PI3 Kinase Inhibitors in the Clinic: An Update

JEAN-EMMANUEL KURTZ^{1,2,3} and ISABELLE RAY-COQUARD^{2,4}

¹Department of Oncology and Hematology, University of Strasbourg Hospital, Strasbourg, France; ²Groupe des Investigateurs Nationaux pour le Cancer de l'Ovaire (GINECO), France;

³Equipe d'Accueil (EA) 4438, Université de Strasbourg, Strasbourg, France;

⁴Department of Medical Oncology, Léon Bérard Center, Lyon, France

Abstract. The phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway has been identified as a key signaling pathway for important cellular functions such as growth control, metabolism and translation initiation. Several proteins within this pathway are valuable anticancer drug targets, among which several inhibitors of mTOR are now administered in routine practice. A better understanding of the structure and functions of PI3K has led to the development of novel inhibitors that have a more favorable toxicity profile as compared to the first generation of anti-PI3K drugs. In this article, we review the basics of PI3K biology and focus on its inhibitors, currently under investigation in clinical trials. The perspective for future directions in the setting of PI3K inhibition and novel trials is also discussed.

Structure and Functions of the Phosphoinositide 3 Kinases

The phosphoinositide-3 kinases (PI3Ks) catalyze the production of lipid second-messengers from phosphoinositide-2 phosphate into phosphoinositide triphosphate in cellular membranes (1). There are eight classes of phosphoinositide kinase in mammals, among which only class I products are involved in secondmessenger signaling with phosphoinositide triphosphate (2). Apart from being activated by tyrosine kinase receptors (RTKs), class IA PI3Ks are activated by G-protein-coupled receptors (GPCR) and oncoproteins, whereas class IB products are only regulated by GPCRs (3). The enzyme

0250-7005/2012 \$2.00+.40

consists of the association of two subunits, p85 and p110, harboring regulatory and catalytic properties, respectively. There are three different isoforms of p110: p110 α , β , or δ , that are encoded by PIK3CA, PIK3CB and PIK3CD, respectively. All p110 isoforms have a similar structure, with well-identified domains: an amino-terminal adaptorbinding domain (ABD) interacting with p85, a rat sarcoma (RAS)-binding domain (RBD), a C2 (protein kinase-C homology-2) domain with affinity for lipid membranes, a helical domain, and a carboxyl-terminal kinase domain (4). The p85 regulatory subunit is encoded by three genes: PIK3R1, PIK3R2 and PIK3R3 (5). Among the four regions of p85, the nSH2 domain is mostly involved in p110 regulation, and inhibits its kinase activity, unless p110 is activated from an upstream signal, leading to the removal of the nSH2 inhibition (6). Besides the regulation of p110, p85 is also involved in a number of cellular functions, such as endocytosis, cytoskeleton organization, receptors trafficking, etc.. [reviewed in (5)]. There are four isoforms for the catalytic subunit, α , β , γ , δ , respectively. In class I PI3Ks, either p110 α , β , or δ form a heterodimer with one of five regulatory proteins $p85\alpha$, $p85\beta$, $p85\gamma$, $p50\alpha$, and $p55\alpha$ out of which the two smaller proteins are splicing variants of p85 α (7). Interestingly, only *PIK3CA*, encoding p110 α is linked to a number of types of cancer, whereas PIK3CB has oncogenic properties only in cultured cell models (3, 8).

Activation of PI3K comes from an upstream signal [*e.g.* receptor tyrosine kinase (RTK) dimerization and activation through ligand binding], leading to i) the direct binding of p85 to the RTK and the subsequent p110 activation; or ii) the binding of growth factor receptor-bound protein 2 (GRB2) to the RTK, followed by GRB2-associated-binding (GAB) protein recruitment and further p85 activation; or iii) from RAS-mediated p110 activation through the recruitment of GRB2 and son of sevenless (SOS) to the receptor (9). A wide number of transmembrane receptors have been identified as PI3K activators.

Correspondence to: Professor J.E. Kurtz, Department of Oncology and Hematology, Hôpitaux Universitaires de Strasbourg, 1 Av Molière, 67098 Strasbourg, France. Tel: +33 388128436, Fax: +33 388127681, e-mail: j-emmanuel.kurtz@chru-strasbourg.fr

Key Words: PI3K, inhibitor, cancer, targeted therapy, review.

The PI3K/AKT/mTOR Cascade and its Relevancy to Cancer

Signaling through PI3K drives a number of cell functions that are linked to cell growth, apoptosis regulation, cell adhesion, transformation, survival, and motility through the activation of the downstream AKT protein (10, 11). Importantly this pathway activation is regulated through the PI3K antagonistic phosphatase and tensin homolog (PTEN) that is deleted or inactivated in a wide range of malignancies (12). The downstream effector AKT phosphorylates a number of proteins, among which is mTOR. mTOR acts as the catalytic subunit in the protein complexes mTORC1 and mTORC2, in which the former regulates S6 kinase and 4E binding protein 1 (4EBP1), leading to translation initiation and protein synthesis, and the latter is involved in a feedback activation of the cascade through the phosphorylation of AKT on the Ser⁴⁷³ residue (13). Inhibition of mTOR has proven efficacious in numerous solid tumors, such as breast and kidney cancer, well-differentiated endocrine tumors and sarcomas. Hence, finding other targets within the PI3K/AKT/mTOR pathway has a high relevance to developing innovative compounds. Indeed, inhibition of mTORC1 has the caveat of a feedback activation of PI3K that might be responsible for rapamycin analogs (rapalogs) resistance, providing a strong rationale for combining mTOR and PI3K inhibition (14).

Oncogenic Mutations of PI3K

The PI3KCA gene is mutated in a wide range of cancer types, including those of breast, colon, prostate, endometrium, and of the ovary (7). Although mutations in the PI3K pathway seem to occur in a mutually exclusive manner, coexistence of PTEN and PI3KCA mutations have been reported in endometrial cancers (7, 15). About 80% of PI3KCA mutations occur within three hot spots, two of them mapping to the helical domain of PI3KCA and one in the kinase domain, with distinct mechanisms of protein activation (16). These mutations induce a gain of function in p110 α , with increased and detectable levels of downstream effectors that can be surrogate markers of PI3KCA mutations (reviewed in 17). Mutations in the helical domain, such as E542K and E545K result in the lack of p110 α regulation by the regulatory subunit, whereas H1047R in the kinase domain induces a conformational change in the activation loop, thus mimicking RAS-mediated activation (16, 18). This conformational change increases the protein interaction with the lipid membrane, thus making phosphoinositide diphosphate more accessible to the enzyme (19). Indeed, having identified such mutations, and having established their frequency among carcinomas provides a strong rationale for the development of anti-PI3K drugs, targeting

the kinase domain through the inhibition of ATP binding. Mutations in the p85 regulatory subunit have also been identified and consist of truncations or deletions, resulting in the disruption of the interaction of nSH2 and iSH2 domains with the C2 domain of p110 α , thus abolishing the kinase domain inhibition by p85 (19).

Targeting PI3K in Anticancer Therapy: From the Bench to Phase II Trials

Given the elucidation of the PI3K structure, the identification of mutation hot spots, and the understanding of the related structure/function changes, efforts towards innovative drugs design should now focus on the design of isoform-specific, mutant-specific inhibitors (19). Although such a personalized approach is not yet feasible in routine practice, several PI3K inhibitors have been evaluated, both pre-clinically and in the clinic, with phase I and phase II trials for the latter. Initial data were obtained with two compounds, wortmannin and LY294002, which served as a proof of concept in preclinical models, though suffering from unfavorable pharmaceutical and toxicity profiles and yielding more in-depth research for better drugs (20, 21). In this section we focus on the clinical data that are available for these compounds, as well as on ongoing trials and future perspectives.

NVP-BEZ235

NVP-BEZ235 was synthesized by Novartis Pharma, (Novartis Institute for Biomedical Research Oncology, Basel, Switzerland) as a potent p110 α inhibitor, with a dual mTOR inhibition capacity. NVP-BEZ235 has activity against $p110\alpha$, p110a-H1047R and p110a-E545K, with a half maximal inhibitory concentration (IC_{50}) in the low nanomolar range (22). NVP-BEZ235 inhibits PI3K by blocking the ATPbinding site, a common mechanism of other tyrosine kinase inhibitors and possesses strong antiproliferative activity towards several cell lines and against tumor xenografts (22-24). Phase I data with NVP-BEZ235 showed an acceptable toxicity profile, with mild or moderate, and manageable nausea, and vomiting, diarrhea, fatigue, anemia, and anorexia. Two patients out of 59 had partial response (PR), whereas 16 experienced minor responses. Interestingly, in 14 patients with stable disease ≥ 4 months, 6 had deregulated PI3K pathway (25). Another phase I study of BEZ235, with a different formulation (SDS sachet) has been reported showing a maximal tolerated dose of 1600 mg/d, and a similar toxicity profile. The dose-limiting toxicities were grade 3 thrombopenia and fatigue (26). Clinical studies are ongoing with the drug in several malignancies, with an emphasis on breast cancer (Table I). Most of the trials focus on single-agent activity of NVP-BEZ235, despite a few trials investigating combinations with chemotherapy (capecitabine,

Condition	Study title	Companion drug	Clinicaltrials.gov identifier
Kidney cancer	BEZ235 in Patients with Advanced Renal Cell Carcinoma (RCC)	Not applicable (N/A)	NCT01453595
Solid tumors/breast	Dose Finding Study of RAD001 (Everolimus, Afinitor®) in	Everolimus	NCT01482156
and kidney	Combination with BEZ235 in Patients with Advanced Solid Tumors		
Breast	Phase Ib/II Trial of BEZ235 with Paclitaxel in Patients with HER2 Negative, Locally Advanced or Metastatic Breast Cancer	Paclitaxel	NCT01495247
Breast	A Phase Ib/II Study of BEZ235 and Trastuzumab in Patients with HER2-positive Breast Cancer Who Failed Prior to Trastuzumab	Trastuzumab	NCT01471847
Breast	A Trial of Oral BEZ235 and BKM120 in Combination with Paclitaxel with or without Trastuzumab	BKM120/trastuzumab	NCT01285466
Breast	PhIb BKM120 or BEZ235+Endocrine Treatment in Post-menopausal Patients with Hormone Receptor + Metastatic Breast Cancer	BKM120/endocrine therapy	NCT01248494
Breast	Study of BKM120 or BEZ235 and Capecitabine in Patients with Metastatic Breast Cancer	BKM120/capecitabine	NCT01300962
Breast	Pharmacodynamic Study of BKM120 and BEZ235 in Breast Cancer	BKM120	NCT01513356
Solid tumors/breast	A Phase I/I Study of BEZ235 in Patients with Advanced Solid Malignancies Enriched by Patients with Advanced Breast Cancer	N/A	NCT00620594
Solid tumors	Study of PI3 Kinase/mTOR Inhibitor BEZ235 Twice Daily for Advanced Solid Tumors	N/A	NCT01343498
Solid tumors	Safety, Pharmacokinetics and Pharmacodynamics of BEZ235 Plus MEK162 in Selected Advanced Solid Tumor Patients	MEK162	NCT01337765
Solid tumors	Safety Study of BEZ235 with Everolimus in Subjects with Advanced Solid Tumors	Everolimus	NCT01508104
Solid tumors	A Study of BEZ235 in Adult Japanese Patients with Advanced Solid Tumor	N/A	NCT01195376

Table I. Ongoing clinical trials with NVP-BEZ235 (http://clinicaltrials.gov/ct2/results?term=bez235, accessed April 17, 2012).

paclitaxel) or targeted therapies (trastuzumab, everolimus and other PI3K inibitors such as BKM120). Genotype indicators for the NVP-BEZ235 efficacy have been found, at least in endometrial cancer, such as the presence of *PTEN* mutations without *KRAS* alterations, which might be strong predictive factors for NVP-BEZ235 efficacy in this condition (27). Unexpectedly, with regard to molecular abnormalities that were evidenced in endometrial cancer, NVP-BEZ2345 study has been stopped in this condition and endometrial cancer clinical trials were withdrawn.

BKM120

BKM120 has been developed by Novartis Pharma (Novartis Institute for Biomedical Research Oncology, Basel, Switzerland) and is a selective pan-PI3K inhibitor, with an IC_{50} towards p110 α , p110 α -H1047R and p110 α -E545K in the nanomolar range, and no activity towards mTOR and other kinases (14). BKM120 binds to the ATP-binding site of the lipid kinase in a mixed competitive and non-competitive manner. Preclinical data showed activity toward different cell lines, including glioma and myeloma (14, 28, 29). Interestingly, cell lines harboring *PI3KCA* oncogenic mutations had a greater sensitivity to BKM120 as compared to those with wild-type *PIK3CA* (14). Moreover, the presence of a concomitant *KRAS* activating mutation was found to

reduce sensitivity to BKM120, a finding that has been previously observed in the clinic with mTOR inhibitors, such as everolimus (30). Interestingly, preclinical data combining BKM120 with a signal transducer and activator of transcription 3 (STAT3) inhibitor showed that the combination was synergistic in gastric cells harboring KRAS mutations as opposed to those with wild-type KRAS (31). A phase I study of BKM120 in patients with advanced solid tumors has recently been reported, showing an acceptable toxicity profile, with expected side-effects for PI3K/AKT/mTOR pathway inhibition (diarrhea, mucositis, hyperglycemia and anorexia). Importantly, mood disorders were observed both at the maximal tolerated dose (MTD; 100 mg daily) and the lower dose level (80 mg daily) (32). Particular attention should therefore be paid to a medical history of depression in patients likely to receive BKM120. Of note, among the 35 enrolled patients, one experienced a confirmed PR (triple-negative breast cancer) and seven had disease control for at least eight months. Many trials with BKM120 are currently recruiting patients (Table II) with various malignancies including, as opposed to NVP-BEZ235, endometrial cancer, notably the phase II GINECO ENDOPIK trial that has recently started enrolment (Clinicaltrials.gov identifier: NCT01397877). A number of other trials are not yet recruiting patients, but are scheduled to open rapidly worldwide.

Condition	Study title	Companion drug	Clinicaltrials.gov identifier
Colorectal	A Trial of Irinotecan and BKM120 in Previously	Irinotecan	NCT01304602
	Treated Advanced Colorectal Cancer		
Breast	Safety and Efficacy of BKM120 in Combination with Trastuzumab in		
	Patients with Relapsing HER2 Overexpressing Breast Cancer Who	Trastuzumab	NCT01132664
_	Have Previously Failed Trastuzumab	~	
Breast	Study of BKM120 or BEZ235 and Capecitabine in Patients	Capecitabine	NCT01300962
7	with Metastatic Breast Cancer		
Breast	PhIb BKM120 or BEZ235+Endocrine Treatment in Post-menopausal	Endocrine therapy	NCT01248494
0 11 1	Patients with Hormone Receptor + Metastatic Breast Cancer	0.01/1100010	NGT01155452
Solid tumors/breast	A Study to Investigate Safety, Pharmacokinetics (PK) and	GSK1120212	NCT01155453
	Pharmacodynamics (PD) of BKM120 Plus GSK1120212 in	(MEK inhibitor)	
0 11 1 4	Selected Advanced Solid Tumor Patients	DE7225 11/ 1	NGT01005466
Solid tumors	Trial of Oral BEZ235 and BKM120 in Combination with Paclitaxel with or without Trastuzumab	BEZ235, paclitaxel,	NCT01285466
Solid tumors		trastuzumab	NCT01207452
Solid tumors	BKM120 + Carboplatin + Paclitaxel for Patients with Advanced Solid Tumors	Carboplatin, paclitaxel	NCT01297452
Solid tumors	Safety, Pharmacokinetics and Pharmacodynamics of BKM120 Plus	MEK162	NCT01363232
Solid tumors	MEK162 in Selected Advanced Solid Tumor Patients	MEK102	NC101303232
Solid tumors/	Combination of BKM120 and Bevacizumab in Refractory Solid	Bevacizumab	NCT01349660
glioblastoma	Tumors and Relapsed/Refractory Glioblastoma Multiforme	Devacizuillau	NC101349000
Glioblastoma	A Phase I Dose Escalation Study of BKM120 with Radiation Therapy	Temozolomide	NCT01473901
Gilobiastollia	and Temozolomide in Patients with Newly Diagnosed Glioblastoma	Temozofolinde	1101475501
Glioblastoma	Phase II Study of BKM120 for Subjects with Recurrent Glioblastoma	Not applicable (N/A)	NCT01339052
Urothelial cancers	BKM120 in Metastatic Transitional Cell Carcinoma of the Urothelium	N/A	NCT01551030
Prostate	BKM120 in Metastatic Castration-resistant Prostate Cancer	N/A	NCT01385293
Kidney	Bevacizumab and BKM-120 in Patients with Metastatic Renal Cell Carcinoma	Bevacizumab	NCT01283048
Lung	A Trial of Gefitinib in Combination with BKM120 in Patients with	Gefitinib	NCT01570296
6	Advanced Non-small Cell Lung Cancer, with Enrichment for Patients		
	Whose Tumours Harbour Molecular Alterations of PI3K Pathway		
	and Known to Overexpress EGFR		
Lung (NSCLC)	Safety and Efficacy of BKM120 in Patients with Metastatic	N/A	NCT01297491
	Non-small Cell Lung Cancer		
Solid tumors	A Phase I Study of BKM120 and Everolimus in Advanced Solid Malignancies	s Everolimus	NCT01470209
Uterus	BKM120 as Second-line Therapy for Advanced Endometrial Cancer	N/A	NCT01289041
Uterus	GINECO-EN102b - BKM120 as Monotherapy in the Treatment of Initial	N/A	NCT01397877
	or Recurrent Metastatic Endometrial Cancer (ENDOPIK)		

Table II. Ongoing clinical trials with BKM120 (http://clinicaltrials.gov/ct2/results?term=bkm120, Accessed April 17, 2012).

BAY 80-6946

BAY80-6946 (Bayer Healthcare Pharmaceuticals, Berlin, Germany) is a potent and highly selective pan-class I PI3K inhibitor with antitumor activity described in preclinical models. A phase I trial of BAY 80-6946 administered weekly for three out of four weeks, has been reported in solid tumors, with an MTD of 0.8 mg/kg. Dose-limiting toxicities included grade 4 hyperglycemia and acute left ventricular dysfunction, other toxicities being mild (fatigue, nausea, diarrhea, mucositis, anemia and dysgeusia). Two patients experienced stable disease for six and eight months, with endometrial and oesophageal cancer, respectively (33). Four trials exploring BAY 80-6946 are currently recruiting patients (Table III).

GDC-0941

GDC-0941 (Genentech, CA, USA) is a potent, selective, orally bioavailable inhibitor of PI3K that has shown efficacy in various preclinical models (34-36). Moreover synergy with Map-Erk Kinase (MEK) inhibitors was observed with enhanced tumor cell apoptosis in preclinical models, including gefitinib-resistant lung cancer cell lines (37, 38). Phase I data showed that GDC-0941 has an acceptable toxicity profile, without observed dose-limiting toxicities, and with moderate side-effects, including diarrhea, nausea, dysgeusia, peripheral sensory neuropathy, dry mouth, thrombocytopenia, and increased aspartate aminotransferase (39). Similar results were obtained in another phase I study,

Condition	Study title	Companion drug	Clinicaltrials.gov identifier
Solid tumors	Phase 1 Study of PI3 (Phosphatidylinositol-3)-Kinase Inhibitor BAY80-6946 with Gemcitabine or Cisplatin Plus Gemcitabine in Patients with Advanced Cancer	Gemcitabine Cisplatin	NCT01460537
Solid tumors	Phase Ib Study of PI3 (Phosphoinositol 3)-Kinase Inhibitor BAY80-6946 with MEK (Mitogen-activated Protein Kinase) Inhibitor BAY86-9766 in Patients with Advanced Cancer	BAY86-9766	NCT01392521
Solid tumors Solid tumors	BAY80-6946 Open Label, Phase I Study in Patients with Advanced Cancer Phase I Study of PI3 (Phosphoinositol 3)-Kinase Inhibitor BAY80-6946 with Paclitaxel in Patients with Advanced Cancer	N/A Paclitaxel	NCT00962611 NCT01411410

Table III. Ongoing clinical trials with BAY80-6946 (http://clinicaltrials.gov/ct2/results?term=BAY+80-6946, Accessed April 17, 2012).

Table IV. Ongoing clinical trials with GDC-0941 (http://clinicaltrials.gov/ct2/results?term=gdc-0941, Accessed April 17, 2012).

Condition	Study title	Companion drug	Clinicaltrials.gov identifier
Solid tumors	A Study Evaluating the Safety, Tolerability and Pharmacokinetics of GDC-0973 in Combination with GDC-0941 When Administered in Patients with Locally Advanced or Metastatic Solid Tumors	GDC-0973	NCT00996892
Solid tumors	A Study of GDC-0941 in Patients with Locally Advanced or Metastatic Solid Tumors for Which Standard Therapy Either Does Not Exist or Has Proven Ineffective or Intolerable	Not applicable (N/A)	NCT00876109
Solid tumors	A Study of GDC-0941 in Patients with Locally Advanced or Metastatic Solid Tumors or Non-Hodgkin's Lymphoma for Which Standard Therapy Either Does Not Exist or Has Proven Ineffective or Intolerable	N/A	NCT00876122
Solid tumors	A Study of the Safety and Pharmacology of GDC-0941 in Combination with Erlotinib in Patients with Advanced Solid Tumors	Erlotinib	NCT00975182
Breast	Trastuzumab and Trastuzumab-MCC-DM1 Administered Intravenously and GDC-0941 Administered Orally to Patients with HER2-Positive Metastatic Breast Cancer Who Have Progressed on Previous Trastuzumab-Based Therapy	Trastuzumab Trastuzumab- MCC-DM1	NCT00928330
Breast	A Study of PI3-Kinase Inbiator GDC-0941 in Combination with Paclitaxel and Bevacizumab in Patients with Locally Recurrent or Metastatic Breast Cancer	Paclitaxel Bevacizumab	NCT00960960
Breast	Study of GDC-0941 or GDC-0980 with Fulvestrant <i>versus</i> Fulvestrant in Advanced or Metastatic Breast Cancer in Patients Resistant to Aromatase Inhibitor Therapy	Fulvestrant GDC-0980	NCT01437566
Lung (NSCLC)	A Study of the Safety and Pharmacology Of PI3-Kinase Inhibitor GDC-0941 In Combination with Either Paclitaxel And Carboplatin (with or without Bevacizumab) or Pemetrexed, Cisplatin, And Bevacizumab in Patients with Advanced Non-small Cell Lung Cancer	Paclitaxel Carboplatin Pemetrexed Cisplatin Bevacizumab	NCT00974584
Lung (NSCLC)	Study Evaluating the Safety and Efficacy Of Carboplatin/Paclitaxel And Carboplatin/Paclitaxel/Bevacizumab with and without GDC-0941 in Patients with Previously Untreated Advanced or Recurrent Non-small Cell Lung Cancer	Carboplatin Paclitaxel Bevacizumab	NCT01493843

where the MTD was exceeded at 450 mg daily, and responses were observed in melanoma, gastro-intestinal stromal tumors (GIST) and ovarian cancer patients (40). Trials investigating GDC-0941, currently recruiting patients are shown in Table IV.

GDC-0980

GDC-0980 (Genentech, CA, USA) is a novel, dual PI3K/mTORC inhibitor that targets all PI3K class I isoforms and mTORC at low nanomolar concentrations, which is

Condition	Study title	Companion drug	Clinicaltrials.gov identifier
Solid tumors	A Study Evaluating GDC-0980 Administered Once Weekly in Patients	N/A	NCT00854126
Non-Hodgin's	with Refractory Solid Tumors or Non-Hodgkin's Lymphoma		
lymphoma			
Uterus	A Study of GDC-0980 in the Treatment of Recurrent or	N/A	NCT01455493
	Persistent Endometrial Carcinoma		
Breast	A Study of the Safety and Pharmacology of GDC-0980 in Combination	N/A	NCT01254526
	with Paclitaxel, Bevacizumab, and Trastuzumab in Patients with Locally		
	Recurrent or Metastatic Breast Cancer		
Breast	Study of GDC-0941 or GDC-0980 with Fulvestrant versus Fulvestrant	Fulvestrant	NCT01437566
	in Advanced or Metastatic Breast Cancer in Patients Resistant	GDC-0941	
	to Aromatase Inhibitor Therapy		
Prostate	Study of GDC-0068 Or GDC-0980 with Abiraterone Acetate versus	Abiraterone	NCT01485861
	Abiraterone Acetate in Patients with Castration-Resistant Prostate Cancer	Prednisone	
	Previously Treated with Docetaxel Chemotherapy		
Solid tumors	GDC-0980 in Combination with a Fluoropyrimidine, Oxaliplatin,	Fluoropyrimidine	NCT01332604
	and Bevacizumab in Patients with Advanced Solid Tumors	Oxaliplatin	
		Bevacizumab	
Solid tumors	A Study of the Safety and Pharmacology of GDC-0980 in	Paclitaxel	NCT01301716
	Combination with Paclitaxel and Carboplatin with or without	Carboplatin	
	Bevacizumab in Patients with Solid Tumor	Bevacizumab	

Table V. Ongoing clinical trials with GDC-0980 http://clinicaltrials.gov/ct2/results?term=GDC-0980 Accessed April, 17 2012).

active in several cancer cell lines of breast, prostate and lung cancer, including those with activated PI3K or *PTEN* loss (41, 42). A phase I study of GDC-0980 in patients with advanced solid tumors recommended a daily dosing <70 mg, on a 21/28 day schedule. Toxicity consisted of rash, hyperglycemia, mucositis and pneumonitis, which resolved with drug cessation. Antitumor effects were observed in 3/33 patients with mesothelioma. Fluorodeoxyglucose positon emiting tomography (PET-FDG) responses were also observed in GIST and adrenal gland cancer (43). A prior phase I study was also reported, at a daily dosing of 16 mg, again on the 21/28 day schedule, showing consistent results (44). Studies currently recruiting patients in GDC-0980-based therapies are shown in Table V.

Future Perspectives for Targeting the PI3 Kinase

Since the mTOR inhibitors have demonstrated that inhibiting the PI3K/AKT/mTOR pathway is a relevant goal for improving the outcome in several types of cancers (kidney, breast, endocrine tumors and sarcomas), this pathway has been extensively studied. Indeed, as modern chemistry and molecular biology offer the opportunity to decipher in detail the molecular mechanisms of protein activation though the kinase family, there is a continuously growing number of novel compounds that are being designed and evaluated. There is now a solid body of evidence suggesting that selective inhibition of the PI3K mechanisms of cancer progression is a relevant approach. Indeed, this review identified a large number of phase I studies, contrasting with a much lower number of phase II trials. Hence, more data are awaited from single-agent phase II studies to ascertain the actual antitumor properties of PI3K inhibitors, in terms of indicators that are more relevant to the patients and the physicians, such as survival. Moreover, it is so far uncertain whether transient responses observed in early trials, as well as surrogate markers of efficacy such as TEP-FDG standard uptake value (SUV) responses in heavily pretreated patients are actually meaningful. A more problematic issue arises from resistance to the inhibition of PI3K. Indeed, as evidenced upon mTOR inhibition, activating feedbacks may quickly jeopardize the benefits of the targeted therapy. Hence, future directions should focus on concomitant inhibition of pathways that are involved in the feedback activation loops, with obvious tolerance issues. Trials are ongoing for this purpose, as well as those combining PI3K inhibitors with cytotoxic drugs. Finally, much is awaited from the identification of tumor biomarkers associated with the efficacy of PI3K inhibitors, such as concomitant KRAS mutation, or PI3K-activating mutations. Tumor genotyping in patients receiving such drugs is not only mandatory in early phase trials, but will certainly be part of routine practice in the near future. Hence, we will be able to identify patients which are most likely to benefit from these new targeted therapies.

isoforms that are involved in carcinogenesis and the

Acknowledgements

The Authors express their gratitude to Dr J Céraline for fruitful discussions and manuscript editing.

References

- Vanhaesebroeck B, Leevers SJ, Panayotou G and Waterfield MD: Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22(7): 267-272, 1997.
- 2 Wymann MP and Pirola L: Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436(1-2): 127-150, 1998.
- 3 Jia S, Roberts TM and Zhao JJ: Should individual PI3 kinase isoforms be targeted in cancer? Curr Opin Cell Biol 21(2): 199-208, 2009.
- 4 Walker EH, Perisic O, Ried C, Stephens L and Williams RL: Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402(6759): 313-320, 1999.
- 5 Mellor P, Furber LA, Nyarko JN and Anderson DH: Multiple roles for the p85alpha isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 441(1): 23-37, 2012.
- 6 Gabelli SB, Huang CH, Mandelker D, Schmidt-Kittler O, Vogelstein B and Amzel LM: Structural effects of oncogenic PI3Kalpha mutations. Curr Top Microbiol Immunol 347: 43-53, 2010.
- 7 Samuels Y and Waldman T: Oncogenic mutations of PIK3CA in human cancers. Cell Cycle *3(10)*: 1221-1224, 2012.
- 8 Kang S, Denley A, Vanhaesebroeck B and Vogt PK: Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103(5): 1289-1294, 2006.
- 9 Castellano E and Downward J: RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2(3): 261-274, 2011.
- 10 Cantley LC: The phosphoinositide 3-kinase pathway. Science 296(5573): 1655-1657, 2002.
- 11 Jung KH, Choi MJ, Hong S, Lee H, Hong SW, Zheng HM, Lee HS and Hong SS: HS-116, a novel phosphatidylinositol 3-kinase inhibitor induces apoptosis and suppresses angiogenesis of hepatocellular carcinoma through inhibition of the PI3K/AKT/mTOR pathway. Cancer Lett 316(2): 187-195, 2012.
- 12 Hollander MC, Blumenthal GM and Dennis PA: PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4): 289-301, 2011.
- 13 Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712): 1098-1101, 2005.
- 14 Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesmann M, Brachmann S, Fritsch C, Dorsch M, Chene P, Shoemaker K, De Pover A, Menezes D, Martiny-Baron G, Fabbro D, Wilson CJ, Schlegel R, Hofmann F, Garcia-Echeverria C, Sellers WR and Voliva CF: Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther *11(2)*: 317-328, 2012.
- 15 Oda K, Stokoe D, Taketani Y and McCormick F: High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65(23): 10669-10673, 2005.

- 16 Zhao L and Vogt PK: Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 105(7): 2652-2657, 2008.
- 17 Zhao L and Vogt PK: Class I PI3K in oncogenic cellular transformation. Oncogene 27(41): 5486-5496, 2008.
- 18 Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB and Amzel LM: The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318(5857): 1744-1748, 2007.
- 19 Gabelli SB, Duong-Ly KC, Brower ET and Amzel LM: Capitalizing on tumor genotyping: towards the design of mutation specific inhibitors of phosphoinsitide-3-kinase. Adv Enzyme Regul 51(1): 273-279, 2011.
- 20 Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G *et al*: Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54(9): 2419-2423, 1994.
- 21 Vlahos CJ, Matter WF, Hui KY and Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269(7): 5241-5248, 1994.
- 22 Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W and Garcia-Echeverria C: Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent *in vivo* antitumor activity. Mol Cancer Ther 7(7): 1851-1863, 2008.
- 23 Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J and Baselga J: NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68(19): 8022-8030, 2008.
- 24 Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, Wang S, Garcia-Echeverria C and Maira SM: Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 106(52): 22299-22304, 2009.
- 25 Burris HA, Rodon J, Sharma S, Herbst R, Tabernero J, Infante R, Silva A, Demanse D, Hackl W and Baselga J: First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. J Clin Oncol 28(15s), 2010.
- 26 Peyton J, Rodon J, Ahnert H, Burris HA, Britten C, Chen LC, Tabernero J, Duval V, Rouyrre N, Silva A, Quadt C and Baselga J: A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion system (SDS) sachet, in patients with advanced solid tumors. J Clin Oncol 29s, 2011.
- 27 Oda K, Shoji K, Nakagawa S, Kayishima T, Ikeda Y, Miyamoto Y, Tanikawa M, Kuramoto H, Nishida M, Hiraike-Wada O, Yano T, Kozuma S and Taketani Y: Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas. J Clin Oncol 29s, 2011.

- 28 Zheng Y, Yang J, Qian J, Zhang L, Lu Y, Li H, Lin H, Lan Y, Liu Z, He J, Hong S, Thomas S, Shah J, Baladandayuthapani V, Kwak LW and Yi Q: Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. J Mol Med (Berl), 2011.
- 29 Koul D, Fu J, Shen R, LaFortune TA, Wang S, Tiao N, Kim YW, Liu JL, Ramnarian D, Yuan Y, Garcia-Echevrria C, Maira SM and Yung WK: Antitumor activity of NVP-BKM120 a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res *18*(*1*): 184-195, 2012.
- 30 Tredan O, Pissaloux D, Treilleux I, Wanq Q, Bonichon-Lamichhane V, Mari V, Freyer G, Pujade-Lauraine E and Ray-Coquard I: Immunohistochemistry and molecular biology of the PI3K pathway did not correlate with treatment efficacy of everolimus as second line or third line treatment of advanced endometrial carcinoma. Eur J Cancer 47(32s), 2010.
- 31 Park E, Park J, Han SW, Im SA, Kim TY, Oh DY and Bang YJ: NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations. Int J Oncol *40*(*4*): 1259-1266, 2012.
- 32 Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M and Baselga J: Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol *30(3)*: 282-290, 2012.
- 33 Patnaik A, Appleman L, Mountz J, Ramanathan R, Beeram M, Tolcher A, Papadopoulos K, Lotze M, Petro D, Laymon C, Paige L, Rajagopalan P, Jeffers M, Roth D and Dubowy R: A first-inhuman phase I study of intravnous PI3K inhibitor BAY 80-6946 in patients with advanced solid tumors: Results of doseescalation phase. J Clin Oncol 29s, 2011.
- 34 Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di Stefano F, Hayes A, Henley AT, Lensun L, Pergl-Wilson G, Robson A, Saghir N, Zhyvoloup A, McDonald E, Sheldrake P, Shuttleworth S, Valenti M, Wan NC, Clarke PA and Workman P: Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 8(7): 1725-1738, 2009.
- 35 Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJ, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ and Shuttleworth SJ: The identification of 2-(1Hindazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 51(18): 5522-5532, 2008.
- 36 Burrows N, Babur M, Resch J, Ridsdale S, Mejin M, Rowling EJ, Brabant G and Williams KJ: GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factorlalpha (HIF-1alpha) pathways. J Clin Endocrinol Metab *96(12)*: E1934-1943, 2011.

- 37 Hoeflich KP, Merchant M, Orr C, Chan J, Den Otter D, Berry L, Kasman I, Koeppen H, Rice K, Yang NY, Engst S, Johnston S, Friedman LS and Belvin M: Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res 72(1): 210-219, 2012.
- 38 Zou ZQ, Zhang LN, Wang F, Bellenger J, Shen YZ and Zhang XH: The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Mol Med Report 5(2): 503-508, 2012.
- 39 Sarker D, Kristeleit R, Mazina K, Ware JA, Yan Y, Dresser M, Derynck M and De Bono J: A phase I study evaluating the pharmacokinetics (PK) and pharmacodynamics (PD) of the oral pan-phosphoinositide-3 kinase (PI3K) inhibitor GDC-0941. J Clin Oncol 27(15s), 2009.
- 40 Moreno Garcia V, Baird R, Shah K, Basu B, Tunariu N, Blanco M, Cassier P, Pedersen J, Puglisi M, Sarker D, Papadatos-Pastos D, Omlin A, Biondo A, Ware JA, Koeppen H, Levy G, Mazina K and De Bono J: A phase I study evaluating GDC-0941, an oral phosphoinositide-3 kinase (PI3K) inhibitor, in patients with advanced solid tumors or multiple myeloma. J Clin Oncol 29s, 2011.
- 41 Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L, Lesnick JD, Lewis C, Nonomiya J, Pang J, Salphati L, Olivero AG, Sutherlin DP, O'Brien C, Spoerke JM, Patel S, Lensun L, Kassees R, Ross L, Lackner MR, Sampath D, Belvin M and Friedman LS: GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 10(12): 2426-2436, 2011.
- 42 Sutherlin DP, Bao L, Berry M, Castanedo G, Chuckowree I, Dotson J, Folks A, Friedman L, Goldsmith R, Gunzner J, Heffron T, Lesnick J, Lewis C, Mathieu S, Murray J, Nonomiya J, Pang J, Pegg N, Prior WW, Rouge L, Salphati L, Sampath D, Tian Q, Tsui V, Wan NC, Wang S, Wei B, Wiesmann C, Wu P, Zhu BY and Olivero A: Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J Med Chem *54*(*21*): 7579-7587, 2011.
- 43 Wagner A, Bendell JC, Dolly S, Morgan J, Ware JA, Fredrickson J, Mazina K, Lauchle J, Burris HA and De Bono J: A first-inhuman phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol 29s, 2011.
- 44 Dolly S, Wagner A, Bendell JC, Yan Y, Ware JA, Mazina K, Holden S, Derynck M, De Bono J and Burris HA: A first-inhuman, phase I study to evaluate the dual PI3K/mTOR inhibitor GDC-0980 administered QD in patients with advanced solid tumors or non-Hodgkin's lymphoma. J Clin Oncol 28(15s), 2010.

Received May 2, 2012 Revised May 27, 2012 Accepted May 28, 2012