
Abstract. Background/Aim: Tumor growth is dependent
upon angiogenesis. Tumor vascularity, as measured by
microvessel density or Chalkley counts, has been shown to
predict treatment outcome. However, many issues related to
reproducibility and methodology have prevented its clinical
application. We present a method of automatic vessel
identification applied to CD34 immunohistochemical
sections which facilitates increased reproducibility. Materials
and Methods: Pixel colour information was used to identify
CD34 stain. In order to reduce the effects of noise and
background, stained areas smaller than 3.5 μm were ignored.
Results: Comparing automatic and manual vessel counts in
50 randomly selected breast cancer cases, the method
achieved an intraclass correlation coefficient of ra

2=0.96
and a 95% confidence interval for the percentage difference
between the counts from −26.1% to 10.8%. The method was
also found to have a sensitivity approaching 100%.
Conclusion: The method can reliably be used on colour
photographs of staining for CD34 to quantify angiogenesis.

Formation of new vasculature is required for tumor growth
beyond the size of 1-2 mm (1). The clinical importance of
angiogenesis has been documented in various types of
carcinomas (2, 3), including breast cancer (4-11). Breast
carcinomas with high vascularity have been shown to be more
aggressive and more likely to form metastases (8).

Methodological differences, observer variation and conflicting
results have, however, kept angiogenesis quantification from
being useful in routine clinical management (7, 12, 13). In
addition to challenges with quality control and reproducibility,
the features of the vascular system related to prognosis are still
not well defined. 

Microvessel density (MVD) was the first surrogate marker
for angiogenesis (8, 14) and the most commonly used (7, 15).
The second international consensus report on angiogenesis
quantification in solid tumors (12), however, recommends the
use of the Chalkley count, a relative area estimate (16). The
two methods measure different aspects of the vasculature and
do not provide the same clinical information. MVD, Chalkley
count, or both have been found to be significantly related to
survival of patients for several types of carcinomas (2).
However, in breast cancer studies, only Chalkley count
predicted survival when both methods were applied to the same
patient cohorts (2, 10, 17). Thus, in addition to methodological
issues, the parameter selection is clinically relevant.

Many reports deal with vascular density (3), whereas
features related to vessel morphology and growth patterns have
received far less attention. Although some have been used
qualitatively (18, 19), many of the contextual features are
tedious, difficult or impossible to quantify manually, but are
obtainable through the use of image analysis (16, 20-24). Weyn
et al. investigated a large panel of parameters and reported that
for all investigated tumors, the prognosis was more correlated
to contextual parameters than to MVD (22). Image analysis is
an important tool for investigation of both conventional, shape
and contextual quantifiers. Prior to parameter generation,
however, vessels must be identified and each pixel labelled
accordingly. Although it is possible to do this manually, an
automatic method is a near-requirement for larger studies of
clinical material. The accuracy of the method will depend on
the material in question, and needs to be explored. 
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We present a conceptually simple automatic segmentation
method, relying on colour hue and blue channel intensity,
along with accuracy tests that do not require manual
delineation. The results show that the fully automated counts
are highly consistent with manual counting.

Materials and Methods

Patients and tumors. We have examined photographs of CD34-
stained sections from 420 primary invasive breast carcinomas from
the 920 patients enrolled in the Oslo Breast Cancer Micrometastasis
Project from 1995 to 1998. The study was approved by the Regional
Ethical Committee and written consent was obtained from all
patients. The clinical material has previously been reported on (25-
27), with stains studied (4, 17).

Immunohistochemistry. Four-micrometer-thick sections from
paraffin-embedded blocks with representative tumor tissue were
prepared as previously described (4). Briefly, deparaffinised sections
were microwaved in Tris/EDTA (pH 9.0), followed by 5 min
treatment with 0.03% hydrogen peroxidase. The sections were
incubated with monoclonal murine antibody (IgG1) QBEND-10
(Monosan, the Netherlands) against CD34 at room temperature for
30 min, then with peroxidase-labelled polymer conjugated to goat
antimouse antibody for 30 min, and finally with 3-3’-
diaminobenzidine tetrahydrochloride for 10 min [Dako EnVision™+
System Peroxidase (DAB) (K4007; DakoCytomation, CA, USA)].
Counterstaining was performed using haematoxylin. Appropriate
negative and positive controls were included. The immunostaining
was performed with a Dako Autostainer.

Microscopy. A careful scan of the tumor with a light microscope
(Axiphote microscope; Zeiss, Germany; with a Plan-neofluar
10/0.30 objective lens) at low magnification was used to identify the
three most vascular regions in the tumor, disregarding any pre-
existing mature vessels. These areas were photographed at ×100
magnification with a cropped square field size of 532.6×717.4 μm,
corresponding to the circular area of a ×310 magnification field in
the ocular. For some of the smallest tumors only one or two fields
were selected. The photographs were taken at a resolution of
1550×2080 pixels on a Leica DFC320 digital camera, using
automatic white balance and exposure. The pixel size was measured
to be 0.3436 μm using a stage micrometer. 

The most vascular of the three fields was then determined
manually by visual comparison of the images, where the number of
vessels was considered more important than the area in fields with
similar vascularity. In total 54 out of 445 cases (10.5%) contained
prominent areas of positively stained non-endothelial cells (Figure
1F), e.g. fibroblasts, and were labelled as ‘background’ in this
context. The remaining cases were labelled as ‘clean’. The manual
selection of the field with highest vascularity was carried out to
avoid removal of all cases with fields containing background, even
when it was not the most vascular. Case diversity and image quality
is exemplified in Figure 1.

Automatic vessel identification. The CD34-positive cells in the
images were identified using a segmentation algorithm developed
specifically for this material in the Python programming language
(28), using the SciPy extension (29).

Uneven illumination was corrected for using a 2-degree polynomial
fit of the mean background pixel intensity of all images in the set.
White balance was adjusted by balancing the RGB colour channels so
that the average colour became neutral in light non-overexposed pixels.

The blue colour channel was chosen as an intensity map of the
image in order to maximize the contrast of the vessels (orange-red)
while minimizing that of the most prominent non-CD34 feature,
blue cell nuclei. A combination of two different histogram
thresholding methods was used to set an intensity cut-off value:
Otsu’s method (30), which maximizes between-class variance, and
Kittler and Illingworth’s method (31) which minimizes the average
pixel classification error rate of fitted normal distributions. The
smaller of the two obtained threshold values, thmin, was compared to
a second value, obtained by first selecting the maximum value,
thmax, and then recalculating the two thresholds using only the
portion of the histogram lower than thmax. The second value was set
to the maximum value of that result, thmax, max. The final intensity
threshold was set to the smallest of the two values, either thmin or
thmax, max. All pixels with higher intensity than the selected cut-off
were marked as non-endothelial.

In order to differentiate between densely coloured blue cell nuclei
(Figure 1D) and CD34 stains, a map of the image’s hue values was
calculated. Each pixel with a hue located between 150˚ (mint) and
270˚ (indigo) were marked as non-endothelial. Pixels of neutral
colour were not altered. The remaining pixels, which were both dark
and non-blue, were considered CD34-positive.

Using mathematical morphology, the following post-processing
steps were carried out: i) Object contours were smoothed using a
diameter of 2.5 pixels; ii) CD34 objects were expanded by 3 pixels
into adjacent underexposed pixels; iii) any contiguous
underexposed region completely enclosed by CD34 staining was
reclassified as CD34; iv) Lumens (gaps) thinner than 1.0 μm and
CD34 objects (vessels) thinner than wmin=3.5 μm (half the width
of an erythrocyte) at their widest were removed; v) CD34 regions
without at least one pixel darker than half the intensity threshold
were removed.

From this a complete map of the image was obtained, containing
information about the class of each pixel, whether non-endothelial,
endothelial or the endothelial region has been removed in post
processing due to size requirements (Figure 2).

Vessel count comparison. As a quantitative measure of the
program’s ability to recognize vessels, the number of vessels in a
section, i.e. MVD, was automatically obtained by  counting each
contiguous foreground object in the image vessel map.  The
automatic vessel count was compared to a manual count made by
an experienced pathologist. The manual counts were carried out on
the images according to Weidner et al.’s criteria (8, 14), without
knowledge of the program results. Microscopy comparisons were
not made due to the differences in field size and shape. 

Fifty-one out of the 391 clean cases were manually counted and
used as training material in the development of the procedure. The
cases were recounted 10 months later by the same observer to
establish intra-observer variation in manual counts. Fifty test cases
were randomly sampled from the remaining material and used to
evaluate the program’s performance. Finally, counts were made for
25 cases from the background material to investigate the need for a
manual selection of cases.

To show the degree of equivalence between the two methods we
provide the 95% limits of agreement according to (32, 33), i.e. the
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interval of the differences will be located within with 95%
probability. Percentage differences were used, and assumed to be
normally distributed and independent of the counts. The limits were
calculated using ±1.96 unbiased standard errors. Values are reported
with 95% confidence intervals (CI).

An alternate way of comparing the counts is through the use of
correlation coefficients. There are two relevant intraclass correlation
coefficients (ICC) (34): The ICC(2,1), which treats observer variance
as random effects and measures the method agreement (ra2); and the
ICC(3,1), which treats observer variance as fixed effects and
measures the method consistency (rc2). While inter-observer variation
in the manual method is a random effect, the defined methodological
differences of the automatic method are fixed effects. Even though
the fixed effects are likely larger, we have chosen to use the random
effect model as it will, in most cases, result in a lower value (34),
thus preventing an overestimation of the reliability. 

The calculations were performed in MatLab® (version (R2010a);
The MathWorks, Inc., Natick, MA, USA).
Qualitative evaluation of the segmentation. A qualitative evaluation
of how well the program recognized CD34 stains was made for each
case in the clean set. The calculated vessel maps were compared to
the images and the cases were categorised into one of three
qualitatively defined categories. A segmentation result was
considered ‘good’ if it was highly unlikely that the total number of
errors made constituted more than 5% of either MVD or total
endothelial area; ‘medium’ if outside this tolerance, but still
providing a decent representation, i.e. parameters generated from
the map should be similar to their true values; and ‘poor’ if it was
not immediately clear that this was the case.

Vessels were allowed to be fragmented, merged or ignored if this
reflected the stains. Objects removed due to the size requirements
were not considered errors.

The evaluation was performed in a custom program written in
Python that allowed the user to overlay calculated maps of both
objects identified as vessels and objects that would have been
identified as vessels were it not for the size requirements. The latter
is important to distinguish between vessels  omitted due to size
alone and vessels  omitted due to errors made by the program. 

Results
Comparison of automatic and manual counts. The manual
and automatic vessel counts are shown in Figure 3A. The
method agreement between the two methods was ra

2=0.96,
comparatively, the Pearson’s correlation was rp

2=0.97.
Testing method equivalence, the mean relative difference
(measurement bias) was d=−7.63±2.61% and the standard
error SE=9.41%. This gives a lower boundary of −26.08%
and an upper boundary of 10.82% (CI=±4.52%) for the 95%
limits of agreement (Figure 4A). A frequency histogram of
the percentage differences was made to ensure that they were
approximately normal in accordance with the applied
statistics (Figure 4B). The background cases had a very poor
agreement (Figure 3A) with ra

2=0.03. The 95% limits of
agreement were −22.80 to 109.79% (CI=±22.97%). 

There is no intra-method variation in the automatic
method. The two manual counts were highly consistent
(Figure 3B), with dm,m=0.82±1.14% and SEm,m=4.15±1.97%.

The manual intra-method variance contributes ¼(SEm,m)2 to
the measured inter-method variance, corresponding to 2.52%
of the measured standard error. The intra-rater agreement was
ra

2=0.99.
The automatic method’s vessel criteria differ from

Weidner et al.’s criteria by introducing a size requirement for
the vessels. Figure 5 shows the effect of wmin on both
correlation coefficients and the 95% limits of agreement. The
methods were found to provide strong correlations and a
narrow region for the limits of agreement for values between
roughly 2.5 and 4.5 μm.

Qualitative evaluation of the automatic vessel identification.
In the qualitative test, 99.5% of the cases were placed in
either the ‘good’ or the ‘medium’ group. Both of these groups
are considered to map the stains in an adequate way (Table
I); 0.5% of the cases were deemed to contain too many errors
and were placed in the ‘poor’ category. Table I also shows
the largest cause of errors in the ‘medium’ and ‘poor’ images. 

During the qualitative evaluation, independent vessels that
were thicker than wmin, clearly defined and readily
identifiable by manual inspection, but not found by the
program, were counted: 21 such vessels were found, while
the total number of automatically identified objects was
29,753, giving a sensitivity estimate of 99.93%.

Discussion

Tumour angiogenesis is important in the metastatic process
(8, 35) and of clinical value, both as a prognostic marker (2,
14) and as a predictive marker for targeted therapy (3, 18,
36). An international consensus report on angiogenesis
quantification concluded that more reliable parameters were
urgently needed (12). Many of the challenges listed,
however, are still unresolved. They include methodological
difficulties such as reproducibility of vessel identification
and field selection. The latter has been proposed as being
solved through automatic quantification of the entire section
prior to field selection (24, 37); however, it is unclear which
parameter it is that best quantifies the degree of vascularity
and at what field size it should be measured. The potential
role of contextual parameters as prognostic markers
complicates this further. Additionally, the choice of
endothelial marker best suited for these tasks, and the
selection of cut-off values for patient group stratification are
not established. (7, 13, 38).

Image analysis has the potential to improve upon several of
these areas. The main advantage is the additional
morphometric parameters that can be calculated (16, 38, 39).
A more complete description of the vascular geometry can
thus be investigated with respect to predictive abilities.
Furthermore, parameter reproducibility is increased through
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mathematical standardisation of the procedure, thus ensuring
objectivity by eliminating intra- and inter-observer variation
(39, 40). Finally, field size effects may be investigated through
image cropping. 

Parameter calculation requires the identification of all
endothelial pixels in the images. Due to the laborious nature of
manual delineation, it is highly desirable to use an automatic
method. Biological differences, immunohistochemical
protocol, or image acquisition setup can have large impacts on

the identification accuracy. For this reason the performance of
the method needs to be carefully evaluated.

Although some studies have previously been carried out
using automatic vessel identification (22, 23, 37, 41-49),
none were found suitable for our purposes. They were
either applied to qualitatively different images,
insufficiently documented, insufficiently investigated for
accuracy or of lower than desired accuracy. We have
implemented a conceptually simple algorithm, identifying
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Figure 1. Images from the material exemplifying case diversity. There are large variations in: vessel counts and endothelial growth patterns (A-C),
tissue patterns (A, B, and D), cell nuclei intensity (D), and, in rare cases, artifacts (E). In some cases (~10%), fibroblasts were positively stained (left
side of F), making them unsuited for automatic segmentation. Scale bars=100 μm. Insets are further described in Figure 2.

Figure 2. Enlarged sections from the inset of Figure 1 (A-C) respectively. Stains that were thinner than 3.5 μm were removed in post processing.
Green outlines show the final results. A: Red squares show the largest removed objects. The stains are similar to those of the remaining vessels, but
are much smaller. B: There are numerous removed objects (red outlines), most of which are very small and have a slightly different colour hue. C:
A rare example where long thin structures like vessels are removed (red outlines). The structures have a width close to wmin, resulting in a seemingly
inconsistent removal of structures with similar morphology. Scale bars=10 μm.



vessels from colour information and blue channel intensity,
with only a few steps of post-processing. This method
provided excellent results in the quantitative method
validation.

The direct count comparison performed has the advantage
of providing quantitative accuracy estimates without
requiring manual delineation. There are, however, several
potential weaknesses. False-positive and -negative errors
cancel each other out; furthermore, no emphasis is placed
on how well the vessels are delineated, possibly allowing
significant errors in contextual, morphometric and area
measurements without affecting counts. For this reason a
qualitative evaluation was performed. It showed that vessels
were correctly indentified and delineated to a high precision
in the vast majority of cases. The sensitivity was found to
be near 100%; consequently, the observed negative bias in
the automatic counts was primarily caused by the removal
of small stains, a defined methodological difference.

The size filter was necessary to achieve reliable results
(Figure 5) through the removal of noise and of tiny stain
fragments, effectively also causing small vessels to be
removed (Figure 2). This constitutes an important divergence
from Weidner et al.’s criteria, where all vessels are counted.
Although the clinical significance of these stains is unknown,
the strong count comparison shows that this approach is
compatible with Weidner et al.’s method. 

CD34 is known to be a reliable marker for endothelial
identification. However, in a low percentage of cases (fewer
than 10%), stromal elements express CD34 (Figure 1F),

making it difficult to use these cases for automatic analysis
(Figure 3 and Figure 5).

Conclusion

We found that CD34 stains can be accurately identified using
the presented automatic identification method, provided that
a manual selection of cases is made. The quantitative test
demonstrated the very strong relationship between manual
and automatic counts and the qualitative test verified the
integrity of these results. The method can thus be used in the
calculation of a wide range of angiogenesis parameters, and
provide important clinical information.

Mikalsen et al: Automatic Vessel Identification in Quantification of Angiogenesis

4057

Figure 3. A: Comparison of automatic and manual counts for 50 clean test cases and 25 cases with various degrees of background staining. B: A
manual count-recount comparison of the 51 clean training cases.

Table I. Qualitative method evaluation. Each case in the clean material
was automatically segmented by the program, and manually assigned
to one of three groups depending on a subjective evaluation of the result
(see Materials and Methods). ‘Medium’ and ‘poor’ cases were
additionally categorized by the primary cause of segmentation errors.

Good Medium Poor

No issues 329 (87.5%) Ø Ø
Artefact or non-CD34 issue Ø 10 (2.7%) 0
Background stains Ø 17 (4.5%) 2 (0.5%)
Vessel colour or intensity Ø 6 (1.6%) 0
Vessel morphology Ø 12 (3.2%) 0

Sum 329 (87.5%) 45 (12.0%) 2 (0.5%)
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Figure 5. The effects of the minimum vessel width parameter (wmin) on the vessel count comparison. Solid lines show the clean cases and dashed
lines background cases. A: Pearson’s (rp), intraclass consistency (rc) and intraclass agreement (ra) correlation coefficients squared. B: The
measurement bias (d̄) and variability (LA95%) as measured by the 95% limits of agreement. 

Figure 4. The agreement between automatic (AC) and manual vessel counts (MC) is measured as the region in which the percentage differences
will fall within with 95% probability. A: Bland-Altmann plot showing the percentage difference between the counts plotted against the average count,
with the 95% limits of agreement imposed. B: A frequency histogram showing that the percentage difference distribution is approximately normal,
a prerequisite for the limits calculation.
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