
Abstract. Background/Aim: The antidepressant duloxetine
is known as a serotonin–norepinephrine reuptake inhibitor,
used for treating depression and anxiety. TRAIL selectively
induces cell death in a variety of tumor cells by binding to
its membrane death receptor (DR). The aim of the study was
to examine whether duloxetine affects TRAIL-mediated
apoptosis. Materials and Methods: Cell viability and
apoptosis was measured by morphological image, crystal
violet staining, MTT and LDH assay. Immunocytochemistry
and western blotting techniques were applied to detect
autophagy and apoptosis indicator proteins. TEM assay was
used to determine the autophagy. Results: Duloxetine
treatment considerably sensitizes human lung
adenocarcinoma cells to TRAIL-mediated apoptosis by
targeting TRAIL-DR5. Treatment with duloxetine inhibited
AMPK phosphorylation and resulted in increased p62 and
microtubule-associated protein 1A/1B light chain 3B-II
levels, indicating inhibition of autophagy flux. Blockade of
DR5 with DR5-specific small-interfering RNA negatively
regulated the apoptotic effect. Conclusion: Clinical
administration of TRAIL in combination with duloxetine may
serve as a therapeutic approach for the treatment of TRAIL-
resistant lung cancer cells.

Lung cancer is one of the leading causes of cancer-related
deaths worldwide (1, 2). After diagnosis, only 17.4% of
patients with lung cancer survive for longer than 5 years (3).
Several studies and clinical trials are in progress to develop
specific treatment regimens for lung cancer that currently

include surgery, radiotherapy, and chemotherapeutic drugs
and their combinations (4, 5). The combination strategy has
served as an important modality for cancer treatment for
several years. Specific combination strategies with potent
chemotherapeutic drugs may exert potential benefits against
cancers, such as non-small cell lung adenocarcinoma
(NSCLC) (6-8).

Tumor necrosis factor related apoptosis inducing ligand
(TRAIL) is a transmembrane cytokine that selectively kills
proliferating cancer cells via binding to death receptors on
their membranes while exerting negligible toxicity to normal
cells (9-12). However, many cancer cells exhibit resistance
to TRAIL via various mechanisms, including genetic or
epigenetic alteration of TRAIL receptors, overexpression of
decoy receptors, and down-regulation of DR4/DR5
expression. Furthermore, overexpression of certain anti-
apoptotic proteins, such as cellular FLICE-like inhibitory
protein (c-FLIP) and B cell lymphoma 2 (Bcl-2) is known to
impair TRAIL functions (13-16). The binding of TRAIL to
death receptors may also activate the extrinsic apoptotic
pathway and trigger apoptotic signaling (17). TRAIL binds
to its receptors, DR4 and DR5, to form a death-inducing
signaling complex (DISC), which associates with adaptor
molecules Fas-associated protein with death domain (FADD)
and caspase-8 and induces the activation of caspase-9 and,
subsequently, caspase-3 to cause apoptotic cell death (18-21).
Among several TRAIL-resistant cancer cell lines, A549 lung
cancer cells exhibit resistance to the apoptotic effects of
TRAIL (22). Interestingly, TRAIL resistance may be
overcome through the use of efficient TRAIL-sensitizing
pharmacological agents (23, 24).

Duloxetine is a well-known serotonin-norepinephrine
reuptake inhibitor that is widely used for the treatment of
depression and anxiety. Duloxetine is also frequently prescribed
for the treatment of depression in patients with cancer (25). In
addition, duloxetine may serve as a standard drug for the
treatment of chemotherapy-induced peripheral neuropathy
(CIPN), wherein it prevents the activation and nuclear
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translocation of nuclear factor kappa B (NF-ĸB) through the
inhibition of the activation of p38 phosphorylation. As a
consequence, it reduces inflammation and inhibits nerve injury
through the regulation of nerve growth factor (NGF) (26). 

Autophagy is an intracellular catabolic mechanism that
involves formation of an autophagosome containing cytosolic
components and damaged organelles, and its subsequent
fusion with a lysosome (27-30). Defective autophagy has been
associated with various diseases, including cancer,
neurodegeneration, aging, and liver diseases (31, 32). The
procedure of autophagosome development is facilitated by the
ubiquitin-like ATG12-autophagy protein (Atg)5-Atg16
complex and microtubule-associated proteins 1A/1B light
chain 3B (LC3)-II, an LC3-I-phospholipid conjugate that
serves as an autophagy marker (33, 34). Sequestosome-1
(p62), a ubiquitin-binding protein and an autophagy marker,
integrates into autophagosome by directly interacting with
LC3 and is completely degraded upon autophagy. Inhibition
of autophagy flux results in the prompt accumulation of
cellular p62, owing to the suppression of lysosomal
degradation (35). The inhibition of autophagy flux sensitizes
cancer cells to usual radio and chemotherapy response (36,
37). Autophagy inhibition may be a suitable target for cancer
treatment. Chloroquine (CQ), 3-methyladenine (3-MA), and
small-interfering RNA (siRNA) against autophagy-related
genes have been employed as autophagy inhibitors in
autophagy studies. Chloroquine (CQ) prevents lysosome
acidification and lysosomal merging with autophagosomes as
well as the degradation of proteins, thereby inducing apoptosis
(38, 39). The molecule 3-methyladenine (3-MA) is a specific
inhibitor for phosphoinositide 3-kinase (PI3K) and autophagy
(40, 41). AMP-activated protein kinase (AMPK), a key
energy-preserving intracellular enzyme, regulates energy
balance and maintains cellular energy homeostasis (42-44).

Here, we explored the use of duloxetine as a TRAIL-
sensitizing agent for targeting the TRAIL/DR5 apoptotic
pathway in A549 cells. We also investigated the molecular
mechanism underlying the anticancer effects of duloxetine
in combination with TRAIL and specifically the role of
autophagy and AMPK phosphorylation.

Materials and Methods

Cell culture. Cancer cells originating from lung (A549, HCC-15)
tumors were acquired from the American Type Culture Collection
(Global Bioresource Center, Manassas, VA, USA). Calu-3 cancer cells
were obtained from the Korean Cancer Cell Bank (KCBL), Republic
of Korea. Cells were cultured in Roswell Park Memorial Institute
(RPMI)-1640 medium (Gibco BRL, Grand Island, NY, USA)
supplemented with 10% (v/v) fetal bovine serum and antibiotics (100
μg/ml penicillin-streptomycin) at 37˚C in a 5% CO2 incubator.

Reagents. Duloxetine was purchased from Cayman chemical, USA, and
chloroquine (10 μM) and 3-MA (5 mM) were obtained from Sigma-

Aldrich (St. Louis, MO, USA). TRAIL (100 ng/ml) was purchased
from AbFrontier (Geumcheon-gu, Seoul, Republic of Korea).

Cell viability test. A549, HCC-15, and Calu-3 cells were plated in
12-well plates at a density of 1.0×104 cells/well and incubated at
37˚C for 24 h. The cells were pretreated with 0, 5, 10, and 20 μM
duloxetine for 18 h, followed by incubation with recombinant
TRAIL (100 ng/ml) for 2.3 h. In addition, the cells were also
pretreated with chloroquine (10 μM) for 1 h, followed by treatment
with duloxetine. Cellular morphology was observed under an
inverted microscope (Nikon, Japan) and cell viability was assessed
with the crystal violet staining method. Cells were stained with a
staining solution (0.5% crystal violet in 30% ethanol and 3%
formaldehyde) for 10-15 min at room temperature, washed 3-4
times with phosphate-buffered saline (PBS), and dried. Cell viability
was measured by adding 50 μl of 5 mg/ml methyl-thiazolyl-
tetrazolium (MTT) to each well, followed by the incubation of the
plate at 37˚C for 2 h. The wells were treated with 500 μl dimethyl
sulfoxide after the removal of the medium, and the absorbance of
each well was measured at 570 nm with a spectrophotometer (Bio-
Rad, Hercules, CA, USA). 

Lactate dehydrogenase (LDH) assay. Cytotoxicity was determined
using an LDH cytotoxicity detection kit (Takara Bio, Inc., Tokyo,
Japan) according to the manufacturer’s protocol. LDH activity was
assessed by measuring absorbance at 490 nm using a microplate
reader (Spectra Max M2, Molecular Devices, Sunnyvale, CA, USA).

Western blot assay. Treated A549 cells were washed with cold PBS,
and resuspended in a lysis buffer [25 mM HEPES (pH 7.4), 100
mM ethylenediaminetetraacetic acid (EDTA), 5 mM MgCl2, 0.1
mM dithiothreitol (DTT), and a protease inhibitor cocktail], and
sonicated to prepare cell lysates. Proteins (20-35 μg) present in the
cell lysates were separated by electrophoresis on 10%-15% sodium
dodecyl sulfate (SDS) gels and transferred onto nitrocellulose and/or
polyvinylidene fluoride (PVDF) membranes. After incubation with
the indicated concentrations of primary antibodies in a dilution
buffer (1% milk with PBS-Tween) and with the secondary antibody
(1:5,000), the membranes were developed with enhanced
chemiluminescence reagents. Primary antibodies (1:1,000) used for
immunoblotting included LC3, p62 (Sigma-Aldrich, St. Louis, MO,
USA), cleaved caspase-3, p-AMPKα, (Cell Signaling Technology,
Danvers, MA, USA), cleaved caspase-8 (BD Pharmingen/BD
Biosciences, San Jose, CA, USA), DR5 (1:10,000), DR4 (1:1,000)
(Abcam, Cambridge, MA, USA), and β-actin (Sigma-Aldrich). The
bands were visualized with a Fusion-FX7 imaging system (Vilber
Lourmat, Marne-la-Vallée, France).

Immunocytochemistry (ICC). Cells were cultured on glass
coverslips, treated with duloxetine, chloroquine, and/or TRAIL,
washed with PBS, and fixed with 4% paraformaldehyde in PBS at
room temperature for 15 min. Cells were washed twice with ice-
cold PBS and incubated at room temperature for 10 min in PBS
containing 0.25% Triton X-100 (PBST). After incubation, cells were
washed thrice with PBS and blocked with 1% bovine serum
albumin (BSA) in PBST for 30 min. The cells were incubated with
appropriate primary antibodies (anti-p62, and DR5 diluted with 1%
BSA in PBST) in a humidified chamber at room temperature for 3
h or at 4˚C overnight. After incubation, the antibody solution was
decanted and the cells were washed thrice with PBS, followed by
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incubation with a secondary antibody (diluted with 1% BSA in
PBST) in the dark for 2 h at room temperature. The solution was
decanted and the cells were washed thrice with PBS (5 min per
wash). Cells were incubated with 4’,6-diamidino-2-phenylindole
(DAPI) for 10 min and rinsed with PBS. Finally, the cells were
mounted with a fluorescence mounting medium and visualized
under a fluorescence microscope.

Transmission electron microscopy (TEM). Following fixation of the
cells in 2% glutaraldehyde (Electron Microscopy Sciences, Hatfield,
PA, USA) and 2% paraformaldehyde (Electron Microscopy
Sciences) in 0.05 M sodium cacodylate (pH 7.2; Electron
Microscopy Sciences) for 2 h at 4˚C, specimens were fixed in 1%
osmium tetroxide (Electron Microscopy Sciences) for 1 h at 4°C,
dehydrated with increasing ethanol (25, 50, 70, 90 and 100%) for 5
min each and embedded in epoxy resin (Embed 812; Electron
Microscopy Sciences) for 48 h at 60˚C according to the
manufacturers' instructions. Ultrathin sections (60 nm) were prepared
using an LKB‑III ultratome (Leica Microsystems GmbH, Wetzlar,
Germany) and were stained with 0.5% uranyl acetate (Electron

Microscopy Sciences) for 20 min and 0.1% lead citrate (Electron
Microscopy Sciences) for 7 min at room temperature. Images were
recorded on a Hitachi H7650 electron microscope (Hitachi, Ltd.,
Tokyo, Japan; magnification, ×10,000) installed at the Center for
University‑Wide Research Facilities (CURF) at Chonbuk National
University.

RNA interference. A549 cells were transfected with DR5 small-
interfering RNA (siRNA ID 104279; Ambion, Life Technologies
Corporation) using Lipofectamine 2000 transfection reagent
(Invitrogen; Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. After 24 h, the
knockdown efficiency at the protein level was determined by
immunoblotting and cell viability assays. Scrambled siRNA
(Invitrogen) was used as a negative control.

Ethical approval. Ethical approval for the project was granted by
the institutional review board of the Chonbuk National University.
Statistical analysis. All data are expressed as means±standard
deviation (SD). Multiple comparisons were performed with one-way
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Figure 1. Effect of duloxetine on TRAIL-mediated apoptosis of A549 lung cancer cells. Cells were pretreated with 0, 5, 10, and 20 μM duloxetine
for 18 h followed by additional treatment with 100 ng/ml of TRAIL for 2.3 h. (A) Cells were photographed and changes in morphology were examined
under a light microscope (×100) in A549 cells; (B) Cell viability was determined with crystal violet staining; (C) Bar graph presenting cell viability
by MTT assay in A549 Cells; (D) Secretion of LDH during co-treatment measured in the supernatant of A549 cells. *p<0.05 **p<0.01, ***p<0.001:
significant differences between control and each treatment group, the results represent the means of at least 3 independent experiments. Dulx:
Duloxetine; TRAIL: tumor necrosis factor (TNF)-related apoptosis-inducing ligand.



analysis of variance (ANOVA) followed by Tukey–Kramer test.
Statistical analyses were performed with GraphPad Prism software.
A value of p<0.05 was considered to indicate a statistically
significant difference.

Results

Effect of duloxetine on TRAIL-mediated apoptosis of lung
cancer cells. The effect of duloxetine on the TRAIL-mediated
apoptosis of A549, HCC-15, and Calu-3 lung cancer cell lines
was evaluated following pretreatment with the indicated
concentrations of duloxetine for 18 h and incubation with
TRAIL for 2.3 h. Cells were photographed and variations in
their morphologies were examined under a light microscope.
Treatment with duloxetine or TRAIL alone had minor effects
on cell viability and failed to induce any morphological
changes as compared with the control treatment (Figures 1,
2, and 3). Thus, A549, HCC-15, and Calu-3 cells were
extremely resistant to TRAIL-mediated apoptosis. Co-
treatment with TRAIL and varying concentrations of

duloxetine induced an increase in the number of apoptotic
cells (Figures 1A, B, 2A, B, and 3A, B). The results of the
MTT assay showed a significant reduction in the viability and
an increase in the percentage of A549, HCC-15, and Calu-3
cells undergoing apoptosis after co-treatment with duloxetine
and TRAIL (Figures 1C, 2C, and 3C). The levels of LDH
detected in all cell types after the combination treatment
indicated that duloxetine significantly induced apoptosis in a
dose-dependent manner and that duloxetine or TRAIL alone
failed to have a similar effect (Figures 1D, 2D and 3D). These
results suggested that duloxetine significantly sensitizes
TRAIL-resistant lung adenocarcinoma A549, HCC-15, and
Calu-3 cells to TRAIL-mediated apoptosis. 

Duloxetine enhances DR5 expression to induce TRAIL-
mediated apoptosis. To evaluate the molecular mechanism
underlying apoptosis of A549 cells induced by the
combination of duloxetine and TRAIL, we investigated the
expression of death receptors involved in apoptosis (Figure
4). TRAIL could bind to the decoy receptors DcR1 and
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Figure 2. Effect of duloxetine on TRAIL-mediated apoptosis of HCC-15 lung cancer cells. Cells were pretreated with 0, 5, 10, and 20 μM duloxetine
for 18 h followed by additional treatment with 100 ng/ml of TRAIL for 2.3 h. (A) Cells were photographed and changes in morphology were examined
under a light microscope (×100) in HCC-15 Cells; (B) Cell viability was determined with crystal violet staining; (C) Bar graph presenting cell
viability by MTT assay in HCC-15 Cells; (D) Secretion of LDH during co-treatment measured in the supernatant of HCC-15 cells. *p<0.05 **p<0.01,
***p<0.001: significant differences between control and each treatment group, the results represent the means of at least 3 independent experiments. 



DcR2 and to soluble osteoprotegerin and to DR4 and DR5.
However, binding only to DR4 and DR5 allows
transmission of apoptotic signals. A549 cells were treated
with indicated concentrations of duloxetine for 18 h and
cell lysates were subjected to western blot analysis to
investigate the expression of DR4 and DR5. Duloxetine
increased DR5 expression in a dose-dependent manner but
expression of DR4 was not affected (Figure 4A).
Apoptosis regulatory proteins cleaved caspase-8 and
cleaved caspase-3 were activated after treatment with
duloxetine and TRAIL as compared to the single treatment
with duloxetine or TRAIL (Figure 4B). Furthermore, ICC
results also revealed significant activation of DR5 in
duloxetine-treated cells as compared with non-treated cells
(Figure 4C). These findings indicated that duloxetine up-
regulates DR5 to induce TRAIL-mediated apoptosis in
lung adenocarcinoma cells.  

Duloxetine mediated autophagy flux inhibition via
suppression of AMPK phosphorylation. To investigate the
role of duloxetine in autophagy flux, we assessed the

expression levels of LC3-II and p62 by western blotting
(Figure 5). The conversion of LC3I to LC3-II is a marker
of complete autophagosomes, while p62 is a ubiquitin-
binding protein involved in lysosome- or proteasome-
dependent degradation of proteins. Inhibition of autophagy
flux results in the accumulation of cellular p62. LC3-II and
p62 expression levels increased following duloxetine
treatment, indicative of inhibition of autophagy flux
(Figure 5A). ICC results also showed that duloxetine
increased p62 levels in a dose-dependent manner (Figure
5B). Inhibition of AMPK phosphorylation resulted in
cellular damage and prompted apoptosis through
autophagy inhibition. Duloxetine repressed the
phosphorylation of AMPK in a dose-dependent manner,
resulting in suppression of autophagy flux (Figure 5C).
Transmission electron microscopy confirmed inhibition of
autophagy flux by the higher accumulation of autophagic
vacuoles compared to control (Figure 5D). Taken together,
these results indicated that inhibition of AMPK
phosphorylation by duloxetine results in suppression of
autophagy flux in lung cancer cells. 
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Figure 3. Effect of duloxetine on TRAIL-mediated apoptosis of Calu-3 lung cancer cells. Cells were pretreated with 0, 5, 10, and 20 μM duloxetine
for 18 h followed by additional treatment with 100 ng/ml of TRAIL for 2.3 h. (A) Cells were photographed and changes in morphology were examined
under a light microscope (×100) in Calu-3 Cells; (B) Cell viability was determined with crystal violet staining; (C) Bar graph presenting cell
viability by MTT assay in Calu-3 Cells; (D) Secretion of LDH during co-treatment measured in the supernatant of Calu-3 cells. *p<0.01, **p<0.001:
significant differences between control and each treatment group, the results represent the means of at least 3 independent experiments. 



Duloxetine enhances TRAIL-mediated apoptosis by inhibiting
autophagy flux. We used chloroquine to investigate the effect
of duloxetine on the induction of TRAIL-mediated apoptosis
of A549 lung adenocarcinoma cells. Chloroquine acts as an
autophagy inhibitor by blocking the acidification of
lysosomes. A549 cells were pretreated with chloroquine for 1
h, then treated with indicated doses of duloxetine for 18 h, and
subsequently were incubated with TRAIL for an additional 2.3
h. Cells were visualized to investigate morphological changes
using a light microscope and cell viability was analyzed using
crystal violet staining and MTT assay (Figure 6). A549 cells
treated with either TRAIL or duloxetine alone showed a slight
increase in the cell death rate, but the combination treatment
with TRAIL and chloroquine strongly increased the cell death
rate. Cellular morphology analysis revealed an enhanced cell
death after treatment with TRAIL and chloroquine as
compared with that observed after treatment with duloxetine

or TRAIL alone (Figure 6A and B). Incubation of chloroquine-
treated A549 lung cancer cells with the combination of
duloxetine and TRAIL reduced viability and significantly
increased cell death (Figure 6C). LDH assay also showed that
chloroquine, duloxetine both combined with TRAIL
augmented apoptotic cell death (Figure 6D). These results
indicated that duloxetine enhances TRAIL-mediated apoptosis
through the inhibition of autophagy flux.

Autophagy flux inhibition results in DR5 up-regulation and
enhances TRAIL-mediated apoptosis by duloxetine. We
investigated the molecular mechanism underlying
duloxetine-induced increase in TRAIL-mediated apoptotic
pathway following inhibition of autophagy flux with
autophagy inhibitors. Autophagy flux inhibition with
autophagy inhibitor up-regulated DR5 expression, leading to
an increase in apoptosis (Figure 7). We used two autophagy
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Figure 4. Duloxetine enhances DR5 expression to induce TRAIL-
mediated apoptosis. A549 cells were pretreated with 0, 5, 10, and 20
μM duloxetine for 18 h. (A) Cells lysates were harvested and
subjected to western blot to determine the activation of DR4 and DR5
in a dose-dependent manner; (B) Cells were treated with 20 μM
duloxetine for 18 h and then exposed to 100 ng/ml TRAIL for 2 h.
Immunoblotting was performed to detect cleaved caspase-8 and
cleaved caspase-3. β-actin was detected as a loading control; (C)
Immunocytochemistry results also showed the significant activation
of DR5 in duloxetine- treated cells.



inhibitors; chloroquine and 3-MA. Lysates of cells pretreated
with chloroquine (10 μM) or 3-MA (5 mM) for 1 h, and
treated with the indicated concentrations of duloxetine for 18
h were analyzed by western blot. Duloxetine and chloroquine
or 3-MA increased the levels of LC3-II. In addition,
duloxetine alone in a dose-dependent manner, and
chloroquine and 3-MA augmented p62 level. These results
showed that duloxetine inhibits autophagy flux to induce
apoptosis (Figure 7A). Furthermore, the combination of
duloxetine with chloroquine and 3-MA up-regulated DR5
expression (Figure 7B). To evaluate the levels of cleaved
caspase-8 and cleaved caspase-3, lysates of cells pretreated
with chloroquine for 1 h, then treated with the indicated
concentrations of duloxetine for 18 h and finally with TRAIL
for an additional 2 h were examined by western blot.
Inhibition of autophagy with chloroquine and TRAIL also

activated caspase-8 and caspase-3 (Figure 7C). These
findings demonstrated that the inhibition of autophagy
results in the up-regulation of DR5 expression and augments
the duloxetine-induced TRAIL-mediated apoptosis. 

Silencing of DR5 expression negatively regulates the
duloxetine-induced TRAIL-mediated apoptosis. Inhibition of
DR5 expression with DR5-specific siRNA meaningfully
restored cellular viability after treatment with duloxetine and
TRAIL. These data indicated that DR5 plays an important role
in duloxetine-induced apoptosis mediated by TRAIL (Figure
8). Cells were transfected with DR5-specific siRNA or a
negative control siRNA (NC) for 24 h and then treated with
duloxetine for 18 h, followed by incubation with TRAIL (100
ng/ml) for an additional 2.3 h to evaluate cell viability and 2
h for western blot analysis. We observed that cells transfected
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Figure 5. Duloxetine mediated autophagy flux inhibition via suppression of AMPK phosphorylation. Cells were treated with 0, 5, 10, and 20 μM
duloxetine for 18 h. (A and C) The expression levels of LC3, p62, AMPKα and pAMPKα were measured by western blotting analyses. β-actin was
detected as loading control; (B) Immunocytochemistry results also showed the enhancement of p62 by duloxetine; (D) Transmission electron
microscopy (TEM) results showed the accumulation of autophagosomes.



with DR5-specific siRNA showed a significant reduction in
death induced by duloxetine and TRAIL co-treatment.
Moreover, the viability of cells treated with the negative
control siRNA was similar to that of cells co-treated with
duloxetine and TRAIL (Figure 8A, B, and C). Western blot
analysis of whole cell lysates showed that DR5 activity was
blocked in cells transfected with DR5 siRNA as compared to
the non-transfected samples (Figure 8D). Our findings
confirmed that up-regulation of DR5 expression plays an
important role in attenuating TRAIL resistance by duloxetine. 

In summary, our findings showed that duloxetine-induced
apoptosis is mediated by TRAIL via the AMPK-mediated
inhibition of autophagy flux following the targeting of
TRAIL-DR5 up-regulation.

Discussion

Depression is a very common psychological disorder in
patients with cancer. Chronic stress decreases the antitumor
immune response and favors tumor growth (45). Several
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Figure 6. Duloxetine enhances TRAIL-mediated apoptosis by inhibiting autophagy flux. A549 cells were also pretreated with and/or chloroquine
(10 μM) for 1 h followed by treatment with 20 μM duloxetine for 18 h finally exposed to 100 ng/ml TRAIL for 2.3 h. (A) Cell morphology was
photographed under light microscope (×100); (B) Cell viability was assessed by crystal violet staining; (C). Bar diagram showed cell viability by
MTT assay; (D) LDH assay showed apoptosis percentage. *p<0.01, **p<0.001: significant differences between control and each treatment group,
the results represent the means of at least 3 independent experiments. CQ: Chloroquine.



studies using animal models have found that behavioral
stress stimulates the rapid progression of ovarian (46),
pancreatic (47), prostate (48), and breast (49) carcinomas and
malignant melanomas (50). Duloxetine is commonly used to
treat depression and is suggested as an adjuvant therapy for
cancer pain management (51).

TRAIL is one of the most promising anticancer agents
owing to its specificity, ability to initiate apoptosis in specific
cell types, and non-toxicity to normal cells (52-56). Previous
studies have confirmed that the repetitive administration of
TRAIL may adequately inhibit tumor growth without affecting
normal cells (55, 57). However, several cancers, including
lung cancer, are resistant to the apoptotic effects of TRAIL
(58). Surprisingly, TRAIL resistance could be overcome with
the use of efficient TRAIL-sensitizing pharmacological agents
in the form of combination therapy (19).

Our study demonstrated that small doses of duloxetine in
combination with TRAIL effectively increase the number of

apoptotic cells as compared to the administration of either
treatment alone. We investigated whether duloxetine
attenuates TRAIL resistance of A549, HCC-15, and Calu-3
cells and activates the apoptotic caspase cascade in these
cells and found that duloxetine up-regulated DR5 expression,
leading to the apoptotic cell death in combination with
TRAIL (Figures 1, 2, 3, and 4). 

Autophagy is a natural, self-regulated mechanism
responsible for cell death or survival through the elimination
of cytoplasmic proteins and other macromolecules, clearance
of damaged organelles, and degradation of dysfunctional or
aggregated proteins (59, 60). Autophagy supports cells by
mediating an immediate response necessary for the recycling
of indispensable metabolites as well as to fuel bioenergetic
machineries. Many studies suggest that the blockade of
lysosomal degradation in response to the inhibition of
autophagy machinery in starved cells may result in rapid
apoptotic cell death through the activation of death receptors
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Figure 7. Autophagy flux inhibition results in DR5 up-regulation and
enhancement in TRAIL-mediated apoptosis by duloxetine. Cells were
pretreated with 10 μM chloroquine, or 5mM 3-MA for 1 h followed by
treatment with 20 μM duloxetine for 18 h. (A) Autophagy marker LC3 and
p62 were evaluated by western blot; (B). Death receptor 5 (DR5) was
evaluated by immunoblotting; (C) Cells were pretreated with 20 μM
duloxetine for 18 h and finally exposed to 100 ng/ml TRAIL for 2 h. Cleaved
Caspase-8 and cleaved caspase-3 were analyzed by immunoblotting. β-actin
was detected as a loading control. 3-MA: 3-Methyladenine.



and expression of apoptotic caspase cascades (36, 61-63).
AMPK is a cellular energy sensor related to survival and
proliferation of cells through the induction of cytoprotective
autophagy via the direct inhibition of mTOR. Down-regulation
of AMPK phosphorylation triggers cellular apoptosis via
autophagy inhibition (64, 65). Our findings confirmed that
duloxetine increased autophagosome formation, as evident
from the increase in LC3-II expression, and triggered defective
lysosomal degradation as indicated by the accumulation of p62,
causing inhibition of autophagy flux (Figure 5). The
combination treatment of TRAIL and duloxetine or CQ
increased cell death as compared with single treatment
regimens (Figure 6). We confirmed that the inhibition of
autophagy with duloxetine and the specific autophagy
inhibitors chloroquine and 3-MA resulted in the up-regulation
of the expression of DR5 and enhanced TRAIL-mediated
caspase-dependent death of lung cancer cells. Furthermore,
duloxetine- and TRAIL-induced apoptosis in response to the
inhibition of autophagy flux was confirmed after treatment

with the autophagy inhibitor chloroquine (Figure 7) (66, 67).
The blockade of DR5 expression with DR5-specific siRNA
abrogated TRAIL-mediated apoptosis of cells (Figure 8). 

Our mechanistic observations demonstrated that
duloxetine is an attractive candidate to attenuate TRAIL
resistance and provides an effective combination therapy
regimen for lung cancer. This study lays the foundation for
future experiments to select appropriate treatments for
patients with cancer who are affected by depression.
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Figure 8. Silencing of DR5 expression negatively regulates duloxetine-induced TRAIL-mediated apoptosis. A549 cells were transfected with DR5
siRNA and NC siRNA (40 nM) for 24 h then treated with 20 μM duloxetine for 18 h with or without 100 ng/ml TRAIL for 2.3 h and 2 h for evaluating
cell viability and performing immunoblotting; (A) Cells were photographed and changes in morphology were examined under a light microscope
(×100); (B) Cell viability was determined with crystal violet staining; (C) Bar graph showing the cell viability percentages by MTT assay. *p<0.001:
significant differences between control and each treatment group; (D) Cells lysates were harvested and subjected to western blot to determine the
expression of DR5. β-actin was detected as a loading control.
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