
Abstract. Different research groups have recently described
a proton [H+]-related mechanism underlying the initiation
and progression of the neoplastic process in which all cancer
cells and tissues, regardless of their origin and genetic
background, have a pivotal energetic and homeostatic
disturbance of their metabolism that is completely different
from all normal tissues: an aberrant regulation of hydrogen
ion dynamics leading to a reversal of the pH gradient in
cancer cells and tissues (∆pHi to ∆pHe) as compared to
normal tissue pH gradients. This basic specific abnormality
of the relationship between the intracellular and the
extracellular proton dynamics, a phenomenon that is
increasingly considered to be one of the most differential
hallmarks of cancer, has led to the formation of a unifying
thermodynamic view of cancer research that embraces cancer
fields from etiopathogenesis, cancer cell metabolism, multiple
drug resistance (MDR), neovascularization and the
metastatatic process to selective apoptosis, cancer
chemotherapy and even the spontaneous regression of cancer
(SRC). This reversed proton gradient is driven by a series of
proton export mechanisms that underlie the initiation and
progression of the neoplastic process. This means that
therapeutic targeting of the transporters that are active in
cancer cells could be selective for malignancy and is likely to

open new pathways towards the development of more effective
and less toxic therapeutic measures for all malignant
diseases. Here we review the transporters involved in driving
the reversed proton gradient and their specific inhibitors. 

H+-related Etiopathogenic and 
Therapeutic Aspects of Cancer

The induction and/or maintenance of intracellular
alkalinization and its subsquent extracellular, interstitial
acidosis (1-6) on intratumoral dynamics have been repeatedly
implicated as playing an essential, direct and pivotal role both
in cell transformation as well as in the active progression and
maintenance of the neoplastic process (1, 4, 7). Indeed, this
specific and pathological reversal of the pH gradient in cancer
cells and tissues (∆pHi to ∆pHe) compared to the normal
tissue pH gradient is considered to be one of the main
characteristics defining the molecular energetics of tumors,
regardless of their pathology and genetic origins (3). There is
now ample data demonstrating that the aberrant regulation of
hydrogen ion dynamics leading to this reversed proton
gradient is driven by a series of proton export mechanisms that
underlie the initiation and progression of the neoplastic
process (4). These transporters and some of their most easily
available inhibitors are depicted in Figure 1. While the
hyperactivity of the Na+/H+ exchanger isoform 1 (NHE1) is a
critical component in the up-regulation of proton extrusion and
in its secondary activation of cell transformation, proliferation,
motility, and invasion of cancer cells derived from a wide
array of tissues (3-5), it is not the only plasma membrane-
bound membrane transporter/enzyme responsible for cytosolic
alkalinization of the tumor cell and acidification of the
extracellular space. Additionally, the vacuolar H+-ATPases (8,
9), the H+/Cl– symporter (10), the monocarboxylate
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transporter (MCT, mainly MCT1) (also known as the lactate-
proton symporter) (11-13), the Na+-dependent Cl–/HCO3

–

exchanger (2, 7), ATP synthase (14-16) and, perhaps the
Na+/K+-ATPase (17, 18) can also play an important role in
proton extrusion, pHi abnormalities and tumor interstitial
acidification in different human malignancies (4) (Figure 1).
Finally, studies on tumor microenvironment pH have shown
clear evidence that some carbonic anhydrase (CAs) isozymes,
mainly CAII, CAIX and CAXII, are overexpressed in various
types of human tumors, an up-regulation that is inversely
related to prognosis; and they also make a significant
contribution to the extracellular acidity, which is one of the
main functional hallmarks of invasive cancer, therefore
representing promising targets for novel anticancer therapies
(2, 7, 10, 19-21).

These findings suggest that the targeting of proton
transporters may be used to trigger selective cancer cell
death through the induction of low pHi-mediated apoptosis
(5, 15, 19) (Figure 2). Tumor cell proliferation is abolished
through the concerted inhibition of NHE1 and Cl–/HCO3

–

exchangers (18). Similarly, while Cl–/HCO3
– exchanger

inhibition alone is insufficient to induce apoptosis in breast
cancer cells, the simultaneous inhibition of the NHE1 and
H+-ATPase induces apoptosis through their concurrent
effects on lowering pHi (8). The failure of tumor cells to die
following chemotherapeutic treatment also often appears to
be highly dependent on their resistance to undergo
intracellular acidification, a low intracellular pHi homeostatic
situation that is apparently necessary as a prior and early
condition that allows cancer cells to engage in a tumor-
specific apoptotic process (2, 22-26) (Figure 2). In summary,
the final aim is to target this specific aspect of cancer cell
metabolism based on the H+-dependent thermodynamic
advantages that malignant cells possess as compared to their
normal counterparts. The exploitation of such differences in
selective cancer therapeutics as chemotherapy adjuvants is a
possible successful strategy that could decrease
chemotherapy dosages while at the same time increasing
therapeutic specificity and effectiveness regardless of tumor
type and origin.

The Thermodynamic Neostrategy of Cancer Cells
and Tissues: Order within Chaos

During and after neoplastic transformation, a thermodyna-
mically advantageous reversal of the previously normal
situation takes place, namely, the reversal of the
transmembrane H+-gradient (alkaline inside, acidic outside), a
specific feature described only in malignant disease. The main
mechanism of this reversal is an intracellular alkalinization
mediated by the systemic extrusion of H+ by the different
proton transporters (PTs) described above, while the chloride
bicarbonate exchanger brings in a bicarbonate anion exchange

for a chloride anion to neutralize protons inside the cell
(Figure 1). However, since not all cancer cells necessarily
have the same transporters elevated at the same time, it
appears that in order to maintain the abnormal cellular
alkalinity, when one transporter is inhibited others can become
up-regulated. The observed consequences of this initial
cellular acid-base energetic change demonstrates that one of
the main purposes of the biochemistry and metabolism of the
concerted, dynamic, energetic defensive systems of cancer
cells and tissues is to have the different transmembrane proton
transport mechanisms working, at least when required by
damaging microenvironmental conditions (4), to first create
and then maintain a cascade of electrochemical changes and
events leading to tumor development, local growth and
invasion, the activation of the metastatic process and,
simultaneously, resistance to treatment (3, 26-28).

These mechanisms driven by the loss of the normal acid-
base homeostatic balance of the cell (initial and specific cause
for cell transformation) have been summarized in Figure 1,
and they are: A) Maintenance of a normal to elevated
intracellular pH even under the circumstances of the metabolic
microenvironment of cancer cells (interstitial acidosis, lack of
blood supply, low O2 conditions) in order to protect
themselves from low pHi-mediated apoptosis, at the same time
that they initiate an unregulated and thermodynamically
beneficial proliferative and invasive state; B) The
establishment of a self-defensive, anti-apoptotic strategy
mediated through different anti-acidifying mechanisms such
as hyperactivity of the different membrane-bound proton
extrusion transporters, inactivation of Bcl-2, Bcl-xl, and
destabilization of p53 (28-30); C) These concerted dynamic
changes are based upon the advantageous utilization of a H+-
gradient reversal function as an anti-chemotherapeutic shield
involved in multiple drug resistance (MDR) and in the
development of newly resistant subpopulations of tumor cells
(3); D) The above mechanisms lead to secondary acidification
of the interstitial component of tumors, in either low or normal
O2 conditions, which is key to the onset of local invasion and
to the activation and maintenance of the metastatic process by
increasing the expression of a wide array of positive
angiogenic factors (e.g. HIF-1, VEGF) (6, 7), while the
extracellular acidification of tumors creates even further
resistance to chemotherapy, radiation-induced apoptosis and
hyperthermia (28-31) (Figure 1).

(A) Self-protection against the caustic extracellular tumor
microenvironment. While non-transformed cells and tissues
die under conditions of extracellular acidosis, the multiple-
transporter strategy allows malignant cells of diverse origins
to defend themselves from any acidic and/or therapeutic
and/or apoptotic attack by taking advantage of a concerted
system of membrane-bound ionic transporters whose main
role is to extrude hydrogen ions from the cell. This allows
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transformed cells of all genetic origins to first survive and
then multiply under these extremely difficult environmental
circumstances. This tumor-specific metabolic condition
suggests a possible therapeutic solution: it is this same highly
pathological and specific pH gradient reversal of all cancer
cells and tumors which becomes the key factor that offers the
opportunity to target it as one of the few, if not the only truly
differential characteristic that separates all malignant tissues
from all normal ones. This would be to attempt to selectively
induce a cancer cell self-poisoning through diverse low pHi-
related therapeutic measures (Figure 1) (32-33). Since no
cancer cell can survive for long with pHi conditions below a
certain acid threshold (22), successful therapeutic
interventions targeting this H+-mediated gradient reversal
through the concerted utilization of proton transport
inhibitors (PTIs) of the different families can become a key
therapeutic strategy to selectively trigger the apoptotic
process in malignant cells and tissues (2, 7, 22) (Figure 2).
Unfortunately, with very few exceptions, this approach is still
to be tested in clinical oncology (34) (Figure 1).

(B) pHi and selective apoptosis in cancer. Figure 2 depicts a
map of the intracellular dynamics of the hydrogen ion and
the main factors leading to the stimulation of low pHi-
induced apoptosis. This figure represents an attempt to
integrate the different approaches to trigger pro-apoptotic
mechanisms, new therapeutic targets and more selective
anticancer drugs. A series of studies using different
chemotherapeutic substances in a variety of tumor cells have
reported that cytosolic acidification is a very early event in
the onset of malignant cell apoptosis (35-37). The induction
of an intracellular acid environment has been reported to
trigger the onset of apoptosis of leukemic cells by up-
regulating the expression of Bax protein expression, which
is pro-apoptotic. This seems to be mediated by the activation
of interleukin-1β-converting enzyme (ICE/caspase-1) or the
apoptosis-effector protease CPP32 (Caspase-3), irreversibly
leading to acid stress-induced apoptosis, and thus to the
control of cell proliferation and arrest of tumor growth
(Figure 2). Inhibition of the NHE1 plays a fundamental role
in paclitaxel-induced apoptosis of breast cancer cells and this
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Figure 1. Homeostatic and dysregulated pH-control systems in cancer cells. Specific targets for the different families of proton transport inhibitors
as pHi-lowering anticancer agents (Nos. 1, 2 3, 4, 5 and 6). Mechanisms that induce intracellular alkalinisation as the key factor in cell
transformation and progression with its secondary abnormalities. Secondary pHi-dependent extracellular acidification, pH-gradient reversal and
hypoxia as triggers for the metastatic process. Six targets for inhibition of proton extrusion of cancer cells as targets for metabolically-directed
anticancer treatment and examples of drugs of the different proton transport inhibitors at the sites of their activity. Abbreviations: NHE1: Na+/H+

exchanger: HMA: 5-(N,N-hexamethylene)-amiloride, DMA: 5-(N,N-dimethyl)amiloride; HIF-1: hypoxia-inducible factor; MCT1: monocarboxylate
transporter or H+-lactate co-transporter; CAIX: carbonic anhydrase IX; V-H+-ATPase: vacuolar H+-ATPase; VEGF: vasoendothelial growth factor;
UKt-PA: urokinase-type plasminogen activator; P-gp: P-glycoprotein; MDR: multiple drug resistance; pHi: intracellular pH; pHe:
extracellular/interstitial tumoral pH (For further details, see text).



is synergistically potentiated by inhibition of the NHE1 with
the amiloride analog, 5-(N,N-dimethyl)amiloride (DMA),
while the recently developed, potent inhibitor of the NHE1,
cariporide (HOE-642) seems to induce a similar effect (36).
Since NHE1 inhibition reduces transformed cell pHi well
below parental cell values, and this intracellular pH decrease
does not show a significant effect on normal cells, this
indicates a certain degree of therapeutic selectivity and
specificity for at least certain NHE1 inhibitors in malignancy
(22), even more so since proton transporters are differently
expressed in normal and tumor tissues (2). Finally, the
outstanding results of Rich et al. (22) in different kinds of
leukemic cells with the potent amiloride derivative inhibitor
of NHE1, 5-(N,N-hexamethylene)-amiloride (HMA), which
reduces the intracellular pH well below the acid-base
survival threshold, leads to consider that inducing a low pHi-
mediated apoptosis might become a selective therapeutic
modality for many different cancer cells and tissues if these
results could be translated to clinical therapeutics. 

Similarly, to inhibit the MCT, lonidamine and cinnamate
have been used (12). Recently, AstraZeneca developed even
more exciting agents, in that they can inhibit MCT in the
nanomolar range and are more specific (38; Wahl
unpublished results). MCT levels have been found to be high
in neuroblastoma cells (12) and in melanoma cells exposed
to a low pHe (11). In neuroblastoma cells, the gene for the
MCT (SLC16A1) is amplified and not only did cell death
occur as a function of pHe in vitro, but the correlation
between high levels of MCT and poor prognosis was also
found in biopsy specimens from children with
neuroblastoma, a pediatric malignancy with a very high
mortality rate (12). Parallel results are obtained when other
proton transporters, such as CAIX, are considered (20, 21).

(C) pHi, pHe and MDR. A direct cause effect relationship
among the degree of MDR and the elevation of tumor pHi has
been recognized by different groups studying the dynamic
interrelationships between cell pHi and MDR (2, 4, 9, 34).
High pHi, mediated either by overexpression/activity of the
NHE1 and/or other proton-extruding mechanisms such as V-
ATPases, MCTs and carbonic anhydrases (CAs) have been
found to be responsible for cisplatin resistance (14, 35) and,
similarly, to contribute to the onset and/or maintenance of
MDR, so protecting against tumor cell death from anticancer
drugs (9, 20, 21, 35). Furthermore, drugs such as adriamycin,
cisplatinum, paclitaxel and camptothecin have been shown to
be unable to induce apoptosis under non-acidified cellular
conditions (24, 25, 36) and, indeed, resistance to several
anticancer drugs such as camptothecin, vinblastine,
adriamycin and etoposide has been shown to be dependent on
overexpression of different proton transporters and/or
intracellular alkalinization (4, 5, 24, 25, 34). Recently, third-
generation camptothecin analoges have been developed that

are more active at low pH (39). This design should lead to
more selectivity and less toxicity of this chemotherapeutic
agent. In this context, specific H+-ATPase inhibitors, such as
bafilomycin A1, salcylihalamide, lobatamides and oximidines
have been also considered as potential anticancer agents and
MDR-reversal agents (9), in a similar way to CAIX inhibitors
such as acetazolamide (Figure 1) (2, 21). 

The fact that cells with an active MDR transporter show
cytoplasmatic alkalinization has led some authors to
conclude that P-glycoprotein can be mainly considered as a
proton extrusion pump (26, 27, 40). However, P-
glycoprotein (P-gp) activity is stimulated by interstitial
acidification secondary to the abnormal H+-dynamics of
cancer tissues (28) (Figure 1) and, indeed, the therapeutic
failure to induce cytoplasmic acidification has been proposed
as the main underlying factor for MDR because of resistance
to the induction of therapeutic apoptosis in both normal or
slightly alkaline and highly alkaline cancer cells (4, 29, 33,
41) (Figure 2). Thus, in many instances it seems that MDR
can be attributed to the failure to induce intracellular
acidification by compounds such as chloroquine, imidazol,
glutathione, apart from overexpression/activity of proton
transporters (2, 9, 17). Finally, the MDR-promoting effects
of the Bcl-2 family of proteins, as well as a dysfunctional
p53, which also contribute to pro-carcinogenic and
antiapoptotic effects, have also been shown to be dependent
on their ability to maintain a sufficiently elevated
intracellular cell pH in order to avoid therapeutic apoptosis
(29, 30, 35). 

All these findings are further corroborated by the fact that
a large variety of MDR modifiers known to be able to revert
resistance to chemotherapeutic drugs (e.g. verapamil,
amiodarone, bafilomyicin A1, cyclosporine A, tamoxifen,
DIDS, nigericin and edelfosine), have all been reported to
exert their cellular effects, at least in part, through pHi-
acidifying mechanisms (31). A decrease in pHi has been
shown to sensitize cancer cells of diverse origins to apoptosis,
chemotherapy and hyperthermia, or to induce apoptosis by
themselves (4, 24, 25). Indeed, a reversal of MDR can be
obtained by the pH-lowering effects of amiloride and/or its
analogs in a variety of situations (23). In summary, a selective
and concerted role for PTIs as chemotherapy adjuvants in
MDR, as well as selective anticancer agents on their own,
could well be a very successful strategy. This would decrease
chemotherapy dosages and toxicity while at the same time
increase therapeutic specificity and effectiveness regardless
of tumor type and origin (26).

(D) Relationships between hydrogen ion dynamics, malignant
neovascularization and the metastatic process. Neovascular
growth and metastasis are direct consequences of the hostile
environment of low extracellular pH as well as of low
interstitial pO2 (3). Indeed, the high pHi-low pHe-proton
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gradient reversal factor by itself can induce vascular
endothelial growth factor (VEGF) production, without the
need of any other structural intermediate such as hypoxia-
inducible factor 1 (HIF-1), and which, at the same time, can
be inhibited by lowering intracellular pH and/or collapsing
the proton gradient reversal with amiloride (42, 43) (Figure
1). This H+-gradient reversal has also been shown to induce
not only the expression of VEGF but also of insulin-like
growth factor 1 receptor (IGF1R), platelet-derived growth
factor β-receptor, interleukin 8 and metalloproteases (33)
(Figure 1). Recent research trends have mainly focused on

tumoral hypoxia as a source of VEGF and has emphasized its
role in the metastatic process (44-46). However, the proven
role of relative hypoxia as a direct etiological factor in cell
malignant transformation, as initially proposed by Warburg –
what was previously called by us the Warburg-Goldblatt
effect – still needs to be taken into account as an etiological
factor of its own in cell malignant transformation in a manner
similar to high pHi (low intracellular H+-concentration
functionally mimicking low pO2, or para-hypoxia) (31).

The role of NHE1 activity and/or an abnormally increased
pHi in stimulating different steps of the metastatic process
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Figure 2. Intracellular signalling factors and mechanisms targeting pHi and the Na+/H+ exchanger in apoptosis. Factors that induce apoptosis through
intracellular acidification as its common final pathway. This integrated and homeostatic pH-related perspective can help to foretell pro-apoptotic and
anti-apoptotic factors in order to find synergistic therapies and potential antagonisms (MDR) in anticancer treatment. Abbreviations: ↑: Stimulation;
↓: inhibition; SST: somatostatin; SHP1: protein tyrosine phosphatase; MDR: multiple drug resistance; GFs: growth factors; Cyt C: cytochrome C; NO:
nitric oxide. TFWS: trophic factor withdrawal syndrome; αCD95 (Fas/Apo-1) death receptor; JNK: Jun-terminal kinase; MAPK: mitogen-activated
protein kinase. (For further details, see text and refs. 27, 50); PTI: proton transport inhibitors; ICE: interleukin-1β-converting enzyme. 



have been reviewed elsewhere (3, 4) (Figure 1). The activity
of a significant number of proangiogenic factors and
oncogenes has been shown to be directly related to NHE1
expression (47), while, on the contrary, a wide array of
antiangiogenic drugs inhibit the NHE1 (4, 47). In addition,
other pro-metastatic mechanisms are sensitive to inhibitors of
NHE1 activity (Figure 1), such as the urokinase-type
plasminogen activator (μPA) (3, 41), matrix
metalloproteinase (MMP-9) (48) and the cathepsin B-
dependent activation of MMP-2 and MMP-9 (49). It has long
been known that amiloride can achieve a complete in vivo
antimetastatic effect in different transplanted tumors (50).
Thus, amiloride and, mainly, its more potent derivatives, have
been increasingly considered as a novel, adjuvant and
neoadjuvant treatment for cancer in order to reduce tumor
growth and increase patient survival (2, 4, 6, 51, 52). 

Role of Tumoral pHe in Invasion and Extracellular
Protease Action 

Multiple studies have strongly supported a pathogenic role
of the acidic interstitial pHe of tumors by giving a selective
advantage for tumor progression and metastasis. It has been
shown to drive large changes in gene expression
independently of hypoxia (53, 54) and has also been
associated with tumor progression by impacting multiple
processes including increased invasion (49, 54-56) and
metastasis (57, 58). This can occur directly or through the
alteration of the extracellular matrix (ECM) compartment
through up-regulation of protease secretion/activation and in
an altered tumor-stromal interaction via an inverse
stimulation of pro-angiogenic factors paired with impaired
immune functions (59) (Figure 1). 

Proteolytic ECM remodeling is a prerequisite for the
invasive process. Indeed, the proteolytic breakdown of proteins
of the ECM is one of the first steps in invasion in primary
cancer lesions (60). During invasion, cancer cells use secreted,
surface-localized and intracellular cathepsins, serine proteases
and MMPs to proteolytically cleave, remove and remodel
different types of ECM substrates at the cell surface, including
collagens, laminins vitronectin, and fibronectin (61). While
tumor-driven extracellular acidification of the tumor
pericellular space can directly drive the destruction of the
surrounding normal limitrophic tissue (62, 63), a large body of
work has demonstrated that the acid pHe of tumors can also
indirectly drive ECM proteolysis by increasing protease
production and secretion of the active forms of the cathepsin
family of proteases, such as cathepsin D (53, 64), cathepsin
B (49, 65, 66), cathepsin L (58), MMP-9 (48, 49, 55, 58, 67,
68) and MMP-2 (49, 58). There is evidence demonstrating
that NHE1 and its associated extracellular acidification is
necessary for the (i) cathepsin B-dependent ECM proteolytic
activity and invasion of breast cancer cells in which the ECM

receptor, CD44, was activated by hyaluronan (66), and (ii)
MMP-9 activation and invasion in non-small lung cancer cells
in which alpha1-adrenergic receptor was stimulated by
phenylephrine (48). Interestingly, one study observed that the
low pHe-driven activation of MMP-9 and MMP-2 was
dependent on the up-stream activation of cathepsin B and all
three proteases were located on small vesicles shed from the
tumor cell (49). This increased secretion and activity of
proteases is congruent with the known increased invasive
capacity at acid pHe (48, 55, 66).

The acid pHe of tumors has also been shown to alter the
interactions between tumor cells and the cells of both the
stromal compartment and the immune antitumoral defense
system. On the one hand, acidic pHe has been demonstrated
to increase the expression and secretion of angiogenesis
promoting and metastatic factors such as VEGF (58, 69, 70-
72) and interleukin-8 (IL8) (58, 73, 74). On the other hand,
there is evidence that the acid component of the tumor
microenvironment also directly reduces/impairs the function
of the antitumoral immune system, thus contributing to the
known in vivo immunosuppression. Exposure to increasingly
acidic pHe has been shown to reduce tumor cell-induced
cytolytic activity of lymphokine-activated killer (LAK) cells
(75), to play a role in down-regulating cytolytic activity of
tumor-infiltrating lymphocytes with natural-killer (NK)
phenotype (76) and to inhibit the non-major
histocompatibility complex (MHC)-restricted cytotoxicity of
immunocompetent effector cells (53, 58, 77, 78). 

Altogether, these studies indicate that an acidic tumoral
interstitial pHe promotes invasion and metastasis by a
reciprocal mechanism involving acidity-induced up-
regulation of proteolytic enzymes and pro-angiogenic
substances together with an acidity-induced down-regulation
or impairment of the organisms antitumoral immune defense.
One consequence of this situation is that treatment strategies
should be aimed by all means at collapsing the
intracellular/extracellular H+-gradient inhibiting PTs in order
to increase selective intracellular acidification and apoptosis,
plus (an apparent paradox) alkalinizing the tumor interstitial
space by blocking the mechanisms driving its acidification,
while avoiding any therapy that could involve deliberate
tumor extracellular acidification.

H+-related Mechanisms in the Spontaneous
Regression of Cancer (SRC): Food for Thought

The favorable influence of acidification on complete cancer
regression in a wide array of transplanted animal tumors has
also been recognized over the years (79, 80). Severe metabolic
acidosis induced by some surgical procedures, such as
ureterosigmoidostomy, infections and febrile processes, was
initially considered to be the main and ultimate underlying
mechanism behind some spontaneous regressions of malignant
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tumors in animals and human beings (31, 79-83). Recently, a
graded metabolic acidosis associated with mild renal failure
was claimed to reduce, and even reverse, the rates of tumor
growth and invasion in cancer patients (84). 

Conclusions

Etiopathogenesis-based therapeutics. PTIs as potential
and selective anticancer agents in the treatment of human
malignant diseases.

While proton research in cancer cannot yet be considered to
be within the mainstream of modern oncology research, the
increasing evidence accumulated during the last few years
points to the fact that the dynamics and metabolism of the
hydrogen ion are becoming a subject of growing interest as
a potential key target in selective therapeutic intervention in
leukemias, solid tumors and other chronic degenerative
diseases (33, 85, 86). 

The H+-related perspective briefly reviewed here suggests
a new paradigm able to encompass an enormous and scattered
bulk of information in the main areas of cancer research as
has been advanced in recent reports (4, 33). An advantage of
such a unified basic approach is the possibility of integrating
what previously were considered to be non-interrelated areas
of research, in order to translate their data and
interrelationships into a more complete and encompassing
integrated synthesis and, from there, into clinical therapeutics.
Besides improving our basic understanding, this paradigm
could stimulate further integrations between biochemical and
metabolic cancer research to molecular biology and cancer
immunity. The latter relationship is exemplified by the fact
that therapeutic cell death in lymphomas depends on NHE1
inhibition by IGM-mediated cell death through intracellular
acidification (87).The negative effects of tumoral interstitial
acidification in reducing cellular immunity are also well
known (75-78).

In spite of the fact that transmembrane H+ gradient reversal
appears to be the single most differential molecular
characteristic setting apart cancer cells and tissues from
normal ones, this feature still remains to be exploited in the
treatment of human cancer. Taking into account the
theoretical background available and the results of different
cell studies, animal experimentation and occasional reports in
cancer patients that justify this H+-dependent approach, the
situation is difficult to understand. This is probably due to the
fact that the most active agents that could revert the abnormal
H+-gradient situation, such as the potent amiloride-derivatives
like HMA, cariporide and zoniporide (Figure 1), are still
waiting to be included in pre-clinical or clinical trials. In this
respect, all the available data would suggest the importance
of undertaking prospective studies in different human
malignancies in order to test the therapeutic, pro-apoptotic,

antimetastatic and MDR-overcoming concerted effects of PTI
drugs, from the more potent derivatives of the amiloride
series to other NHE1, V-ATPase, MCT1, HCO3

–/Cl–

exchangers and CA inhibitors (4, 7, 9, 11, 12) (Figure 1).
In summary, the main bulk of both seminal and emerging

data briefly reviewed in this contribution leads to three
consistent conclusions: i) Cell alkalinization constitutes an
initial and fundamental event in the transformation process of
normal cells and tissues regardless of their origin; ii) The
overexpression/activation of a number of membrane-bound
proton transporters plays a positive key role in later neoplastic
and metastatic progression and a negative role in the host
defense mechanisms (e.g. antiangiogenesis, spontaneous
regression, therapeutics) by severely disrupting
intracellular/extracellular proton gradients and inducing a
subsequent alteration in cell thermodynamics; iii) Targeted
inhibition of the different proton transporters is a promising
area in seeking selective anticancer treatments useful in
preventing, retarding, or counteracting the neoplastic process
at different levels (Figures 1 and 2). The concerted utilization
of PTIs, alone or in combination with other forms of
chemotherapy, may prove fundamental in primary, adjuvant
and/or neoadjuvant treatment of different solid tumors in
humans, as well as in the overcoming of MDR. We have to
agree with other leading authors in the field who recently
advanced that this pH-targeted therapy approach “will lead to
the collapse and massive shrinkage of solid tumors” (7). All
the available evidence seems to indicate that this would take
place regardless of pathogenic differences or genetic origin.
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