ANTICANCER RESEARCH 33: 2849-2854 (2013)

Review

Effects of Interactions Between Intestinal Microbiota
and Intestinal Macrophages on Health

KAZUE NAKATA'!, MAI YAMAMOTO!, HIROYUKI INAGAWA? and GEN-ICHIRO SOMAZ2-3

Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama, Japan;
2Department of Integrated and Holistic Immunology, Faculty of Medicine,
Kagawa University, Kida-gun, Kagawa, Japan;
IInstitute for Health and Science, Tokushima Bunri University, Tokushima, Tokushima, Japan

Abstract. Macrophages reside in every tissue of the body and
play an important role in maintaining homeostasis. The
intestinal mucosa is the largest immune organ and harbors
macrophages in abundance. Dysfunction of intestinal
macrophages is characteristic of patients with certain
inflammatory bowel diseases. Although intestinal macrophages
exhibit hyporesponsiveness to foreign substances, including
various bacterial products, their physiological functions are
unknown, but may be related to the contribution of intestinal
bacteria to the maintenance of various physiological functions
of the host. Moreover, recent reports suggest that there are
associations between intestinal microbiota and the onset of
pathologies, such as diverse metabolic syndromes, depression,
and cancer. Evidence indicates that the host’s immune response
to intestinal microbiota may be etiologically-linked to these
diseases; however, the mechanisms are poorly understood. In
the present review, we discuss the possibility that intestinal
microbiota influence health through the function of intestinal
macrophages.

Macrophage Function and Homeostasis

Macrophages play a central role in the innate immune system.
They receive primary information by recognizing foreign
substances, and transmit this information to other cells by
secreting cytokines that promote cell adhesion, migration, and
antigen presentation. There are tissue-specific populations of
macrophages, such as microglia in the brain and Kupffer cells
in the liver. Each tissue-specific macrophage defends the host
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against infection and maintains aspects of homeostasis that
influence tissue regeneration and metabolic control (1, 2). We
hypothesize that homeostasis is regulated by a system
comprising a macrophage network because tissue macrophages
quickly recognize changes in the external environment and
transmit this information globally within the body, a
phenomenon termed the macrophage network theory (3).

In the digestive system, the intestinal tract absorbs nutrients
and water, and its surface area is approximately 400 m? in
humans. The intestinal tract is continually exposed to foreign
substances, such as intestinal bacteria, and it is therefore not
surprising that approximately 60%-70% of the immune cells
in the body, including large numbers of macrophages, reside
within this organ.

Intestinal ~macrophages possess phagocytic
bactericidal activities (4), but lack receptors for bacterial
components on their cell surface and produce low levels of
pro-inflammatory cytokines, such as tumor necrosis factor
(TNF)-a., interleukin (IL)-6, IL-12, and IL-23 (5, 6). These
properties possibly explain why the response of intestinal
macrophages to foreign substances is highly regulated to
prevent adverse effects of inflammation. In contrast,
intestinal macrophages may contribute to the maintenance of
intestinal homeostasis through the production of anti-
inflammatory cytokines, such as IL-10 and transforming
growth factor-p (4). However, the mechanisms responsible
for the recognition of foreign substances by intestinal
macrophages are unknown.

and

Intestinal Macrophages and Disease

Inflammatory bowel diseases (IBDs) are considered
autoimmune diseases, and their pathogenesis is not
understood. Recently, it has become evident that loss of
tolerance of intestinal macrophages to intestinal bacteria is
responsible for the pathogenesis of IBDs. The two main
clinical manifestations of IBDs are Crohn’s disease and
ulcerative colitis. In IL10 knock-out (KO) mice, which are
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used as an animal model of colitis, clinical isolates of
Escherichia coli and Enterococcus faecalis induce IBD (7),
whereas germ-free (GF) conditions suppress the development
of intestinal inflammation (8). Furthermore, the
administration of probiotics prevents intestinal inflammation
(9). For example, Kamada et al. demonstrated that intestinal
macrophages in /L0 KO mice produce highly elevated
levels of IL-12 and IL-23 after challenge with heat-killed
Escherichia coli or Enterococcus faecalis and induce Thl-
dependent colitis, whereas IL-10 suppresses production of
proinflammatory cytokines in response to recognition of
bacteria (10). The immediate precursor of the macrophages
is the monocyte. Monocytes are derived from pluripotent stem
cells in the bone marrow from where they migrate to different
tissues through the circulatory system and differentiate into
tissue-specific macrophages (2). Recent studies report that the
granulocyte-macrophage colony-stimulating factor (GM-CSF)
contributes to differentiation of monocytes to inflammatory-
type macrophages (M1l macrophage), whereas the
macrophage colony-stimulating factor (M-CSF) contributes
to differentiation into anti-inflammatory-type macrophages
(M2 macrophage) (11, 12). Kamada et al. demonstrated that
an M-CSF-rich environment in colonic tissues may contribute
to the differentiation of intestinal macrophages into anti-
inflammatory M2 macrophages (10). They suggest the
possibility that M2 macrophages with an abnormal phenotype
contribute to the pathogenesis of intestinal inflammation
because monocytes obtained from certain patients with
Crohn’s disease did not differentiate normally in response to
M-CSF stimulation (10). Our previous studies demonstrate
that CD14, which normally localizes to the cell surface, was
expressed exclusively in the cytoplasm of intestinal
macrophages, suggesting that a post-transcriptional
mechanism regulates the expression of CD14 at the cell
surface (13, 14). We further demonstrated that intestinal
macrophages produced TNF-o when stimulated with
Sarcophaga lectin or by lipopolysaccharide (LPS) after
contact with immunoglobulin (Ig) A (15). Therefore, we
suggest the possibility that intestinal macrophages mediate an
inflammatory response through specific stimulation by IgA.

Intestinal Microbiota and Diseases

Evidence indicates that intestinal microbiota are involved in
the onset of IBD as well as in diseases of the endocrine
system (metabolic syndrome), nervous system diseases
(depression), and cancer. Diabetes and obesity are
characterized by low-grade inflammation accompanying
expression of TNF-o by adipose tissue (16). In obese
individuals, adipose tissue macrophages convert to the
inflammatory phenotype in association with the
inflammatory response of adipose tissue (17); however, the
molecular basis for this process is unknown. Shi et al. found
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that nutritional fatty acids activate toll-like receptor (TLR)-4
signaling in adipocytes and macrophages, and that high-fat
diets induced inflammatory signaling in adipose cells or
tissues, as well as in macrophages (18). TLR4 is a receptor
for LPS together with its co-receptor CD14 (19). Cani et al.
reported that the concentration of bacterial LPS in plasma
and the ratio of Gram-negative bacteria to gut microbiota
increased during the consumption of a fat-enriched diet and
demonstrated that metabolic endotoxemia dysregulates the
inflammatory tone and triggers body-weight gain and
diabetes (20, 21). Furthermore, CD14-mutant mice did not
exhibit certain LPS- and high-fat diet-induced symptoms of
metabolic diseases, and that TNF-a production decreased in
adipose tissue (20). In a study by Ghoshal et al., LPS was
transported to the circulatory system with dietary fat by
chylomicrons, suggesting that chylomicron-associated LPS
may contribute to post-prandial inflammatory responses or
chronic diet-induced inflammation in chylomicron target
tissues (22). Thus, it is estimated that changes in intestinal
microflora are induced by consumption of an excessively
high-fat diet and is associated with increased LPS
absorption, resulting in an increase in endotoxemia, which
triggers inflammation and metabolic disorders (21).
Elevated risk of colorectal cancer has been associated
with high-fat diets, as well as consumption of relatively high
amounts of protein, such as red meat and low amounts of
vegetables (23, 24). Consumption of high amounts of
protein and fat and low amounts of vegetables produces
carcinogens in decomposition products (ammonia, hydrogen
sulfide, amine, and phenol), secondary bile salts (nitroso-
compounds and deoxycholic acid), and reactive oxygen
species. This association occurs if the colonic microbiota
contains 7a-dehydroxylating bacteria (chiefly clostridial
species), and the primary bile acids are converted to
secondary bile acids, such as deoxycholic acid and
lithocholic acid (25, 26). It was further shown that risk of
cancer increases in the presence of mutagenic reactive
oxygen and nitrogen species derived from nitric oxide
generated by immune cells such as macrophages (27).
There is increasing evidence suggesting that intestinal
microbiota interact with the brain—gut axis and are associated
with the maintenance of intestinal homeostasis and
neurotransmission (28, 29). For example, in studies of GF
mice and specific pathogen-free mice, the microbial
colonization process initiates signaling mechanisms that
affect neuronal circuits involved in motor control and anxiety
(30). The microbiota possibly communicate with the
brain—gut axis through different mechanisms as follows: 1)
direct interaction with mucosal cells (endocrine message), ii)
through immune cells (immune message), and iii) through
contact with neural endings (neuronal message) (31).
Regulatory dysfunction of the gut microflora and brain—gut
axis was shown to affect functional gastrointestinal disorders,
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such as IBS (30, 32-34). The stress-induced changes of
neurotransmitter and pro-inflammatory cytokine levels
directly or indirectly affect changes in the composition of the
microbiota. For example, norepinephrine (stress hormone)
increases the virulence of some bacteria, such as Escherichia
coli and Campylobacter jejuni (35, 36). Pathogenic bacteria
in rodents induce anxiety-like behaviors, which are mediated
through vagal afferents (34, 37).

Intestinal Microbiota Maintain Health Through
the Function of Intestinal Macrophages

Intestinal microbiota, in contrast to their potential adverse
effects, have been shown to contribute to the developmental
programming of epithelial barrier function, gut homeostasis,
and angiogenesis, as well as the host’s innate and adaptive
immune responses (38, 39). Probiotics comprise of intestinal
microbes, such as Bifidobacterium and Lactobacillus (40),
because these are defined as “live microorganisms that when
administered in adequate amounts confer health benefits on
the host” (41). Probiotics and intestinal microbiota exert
therapeutic effects on conditions such as IBD, stress, anxiety,
and cancer.

IL-10 and IL-12, which are produced by macrophages and
dendritic cells, play an important role in the mechanisms
underlying the therapeutic effects of probiotics. IL-10 and
IL-12 production is associated with regulating the balance of
Th1/Th2 cells. IL-10 is an anti-inflammatory cytokine that
down-regulates phagocytosis and T-cell function, including
the production of pro-inflammatory cytokines such as IL-12,
TNF-a., and interferon (IFN)-y, which control inflammatory
responses (42) and promote the development of regulatory
T-cells (43). IL-12 stimulates T-cells to secrete IFN-v,
promotes Thl cell development, and directly or indirectly
augments the cytotoxic activity of natural killer (NK) cells
and macrophages. IL-12 also suppresses redundant Th2 cell
responses that control allergy (44).

IL-10 may improve chronic inflammatory conditions, such
as IBD and autoimmune disease (45). In contrast, IL-12 may
augment the natural immune defense against infections and
cancer (46). The regulation of the macrophage production of
IL-10 and IL-12 by probiotics may maintain health and
prevent disease. Studies have been conducted to explore
these possibilities. For example, Kaji et al. reported that IL-
10 and IL-12 production by macrophages differs depending
on the Lactobacillus strain (47). Moreover, IL-12, which
causes inflammation when produced in excess, could
trigger molecules such as peptidoglycan and induce
signaling pathways such as those mediated by TLRs (47,
48). However, most of these studies used peritoneal
macrophages and macrophage-derived cell lines, but not
intestinal macrophages. As mentioned above, macrophages
possess tissue-specific functions. In particular, intestinal

macrophages produce IL-10 but only low levels of IL-12 (10,
49). Therefore, the results of studies on peritoneal
macrophages or macrophage cell line cannot be generalized
to intestinal macrophages. Elucidation of the function of
intestinal macrophages is therefore important to optimize
probiotics for preventing and treating enteropathogenic
bacterial infections.

Conclusion

Intestinal microbiota stimulate the intestinal mucosa and
influence the health of the host (20-22). To utilize microbiota
effectively, it is important to understand how they act,
particularly their effects on immune regulation. Numerous
studies focusing not only on macrophages but also on NK
cells are in progress. We propose here a macrophage network
theory that suggests that macrophages are the most important
cells for regulating homeostasis. Macrophages are not
homogeneous in function and adapt to specific host
environments and conditions. Because of this, dysfunction of
macrophages may cause serious diseases. The mechanisms
that regulate macrophage functions are not yet fully
understood. In particular, the functions of intestinal
macrophages, which are in most frequent contact with
microbiota, are enveloped by a virtual informational ‘black
box’. For example, why are macrophages that eliminate
foreign substances tolerant to intestinal microbiota? How do
intestinal macrophages receive and process information from
intestinal microbiota? The answers to these questions should
facilitate the effective utilization of intestinal microbiota and
improve our ability to prevent and treat diseases caused by
macrophage dysfunction.
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