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Abstract. Background: Cancer genomic signatures may
vary using different platforms. We compared the differential
gene expression in non-small cell lung cancer (NSCLC)
between two platforms in order to find the most relevant
genomic signatures of tumor recurrence. Materials and
Methods: We analyzed gene expression in frozen lung cancer
tissue from 59 selected patients who had undergone surgical
resection of NSCLC. These patients were divided into two
groups: group R, patients who had a tumor recurrence within
four years, n=37; group NR, patients who remained disease-
free four years following initial surgery, n=22. Each RNA
sample was assayed twice using both Affymetrix and
Illumina GeneChip. Data were analyzed by principal
component analysis and leave-one-out cross-validation.
Results: Using the same filtering criteria, 13 genes that were
differentially expressed between R and NR were identified by
Affymetrix, while 21 genes were identified by Illumina
GeneChip. In common, a total of six genes were detected by
both systems. Using univariate analysis, four (lipocalin 2,
LCN2; parathyroid hormone-like hormone, PTHLH; ras-
related protein Rab-38, RAB38; and four jointed box 1,
FJX1) of these six genes were associated with survival. A
risk score of survival was calculated according to the four-
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gene expression. There was a significant difference in overall
survival between low- and high-risk groups. Conclusion: A
four-gene signature is associated with survival among
patients with early-stage NSCLC. Further validation of these
findings is warranted.

Lung cancer is the leading cause of cancer death. Non-small
cell lung cancer (NSCLC) accounts for 80% to 85% of all
lung cancer cases. Most patients present with advanced
disease (1). Despite recent advances in multi-modal therapy,
the overall 5-year survival rate for NSCLC remains of the
order of 8 to 12%. Surgery is still the first choice of
treatment for localized NSCLC if the patient’s physical
condition allows it. However, the result of surgical treatment
remains unsatisfactory, and 35-50% of such patients will
experience disease relapse within 5 years.

The microarray techniques, first described in 1994 by
Drmanac and Drmanac (2), use the method of hybridization
of large-scale cDNA with a mass probe to identify the
expression of individual genes. A method by Affymetrix
GeneChip utilizes silicon chips where more than 400,000
oligonucleotides can be synthesized on a single 1.6-cm?
microscopic glass slide (3). The major advantage of DNA
microarray is the screening of large numbers of genes with
greater sensitivity using a smaller amount of sample.
Currently, up to 30,000 cDNA probes can be placed on a
small microscope glass slide, with the future goal to screen
the entire human genome (approximately 30,000 expressed
genes, that almost cover the entire genome) in one
experiment. It will be a powerful tool in studying the effects
of changes made in cellular signaling pathways and
identifying the changes that occur in the function of other
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genes downstream of various genetic alterations. Gene
expression analysis using microarrays, combined with
supervised clustering data analysis, could provide insight
into the molecular signature of lung cancer and its treatment
and prognosis. This would provide the basis for more
effective therapeutic intervention.

There have been several advances in the molecular prediction
of individual clinical outcome by microarray technologies. In
breast cancer, the success was manifested in the commercial
gene tests, such as Oncotype DX (4) and MammaPrint (5, 6). In
current studies of biomarker identification, genes are ranked
according to their association with the clinical outcome.
Nevertheless, each individual gene selection algorithm has
different strengths and limitations. A modified model combining
multiple gene selection might provide a better method to identify
novel biomarkers. In 2007, Chen et al. used computer-generated
random numbers to assign 185 frozen specimens for microarray
analysis, real-time reverse-transcriptase polymerase chain
reaction (RT-PCR) analysis, or both (7). They studied gene
expression in frozen specimens of lung cancer tissue from 125
randomly selected patients who had undergone surgical resection
of NSCLC and evaluated the association between the level of
expression and survival. A five-gene signature (including dual-
specificity phosphatase 6, DUSP6; monocyte-to-macrophage
differentiation associated protein, MMD; signal transducer and
activator of transcription 1, STATI; v-erb-b2 avian erythroblastic
leukemia viral oncogene homolog 3, ERBB3; and lymphocyte-
specific protein tyrosine kinase, LCK) was an independent
predictor of relapse-free and overall survival. However, there is
no fully-validated and clinically applied model for predicting
lung cancer recurrence after surgery.

To our knowledge, ours is the first study to use two
microarray platforms (Affymetrix and Illumina) to analyze
the genomic signatures of tumor recurrence in resectable
lung cancer.

Materials and Methods

Selection of adequate samples from the Chang Gung Memorial
Hospital (CGMH) tissue bank. We used the lung tumor tissues
collected by the CGMH tissue bank according to its standard
procedures, including written informed consent obtained from
patients. A pathologist reviewed a tissue section of the archived
fresh frozen tissue. Only samples containing at least 50% cancer
cells were used. We collected 549 lung tumor tissues from the
CGMH tissue bank during the period between January 2004 and
December 2007. According to the clinical database obtained from
the Cancer Registry in CGMH-Linkou Medical Center, from these
further selected 183 lung tumor specimens for RNA extraction. A
total of 59 acceptable samples of RNA were isolated for microarray
analysis with Affymetrix and Illumina GeneChip.

Identification of clinical information. The accuracy of the clinical
database had been confirmed by two doctors from the Division of
Thoracic Surgery and Chest Medicine in CGMH. All of the cases
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had been selected by one doctor at first, then the selected patients
were cross-confirmed by the other doctor, both followed the same
standard operating procedure (Table I) to confirm the criteria needed.

Tumor classification based on tumor recurrence within four years
and RNA extraction. The tumor and non-tumor parts of each sample
were identified and sampled by a pathologist. The patients were
divided into two groups: group R, patients who had a tumor
recurrence within four years of surgery; group NR, patients who
remained disease-free four years following initial surgery. Tumor
samples from the 37 recurrent (R) and 22 non-recurrent (NR)
NSCLC cases were utilized. A pathologist reviewed the tissue
section of the archived fresh frozen tissue. Only samples containing
at least 50% cancer cells were used. One section was stained by
hematoxylin and eosin (H&E) to confirm the adequacy of the tumor
tissue. The rest of the samples were used for total RNA extraction.
Following mechanical tissue disruption, total tumor RNA was
extracted using the RNeasy Mini kit (QIAGEN, Hilden, Germany).
RNA integrity was assessed with the total RNA Nano Chip Assay
on an Agilent 2100 Bioanalyzer (Agilent Technologies GmbH,
Berlin, Germany). The RNA integrity number (RIN score) was
generated for each sample on a scale of 1-10 as an indication of
RNA quality. Total RNA with RIN score >5 was used for
microarrays. Prior to array analysis, one round of T7 promotor-
based RNA amplification was performed.

Microarrays, microarray data processing and normalization.
Affymetrix® HG-U133 Plus 2.0 mRNA expression arrays
(Affymetrix, Santa Clara, CA, USA) were used in order to determine
the expression of 47,400 transcripts, corresponding to 38,500 human
genes (8). These arrays have proven high reproducibility for mRNA
expression analysis (9). Briefly, 1-15 pg total RNA was reverse-
transcribed into cDNA, followed by RNase H-mediated second-
strand cDNA synthesis. The double-stranded cDNA was purified and
served as a template in the subsequent in vitro transcription (IVT)
reaction. The IVT reaction was carried out in the presence of T7
RNA polymerase and a biotinylated nucleotide analog/
ribonucleotide mix for complementary RNA (cRNA) amplification
and biotin labeling. The biotinylated cRNA targets were then cleaned
up, fragmented, and hybridized to GeneChip expression arrays. A
hybridization cocktail was prepared, including the fragmented target,
probe array controls, bovine serum albumin (BSA) and herring
sperm DNA. It was then hybridized to the probe array during 16
hours’ incubation. Specific experimental information was defined
using Affymetrix® Microarray Suite on a PC-compatible workstation.

Illumina BeadChip Ref-6 (Ambion, Inc., Austin, TX, USA)
containing 48,804 probes was used to perform a whole human gene
expression profile. Biotin-labeled cRNA for hybridization was
generated by in vitro transcription based on Eberwine protocol using
Illumina’s recommended commercial kits. Briefly, 500 ng total RNA
was reverse-transcribed into cDNA, followed by linear amplification
steps according to the Illumina TotalPrep RNA Amplification kit for
Illumina. Hybridization was performed with 1.5 pg biotin-labeled
cRNA in each array of BeadChip Ref-6. After 16 hours incubation
at 58°C, BeadChips were washed, stained and scanned according to
the manufacturer’s manual. Scanning used the Illumina BeadArray
Reader software together with the Illumina BeadStation 500
platform. Processing and analysis of the microarray data were
performed with the Illumina BeadStudio v3.3.7 software. The data
were normalized using the quintile option.
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Table 1. Recurrence definition.

Cut-off of 48 months
Should not have received adjuvant chemotherapy

B W =

The surgical and pathologic reports should be reviewed to ensure accurate staging.
After surgery, regularly followed up with systematic history-taking and physical examinations, serum tumor markers, computed tomography

of the chest, abdominal sonography, and bone scintigraphy at 3-month intervals as needed.
The exact cause of death and the date of death should be documented.
6. If the patient had disease recurrence, then the pattern of failure should be documented with exact date and sites, as well as the diagnostic

method of the recurrence.

7.  The local or distant recurrence should be documented separately. Local recurrence was defined as tumor recurrence in a contiguously
anatomical site including ipsilateral hemithorax and mediastinum after surgical resection. Distant recurrence was defined as tumor recurrence
in the contralateral lung or outside the hemithorax and mediastinum after surgical resection.

8.  The overall survival time is defined from the date of operation to the date of death, including surgical mortality. The disease-free survival
time is defined from the date of operation to the date of first noted recurrence.

Table II. Top 20 differentially expressed genes in the non-recurrence group by the Affymetrix platform in 16 cases.

Gene ID Symbol Gene name p-Value NR/R (log ratio)
6947 TCN1 Transcobalamin I (vitamin B12 binding protein, R binder family) 0.012 301
79152 FA2H Fatty acid 2-hydroxylase 0.004 2.64
6340 SCNNIG Sodium channel, nonvoltage-gated 1, gamma 0.046 2.59
3934 LCN2 Lipocalin 2 0.035 2.56
3960 LGALS4 Lectin, galactoside-binding, soluble, 4 0.044 241
344905 ATP13A5 ATPase type 13A5 0.013 228
54997 TESC Tescalcin 0.030 2.15
10170 DHRS9 Dehydrogenase/reductase (SDR family) member 9 0.023 2.08
9194 SLC16A7 Solute carrier family 16, member 7 (monocarboxylic acid transporter 2) 0.037 2.07
150696 PROM?2 Prominin 2 0.040 1.93
4897 NRCAM Neuronal cell adhesion molecule 0.041 1.77
57419 SLC24A3 Solute carrier family 24 (sodium/potassium/calcium exchanger), member 3 0.028 1.71
10257 ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 0.035 1.67
26298 EHF Ets homologous factor 0.036 1.66
956 ENTPD3 Ectonucleoside triphosphate diphosphohydrolase 3 0.030 1.65
9568 GABBR?2 Gamma-aminobutyric acid (GABA) B receptor, 2 0.033 1.63
10267 RAMPI Receptor (G protein-coupled) activity modifying protein 1 0.011 1.59
4319 MMP10 Matrix metallopeptidase 10 (stromelysin 2) 0.029 1.53
4586 MUCS5AC Mucin 5AC, oligomeric mucus/gel-forming 0.044 1.49
84825 MGC5370 CDNA FLJ37519 fis, clone BRCAN2004699 0.009 1.49

NR/R: The log ratio of the expressed genes in non-recurrent tumors to recurrent tumors.

Identification of predictive transcripts by leave-one-out cross-
validation. To identify predictive transcripts, a leave-one-out process
was used. Predictive gene signatures were generated using the
expression profiles and sensitivity data of all 59 test tumors as a
training set. Leave-one-out cross-validation (LOOCYV) involved
removing a single tumor from the original training set of 59 tumors
and using the remaining 59 tumors as the training set and the removed
tumor for validation. This procedure was repeated in away that each
tumor in the original training set was used once for validation.

Network visualization and analysis. Network analyses of
differentially expressed genes were performed using the MetaCore
Analytical Suite (GeneGo Inc., St Joseph, MI, USA;
http://www.genego.com) (10, 11). MetaCore is a web-based
computational platform and useful for analyzing a cluster of genes

in the context of regulatory networks and signaling pathways. For
the network analysis of a group of genes, MetaCore can be used to
calculate the statistical significance (p-value) based on the
probability of assembly from a random set of nodes (genes) of the
same size as the input list (11, 12).

Results

Functional analysis of gene expression signature by the
Affymetrix platform. After the differentially expressed genes
were selected under the criteria (p<0.05 and fold change>2),
principal component analysis (PCA) on the resulted 97 genes
could clearly separate R tumors from NR tumors. All of 97
genes were ranked by fold changes and the top 20 genes were
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Figure 1. Functional networks of 16 individual lung cancer tumors. Some genes are labeled by aliases. The genes (blue circles) that were up-
regulated in non-recurrent tumors (also listed in Table II) were generalized into the networks using the MetaCore program.

listed in Table II. The differentially expressed genes listed in
Table II represent the genes that were expressed higher in NR
tumors, i.e., they were the down-regulated genes in R tumors.
In order to explore the potential biological functions of these
genes, we uploaded these 20 genes into the MetaCore
database and algorithm and derived the following functional
networks that contained 7 root genes (denoted as blue circles
in Figure 1). The up-regulated genes in NR tumors included
lipocalin 2 (LCN2), which was involved in induction of the
epithelial to mesenchymal transition.

Comparison and correlation between Affymetrix and
Illumina platforms. Following validation by LOOCYV, we
analyzed those genes which were either up-regulated or
down-regulated by two-fold using Student #-test (NR vs. R,
p<0.05, INR-RI>1), a total of 13 genes were selected and
identified with the Affymetrix (Figure 2A) platform.
Furthermore, using the same filtering criteria, we were able
to identify 21 genes in the parallel Illumina database (Figure
2B). There were six common genes identified in both the
Affymetrix and Illumina platforms. Using univariate
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analysis, four (lipocalin 2, LCN2; parathyroid hormone-like
hormone, PTHLH; ras-related protein Rab-38, RAB38; and
four jointed box 1, FJXI) out of these six genes were
associated with survival.

Survival prediction using the four-gene prognostic model. A
four-gene signature was further analyzed for correlation of
gene expression and the disease-free (DFS) and overall
survival (OS) from initial surgery by Kaplan-Meier analysis.
The risk score was generated for each sample on a scale of
0-4 as an indication of expression of these four genes. A
score of 1 was assigned for each gene if it is up-regulated in
the tumor. A tumor risk score =3 was identified as high-risk
(patients who had low tumor expression of these four genes)
and <2 as low-risk (those who had high tumor expression of
these four genes). As a result, a four-gene signature was
identified, which was well-associated with DFS and OS. The
four-gene signature stratified patients into high- and low-risk
groups with distinct postoperative survival in Kaplan-Meier
analyses (log-rank p<0.05). The median DFS (Figure 3A)
was not reached in the low-risk group and was 20.4 months
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Figure 2. Different gene expression between recurrence (R) and non-recurrence (NR) groups in Affymetrix (A) and Illumina (B) platforms. There were
13 genes selected and identified in the Affymetrix platform, while 21 genes were found in the Illumina platform. Student t test (p<0.05, INR-RI>1)

was used.

(95% confidence interval (CI)=3.6 to 37.2 months) in the
high-risk group (p=0.001). The median OS (Figure 3B) was
not reached in the low-risk group and was 37 months (95%
CI=2.6 to 71.4 months) in the high-risk group (p=0.014).
The four-gene risk score was also correlated with tumor
recurrence. Thirty-one (78%) of 40 high-risk patients
developed a recurrence, as compared to 6 (32%) of 19 low-
risk patients (p=0.001). There was thus a significant
difference in overall survival between the low- and high-risk
groups using the four-gene prediction model.

Discussion

Lung cancer continues to be a major deadly malignancy. The
mortality caused by this disease could be reduced by
improving the ability to predict cancer patients’ survival. It is
also important to identify clinically relevant prognostic
biomarkers in order to develop personalized treatment. In
this study, we identified a four-gene signature, differently
expressed between the R and NR groups in NSCLC using
both Affymetrix and Illumina microarray platforms. The
identification of four genes that can predict the clinical

outcome in patients with NSCLC may reveal targets for the
development of therapy for lung cancer. LCN2, a member of
the lipocalin family that transports small lipophilic ligands,
has gained recent attention as both a potential biomarker and
a modulator of human cancer (13). LCN2 has been shown to
induce the epithelial to mesenchymal transition in breast
cancer cells and to promote breast tumor invasion (14).
PTHLH is an important chondrogenic regulator; however, the
gene has not been directly linked to human disease (15).
RAB38 is a member of the RAB small GTPase family that
regulates intracellular vesicle trafficking (16). RAB proteins
and their effectors coordinate multiple stages of membrane
transport, such as vesicle formation, motility, and tethering
to their target compartments. These proteins can also be
found in both membrane-bound and cytosolic forms and are
prenylated at their carboxyl termini (17).

Several studies of NSCLC have reported the ability to
generate expression signatures for identification of grouping
subjects according to their survival outcomes. However, most
studies are small and typically collect data from a single
institution. Shedden et al. reported a large, training-testing,
multisite blinded validation study aiming to characterize the
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Figure 3. Kaplan-Meier plot of disease-free survival (DFS) (A) and overall survival (OS) (B) for patients with high-risk versus low-risk tumors. The
median DFS was 204 (95% CI=3.6 to 37.2) months and not reached, respectively. The median OS was 37 (95% CI=2.6 to 71.4) months and not

reached, respectively.

performance of several prognostic models based on gene
expression for 442 lung adenocarcinomas (18). They
examined whether microarray measurements of gene
expression, either alone or combined with basic clinical
covariates (stage, age, sex), can be used to predict OS of
patients with lung cancer. Most methods performed better
with clinical data, supporting the combined use of clinical
and molecular information when building prognostic models
for early-stage lung cancer. They also provided the largest
available set of microarray data, including four institutions
(University of Michigan Cancer Center (UM), Moffitt Cancer
Center (HLM), Memorial Sloan-Kettering Cancer Center
(MSK) and the Dana-Farber Cancer Institute (DFCI)), with
extensive pathological and clinical annotation for lung
adenocarcinomas. They used several methods to analyze
these data sets, including gene clustering (method A),
univariate testing (methods B to G) and analysis on a
mechanistic basis (method H). Method A, which worked
with all tumor samples or with stage I samples alone, both
with and without clinical covariates, showed the best overall
predictive ability. In the MSK test, if sensitivity was 0.9,
specificity was 0.3. In DFCI test, if sensitivity was 0.9,
specificity was 0.2. To date, a microarray model with high
sensitivity and specificity to predict tumor recurrence and
patient survival has yet to be developed.

In this study, we utilized two microarray platforms in
order to analyze the correlation of genomic signature and
tumor recurrence. Although there were six genes to both
systems, a further selected four-gene signature was able to
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predict the DFS and OS of patients who might have good
prognosis from initial surgery. This four-gene signature also
stratifies stage II lung adenocarcinoma patients into two
distinct DFS (log-rank p=0.014) and OS (log-rank p=0.036)
groups (data not shown). The next step is the validation of
the prediction of tumor recurrence within four years using
this scoring system (four-gene signature) in the clinic.

In conclusion, we identified a four-gene signature of
differently expressed genes between R and NR groups in
NSCLC by both Affymetrix and Illumina platforms. The
selected four-gene signature was able to predict the DFS and
OS from surgical therapy. Further investigation of functional
analysis and clinical validation is warranted.
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