferation of
CaP cells. This demonstrates how important the role of
osteoclastogenesis and osteoclast activity is in the
development and growth of skeletal metastasis. This study also
presented evidence that OPG has no direct activity on tumor
cells themself. CaP cells treated with OPG in vitro, as well as
in subcutaneous models, did not demonstrate increased
apoptosis or reduced viability. There is no correlation of data
of RANKL level in blood and its impact on tumor growth in
bone. This may be due to local release of RANKL at the
tumor bone site, or by limitation of detection by currently used
assays. Furthermore, RANK receptor is present on many
epithelial tissues and epithelial cells, however, not much is
known about its role in migration and development of bone
metastases. In vivo, intracardiac injection of B16F10 cells into
C57BL/6 mice resulted in rapid development of multiorgan
metastases, including, of long bones. Treatment of the mice
with OPG significantly reduced the tumor burden in bone;
however, it did not affect tumor burden and metastases in
ovaries, adrenal glands, and brain (87). 

Clinical Trials 

Denosumab in a double-blind, randomized study, phase III
trial in breast cancer, prostate and multiple myeloma showed
significantly better control of first skeletal events compared to
ZA treatment. Furthermore, denosumab more frequently
caused hypocalcemia, and did not demonstrate any advantages
in terms of tumor progression and overall survival (90).
Patients with giant cell tumors of the bone had significantly
reduced tumor size. The histopathological analysis
demonstrated a reduced number of RANK-positive giant
tumor cells. Moreover, the treatment reduced the density of
proliferative stromal tumor cells. In a phase II clinical trial,
patients with recurrent or unresectable giant cell tumor in bone
were treated with 120 mg every four weeks. The
histopathological analysis demonstrated 90% decrease in the
number of giant cells and significant reduction of tumor
stromal cells (91). Male patients with bone metastases from
castration-resistant prostate cancer were treated with
denosumab at a dose of 120 mg on a month, and compared to
a ZA treatment group. Denosumab resulted in delay or
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prevention of skeletal-related events in patients with advanced
prostate cancer (92). Similarly, in female patients with
advanced breast cancer treated either with denosumab 
(120 mg) or ZA (4 mg), there was a longer delay of time to
diagnosis of the first bone metastases with use of denosumab
(93). Another preventive study compared the efficacy of
denosumab in preventing development of skeletal metastases
in patients with advanced cancer, bone tumor or myeloma,
excluding breast and prostate cancer. The patients were treated
with subcutaneous denosumab or intravenous ZA. The study
demonstated that treatment with denosumab was equally good
compared to that with ZA in delaying the diagnosis of the first
metastasis, with fewer side-effects. There was also no
difference between groups in terms of disease progression or
survival (94). A randomized, double-blind, double-dummy
phase III study, also compared denosumab with ZA for pain
alleviation in patients with advanced breast cancer and bone
metastases. The denosumab treatment group had significantly
improved pain prevention, with similar pain alleviation to that
of ZA; in addition, fewer patients in the denosumab group
switched to opioid therapy (95). 

Conclusion

Nowadays, patients with advanced cancer have longer
survival, but have increased risk of bone-related events, such
as pathological fractures, reduced ambulation and cancer-
induced pain. Because of this, there is increasing need to
develop new agents to reduce these complications and improve
control of cancer growth in this population. In the past decade,
ZA has been introduced into clinical practice as an
antiosteoclastic agent. Many patients and physicians may
prefer to use denosumab, because of its subcutaneous
application compared to intravenous injections of ZA.
Furthermore, aninitial evaluation showed that denosumab
causes fewer complications related to treatment e.g.
osteonecrosis of the jaw, and hypocalcemia. In addition, there
are no limitations in the use of denosumab for patients with
renal impairment. On the other hand, ZA demonstrates
superiority in terms of its direct antineoplastic activity
demonstrated both in vitro and in vivo compared to
denosumab. Further pre-clinical and clinical evaluation is
needed for both agents to fully assess the antineoplastic
mechanisms of activity of both agents.
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