
Abstract. The idea of utilizing poly-ADP-ribose polymerase
inhibitors (PARPi) as therapeutics for cancer has grown in
popularity since its original approval for clinical usage in
treatment of BRCA DNA repair-associated-mutated ovarian
cancer. In this study, we evaluated experimental data
regarding in vitro studies utilizing PARPi as a treatment for
tyrosine kinase (TK)-dependent leukemia. Studies from 2015
to 2019 were compiled and the ones with most relevant TK
pathways and PARP inhibition were analyzed. PARPi showed
activity against many leukemia cell lines and samples from
patients with primary leukemia, especially when combined
with other signaling pathway inhibitor drugs, improving
upon the hypothesis that the utilization of PARPi has
potential as a new therapeutic approach in treatment of
primary leukemia and TK-dependent leukemia.

The term ‘leukemia’ is used to represent a cohort of
hematopoietic malignancies in which a deregulation of the
production of mature leukocytes and their precursors is
present. Leukemia is one of the most common types of
cancer involving pediatric patients in the world, and its
distribution may be associated with a wide array of factors
such as socioeconomic status and ethnicity (1, 2).
Even though in recent years the treatment of different
leukemia subtypes has steadily advanced, there are still many
obstacles to overcome. As an example, the occurrence of
therapy-related neoplasms is highly associated with exposure
to conventional chemotherapy for primary leukemia.
Moreover, the development of multidrug resistance in cancer

cells may occur even after few chemotherapy cycles and is
considered to be one of the main challenges in leukemia
treatment (3-5).

Conventional oncology therapies with cytotoxic agents still
has its limitations and has shown itself to be ineffective when
treating many malignancies by causing patients side-effects.
Knowing that, it is of the utmost importance in oncology to
strive always for innovation in the search for new pathways
and targeted molecular therapies to improve prognosis and
quality of life for patients with neoplasms (6, 7).

The development of targeted molecular therapies has
completely changed the dynamics in the treatment of most
neoplasms, being less toxic and more effective alternatives
than conventional chemotherapy (8).

Poly-ADP-Ribose Polymerase (PARP) 
Activity and Clinical Usage

The inhibition of PARP is becoming more popular as a target
in the treatment of BRCA1/2 DNA repair-associated
(BRCA1/2)-deficient tumors that present defects in the
homologous recombination (HR) repair pathway (9).

The PARP family is composed of 17 enzymes with
different functions in the cellular matrix, however, PARP1 is
primarily the one responsible for DNA damage repair (DDR)
activity attributed to these enzymes and, therefore, is the
main target in molecular therapies utilizing PARP inhibitors
(PARPi) in the treatment of cancer. The mechanism of action
of PARP1 is related to its capacity to execute post-translation
modifications of proteins through the addition of PARP
chains, inducing structural and functional changes in a
process called PARylation (10, 11).

PARP1 possesses three zinc-finger domains, two of which
are responsible for recognizing and binding the enzyme to
DNA (Figure 1A). When genetic damage is identified,
PARP1 auto-PARylates and signalizes for the recruitment of
other enzymes which initializes the DDR mechanism. Before
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DDR initiation, PARP1 unbinds from the DNA due to
accumulation of negative charges from the PARP chains and
the PARylation process is reverted, returning PARP1 to its
original conformation (Figure 1B) (12-14).

PARPi in treatment of neoplasms represents the first ever
clinical application of the synthetic lethality concept, which
describes cell death when a series of intrinsic and extrinsic cell
factors are activated through pharmacological manipulation
(15). PARP1 is responsible for signalizing the repair of single-
strand breaks in DNA, therefore, its inhibition induces
escalation of these injuries and conversion into double-strand
breaks. Tumors which are deficient in HR mechanism, such
as BRCA1/2-deficient tumors, are unable to effectively repair
double-strand breaks and are induced to undergo apoptosis
when treated with PARPi as a consequence (16, 17).

Another means through which PARPi exerts cytotoxicity
is by forming insoluble PARP–DNA complexes, in a process
known as PARP trapping. When PARP binds to DNA and is
unable to be released, the DDR mechanisms are unable to
bind and act on that sequence, impairing DNA repair and
inducing genetic damage. Some PARPi agents are more
efficient than others in binding PARP to DNA, and some
even induce PARP release; this difference in their activity
has no direct correlation with their capability of inhibiting
PARylation itself (18-20). 

The current usage of PARPi in clinical practice is still
restricted to treatment of solid tumors and most indications
for their use revolve around treatment of BRCA-mutated
tumors (21). However, a series of recent experimental and
clinical studies demonstrated that PARPi may also be useful
when treating a great variety of leukemia subtypes and
related diseases that may present other mutation categories,
without damage to the DDR mechanism. Even though
experimental evidence attests the efficacy of these drugs,
their antitumor mechanism has not been fully elucidated in
many of the leukemia subtypes in which they are active (22).

Tyrosine Kinases and Carcinogenesis

TKs are a large protein family that is involved in a variety
of cellular signaling pathways and other survival and
replication mechanism in a way that grants them a major role
in the carcinogenesis of many tumor type (Figure 2).
Approximately 100 TKs have been characterized in the
human genome and are divided into receptor TKs, these
being proteins with transmembrane domains, and non-
receptor TKs, characterized as being cytoplasmic or nuclear
proteins (23-25).

The first TK inhibitor (TKI) to be approved as a therapeutic
in neoplasms was designated for the treatment of chronic
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Figure 1. Poly-ADP-ribose polymerase 1 (PARP1) structure and DNA-repair mechanism. A: Representation of PARP1 structure and functioning domains.
Zn1: Zinc-finger 1; Zn2: Zinc-finger 2; NLS: nuclear localization signal; Zn3: Zinc-finger 3; AMD: auto-modification domain; BRCT: breast-cancer-
susceptibility protein carboxy terminus; HD: helical subdomain; ART: ADP-ribosyl transferase subdomain. B. Multifactorial DNA damage generates
single-strand breaks which are then recognized by PARP1. After binding, PARP1 auto-PARylates, signaling for the recruitment of proteins involved in
the repairing mechanism. PARP1 unbinds from DNA due to charge repulsion and DNA damage-repair (DDR) enzymes initiate the repair.



myeloid leukemia (CML) due to the high frequency of
expression of the chimeric TK breakpoint cluster region -
Abelson murine leukemia (BCR–ABL) in this subtype.
Currently, the roles of many TKs in carcinogenesis have been
well characterized for other leukemia subtypes and are used
as targets of inhibition for the treatment of neoplasms. The
development of TKIs astoundingly changed the prognosis of
patients suffering from TK-dependent leukemia by drastically
increasing the rates of cure and overall survival (25-27).

However, malignant cells are easily mutated and the
selective pressure exerted by treatment with TKIs usually
results in emergence of resistant tumors, especially in relapsed
leukemias. The mechanism involving resistance may vary
depending on the drugs used and the leukemia subtype being
treated with strategies to overcome resistance mostly
consisting of increases in TKI dosage or utilization of second
generation TKIs. Both strategies represent more risks to the
patients, due to the increased drug toxicity, and will not
necessarily provide a longer overall survival (28–31).

New Therapeutic Strategies

The development of alternative therapeutic approaches is
extremely necessary in the goal of tackling the inevitable
cases of resistance originated from the selective pressure of
conventional and targeted therapies (32). 

Even though some mechanisms remain to be elucidated,
the utilization of PARPi has been shown to be a promising
therapeutic strategy in the treatment of many leukemia
subtypes (22). It is also important to note that some PARPi
may have off-target effects beyond inhibition of PARylation
and PARP trapping and may interfere directly with kinase
activity pathways (33). In this review, we aimed to evaluate
experimental data in the literature regarding in vitro studies
utilizing PARPi as a treatment for TK-dependent leukemia.

Table I comprises a number of relevant studies from 2015
to 2019 reporting in vitro PARPi activity against leukemia
cell lines and in samples of patients with different leukemia
subtypes. 
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Figure 2. Tyrosine-kinase signaling pathway. Tyrosine-kinase mutations may induce constitutive activation or overexpression in cancer cells, leading
to signaling pathways deregulation and malignant cells replication and survival. 
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Table I. In vitro studies of poly-ADP-ribose polymerase inhibitors (PARPi) in leukemia cells and samples from patients described in the literature.

Leukemia                         Genetic                      PARPi                  Synergy                       Mechanism                           Cell                          Reference
                                        mutation                                                                                                                                     lines

AML                           RUNX1–ETO;               Olaparib             Avapritinib               Synthetic lethality           Kasumi-1; patient           Nieborowska-
                              cKIT; CBFB–MYH11                                                                                by HR                      samples from              Skorska et al., 
                                                                                                                                         down-regulation               primary AML                  2019 (34)
MDS/CMML         ASXL1; FLT3–ITD;        Talazoparib    APE1 inhibitor III;                      -                             Bone marrow                 Kohl et al., 
and AML                   JAK2; RUNX1                                            decitabine                                                                 samples                       2019 (35)

DLBCL                             LMO2                      Olaparib            Doxorubicin              Synthetic lethality           VAL; OCI-LY8;              Parvin et al., 
and T-ALL                                                                                                                     by DSB-induction               OCI-LY19;                   2019 (36)

                                                                                                                                      in HR-deficient cells                DOHH2; 
                                                                                                                                                                                MOLT16; MOLT4
CML                               BCR–ABL                Talazoparib          Chloroquine                   Inhibition of                Peripheral blood               Liu et al., 
                                                                                                                                      Talazoparib-induced            from pediatric                  2019 (37)
                                                                                                                                              autophagy                patients with CML
CML                               BCR–ABL                  Perezone                      -                        Apoptosis through                    K562                        Hernández-
                                                                                                                                     PARP1 inhibition and                                              Rodríguez et al.,
                                                                                                                                         redox alterations                                                         2019 (38)
MPN                             JAK2V617F;                Veliparib               Busulfan                    Double-strand                  SET2; HEL;                 Patel et al., 
                                           CALR                                                                                        DNA breaks                  HL-60; K562;                  2019 (39)
                                                                                                                                                                                    patient blood 
                                                                                                                                                                                         samples
AML                            RUNX1–ETO                Olaparib                  BMS;                        PARylation,                        KG1α;                        Li et al., 
                                                                                                     daunorubicin                 HR and NHEJ                    Kasumi-1                      2019 (40)
                                                                                                                                             deregulation
AML                       NPM1; FLT3–ITD;        Talazoparib               NL101                      Impairment of                Samples from                   Li et al., 
                               CEBPA; DNMT3A;                                                                           cell cycle and                  patients with                   2018 (41)
                                     IDH1; IDH2                                                                             apoptosis induction           AML; MV4-11; 
                                                                                                                                                                               MOLM-13; HL-60; 
                                                                                                                                                                                       Kasumi-1
CML                              BCR–ABL1                 Olaparib;         5F02; imatinib                Accumulation                 Samples from              Nieborowska-
                                                                         talazoparib                                                      of DSB                            patients                   Skorska et al., 
                                                                                                                                                                                       with CML                     2019 (42)
CML                              BCR–ABL1               Talazoparib             Imatinib                     Accumulation                 Samples from              Podszywalow-
                                                                                                                                                 of DSB                  patients with CML        Bartnicka et al., 
                                                                                                                                                                                                                             2019 (43)
AML                              FLT3–ITD                  Olaparib;           Quizartinib;               Accumulation of             Patient samples            Maifrede et al., 
                                                                         talazoparib           gilteritinib;                  DSB and cell            from primary AML;             2018 (44)
                                                                                                       crenolanib                  death induction             MV-4-11; HL-60; 
                                                                                                                                                                                      REH; BaF3
AML                             NPM1mutA;                Olaparib                      -                         Up-regulation of              Samples from              Faraoni et al., 
                                       FLT3–ITD                                                                                  death receptors            patients with AML              2018 (45)
AML                             IDH1/2MUT                 Olaparib;          Daunorubicin              Down-regulation              Samples from             Molenaar et al., 
                                                                         talazoparib                                                 of AML level              patients with AML              2018 (46)
AML                               MLL–AF9                   Olaparib          5-Azacytidine;              Increased DNA           MML-AF9 murine           Zhao and So, 
                                                                                                      decitabine;              damage, cell-cycle            leukemia cells;                 2017 (47)
                                                                                                      doxorubicin              arrest and increase                MOLM13
                                                                                                                                             in apoptosis
AML                            MLL; FLT3;                Olaparib              AZD1775                   Impairment of              Jurkat; Molm13;             Garcia et al., 
and ALL                  NPM1; DNMT3A;                                                                      HR, increase in DNA         MV4-11; REH;                 2017 (48)
                              TP53; ETV6–RUNX1                                                                    damage and apoptosis        OCI-AML3; 32D
CML, AML                  TCF3–HLF                 Olaparib;                     -                             Impairment                 MOLT3; Jurkat;               Piao et al., 
and ALL                                                            veliparib                                                     of HR and                   NALM6; REH;                2017 (49)
                                                                                                                                            accumulation                  RS4-11; Raji; 
                                                                                                                                                 of DSB                Daudi; BV137; K562; 
                                                                                                                                                                           MEG-01; KG-01; NB4; 
                                                                                                                                                                            HL-60; ML-1; THP-1; 
                                                                                                                                                                                U-937; Kasumi-1; 
                                                                                                                                                                                  CMK; HAL-01; 
                                                                                                                                                                                 YCUB-2; AR230
                                                                                                                                                                                               

Table I. Continued



PARPi Studies
Most studies that were found in the literature, reported the
effects of combined therapy utilizing one of the inhibitors
already used in clinical practice for treatment of solid
tumors, alongside inhibitors of other cellular pathways
and some TKIs (34-37, 39-44, 46-48, 50, 51, 53, 55). The
most commonly described leukemia subtype was acute
myeloid leukemia (AML) harboring mutations such as
Runt-related transcription factor1–eight twenty-one
(RUNX1–ETO) and fms-like tyrosine kinase 3-internal
tandem duplication (FLT3–ITD) (34, 35, 40, 41, 44, 45,
48, 50, 53, 56).

While RUNX1–ETO AML cells displayed increased
sensitivity to treatment with olaparib, when accompanied by
cKIT mutation, these cell lines tended to lose this sensitivity

(34, 53). RUNX1 is a well-known transcription factor
involved in normal hematopoiesis and its mutation into
RUNX1–ETO causes deficiency in BRCA1/2 status and
deregulation of normal DDR pathways, conferring sensitivity
to PARPi. However, cKIT mutations have experimentally
been shown to restore tumor HR capacity, conferring
increased resistance to treatment with PARPi that would
benefit from synthetic lethality. This resistance was shown
to be overcomed when using a combination treatment with
cKITMUT inhibitors (34, 53, 57, 58).

In regards to FLT3–ITD mutation, experimental data
have shown low sensitivity to PARPi treatment as a
monotherapy, while it was efficient when combined with
FLT3–ITD inhibitors (44). This lack of sensitivity may be
attributed to the capacity of FLT3–ITD mutation in
restoring cellular HR activity through increased expression
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Table I. Continued

Leukemia                         Genetic                      PARPi                  Synergy                       Mechanism                           Cell                          Reference
                                        mutation                                                                                                                                     lines

AML                              FLT3–ITD                 Veliparib;            Decitabine;               Increase in PARP            Patient samples            Muvarak et al., 
                                                                         talazoparib          5-azacytidine             trapping and DSB        from primary AML;             2016 (50)
                                                                                                                                            accumulation             MV411; MOLM13; 
                                                                                                                                                                             MOLM-14; KASUMI
CML and ALL               BCR–ABL                       P10                     SAHA                    Accumulation of             K562; MOLT4;              Hegde et al.,
                                           TP53                                                                                      DSB, cell-cycle                Nalm6; REH                   2016 (51)
                                                                                                                                               arrest and 
                                                                                                                                        induced apoptosis                          
MPN                      JAK2V617F; BRCA1;        Veliparib;                    -                        Synthetic lethality             Samples from                Pratz et al., 
                                  CHEK2; RAD50              olaparib                                                 by HR pathway                patients with                   2017 (52)
                                                                                                                                             dysfunction                    diverse MPN
AML                           RUNX1–ETO;              Olaparib;                  LiCl                     Synthetic lethality            Human primary            Esposito et al., 
                            PML–RARα; MLL–AF9       veliparib                                                 by HR pathway        AML cells; NB4-LR2;           2015 (53)
                                                                                                                                             dysfunction                THP1; Kasumi-1; 
                                                                                                                                                                                   GP2; NIH3T3
ATLL                                   p53                           PJ-34                         -                         Cell-cycle arrest,             Patient-derived                 Bai et al., 
                                                                                                                                     accumulation of DSB      ATLL cells; MT-4;              2015 (54)
                                                                                                                                       and reactivation of            MT-2; C8166; 
                                                                                                                                           p53 pathways                 C91PL; MT-1; 
                                                                                                                                                                             ATL-T; ED-40515(–); 
                                                                                                                                                                                ALT-25; ATL-43T;
                                                                                                                                                                                  KOB; ATL-55T
AML and ALL            NPM1; TP53               Rucaparib                  5FU                      Increase in DNA                OCI-AML2;                  Falzacappa 
                                                                                                                                     damage and induction            RPMI-8402               et al., 2015 (55)
                                                                                                                                             of apoptosis
AML                            FLT3; NPM1                Olaparib                      -                              Increase in                  Patient samples             Faraoni et al., 
                                                                                                                                            DNA damage             from primary AML;             2015 (56)
                                                                                                                                                                                   HL-60; U937; 
                                                                                                                                                                                   NB4; HL-60R; 
                                                                                                                                                                                     OCI-AML2; 
                                                                                                                                                                                      OCI-AML3

ALL: Acute lymphocytic leukemia; AML: acutemyeloid leukemia; ATALL: adult T-cell leukemia/lymphoma; CML: chronic myeloid leukemia;
CMML: chronic myelomonocytic leukemia; DLBCL: diffuse large B-cell lymphoma; DSB: double-strand break; HR: homologous recombination;
MDS: myelodysplastic syndrome; MPN: myeloproliferative neoplasm; NHEJ: non-homologous end joining; PARP1: poly-ADP-ribose polymerase;
TALL: T-cell acute lymphoblastic leukemia.



of DNA-binding protein 51 (RAD51) (59-61). Garcia et al.
also demonstrated that inhibition of other kinase pathways,
such as WEE1-like protein kinase (WEE1), impaired HR in
FLT3–ITD-mutated AML cells and synergized with PARPi
treatment (48).

Studies analyzing cohorts of samples from patients with
AML have demonstrated that high PARP1 expression in
AML cells is related both to increased FLT3-ITD mutation
rate (41), as well as reduced sensitivity to PARPi (56),
indicating that the overexpression of PARP1 might be a
potential predictive marker to the resistance to PARPi
treatment in AML mediated by FLT3–ITD mutation,
however further investigation is required on this topic. AML
cell lines expressing no FLT3–ITD or relevant levels of
PARP1 are still capable of resisting PARPi treatment
through other mechanisms, such as the aforementioned
overexpression of RAD51 (56).

Another TK found to have an important role in
hematological malignancies is Janus kinase 2 (JAK2)
harboring the point mutation V617F, which is often
expressed in myeloproliferative neoplasms. Contrasting data
found in the literature make it still unclear if JAK2V617F

cells are indeed sensitive or not to treatment with PARPi,
more specifically to veliparib (39, 52). In a similar
mechanism to that of FLT3-ITD, JAK2V617F mutation is
known to increase RAD51 expression and up-regulate HR
activity, which would, in theory, reduce JAK2V617F cell
sensitivity to PARPi treatment (60). 

One of the most common leukemia subtypes associated
with TK dependence is CML as a result of its high BCR–
ABL1 expression. Even though TKI development has greatly
improved prognosis of patients with CML, cases of primary
and secondary resistance are still reported in clinical practice
and represent a major obstacle in treatment (62, 63). BCR–
ABL mutations are known to deregulate cellular signaling
pathways, down-regulating BRCA1 protein expression and
consequentially inhibiting HR activity (64, 65). 

In accordance with the concept of synthetic lethality, the
utilization of different PARPi was able to inhibit growth of
CML BCR–ABL cells in vitro mainly through increase in
genomic instability and consequent apoptosis. This inhibitory
activity was shown to be even more relevant when combined
with different synergistic drugs (37, 38, 42). Liu et al.
demonstrated that the utilization of chloroquine potentiated
the activity of talazoparib in samples from patients with
CML by inhibiting talazoparib-induced autophagy which
may play a cytoprotective role in tumor cells (37). Moreover,
Nieborowska-Skorska et al. demonstrated that a combination
of NAD-like PARPi, such as olaparib and talazoparib, and
non-NAD-like PARPi, as well as combination with the
commonly used TKI imatinib, may potentiate NAD-like
PARPi inhibitory activity against cell in samples from
patients with CML (42).

In the above mentioned studies, as well as those described
in Table I, the cytotoxicity of PARPi has been shown for
different leukemia subtypes in vitro, especially when
combined with other drugs capable of deregulating cellular
signaling pathways and DDR mechanisms, reinforcing its
capability for selectively killing malignant cells through
synthetic lethality (66), and improving upon the hypothesis
that their use has the potential to improve prognosis of many
patients afflicted by TK-dependent leukemia.

Conclusion

The highly significant experimental data support the
utilization of PARPi as a potential new therapeutic approach
in the treatment of primary leukemia and TK-dependent
leukemia  through a series of different mechanisms, such as
synthetic lethality, PARP trapping and synergy with other
signaling pathway inhibitors. The confirmation of this
evidence in clinical trials is needed in order to further
improve upon this hypothesis. 
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